Exemplo n.º 1
0
def testCNN1DKeras(mult_donnees,mesDonnees_test):
    print("debut test conv1D")
    def f1(y_true, y_pred):
        def recall(y_true, y_pred):
            """Recall metric.

            Only computes a batch-wise average of recall.

            Computes the recall, a metric for multi-label classification of
            how many relevant items are selected.
            """
            true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
            possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
            recall = true_positives / (possible_positives + K.epsilon())
            return recall

        def precision(y_true, y_pred):
            """Precision metric.

            Only computes a batch-wise average of precision.

            Computes the precision, a metric for multi-label classification of
            how many selected items are relevant.
            """
            true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
            predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
            precision = true_positives / (predicted_positives + K.epsilon())
            return precision
        precision = precision(y_true, y_pred)
        recall = recall(y_true, y_pred)
        return 2*((precision*recall)/(precision+recall+K.epsilon()))


    def create_model():
        # create model
        model = Sequential()
        model.add(Conv1D(4, 10, strides=2, padding='same', activation='relu'))
        model.add(Dropout(0.4))
        model.add(MaxPooling1D(3))
        model.add(Conv1D(40, 5, strides=2, padding='same', activation='relu'))
        model.add(Flatten())
        model.add(Dense(2, activation='softmax'))
        # Compile model
        model.compile(loss='binary_crossentropy', optimizer='SGD', metrics=['binary_accuracy'])
        return model
    result=[]
    for r,donnees in mult_donnees.items():
        print(donnees.data.shape)
        print("r = "+str(r))
        model = KerasClassifier(build_fn=create_model, epochs=1, batch_size=1000)
        m = GenericModele(model,donnees)
        s = m.f1Score(mode="proba")
        result.append([r,s])
    print("reactionTime,f1score : "+str(result))
    return result
Exemplo n.º 2
0
def testRiemannMDM(mult_donnees):
    print("debut test riemann MDM")
    result = []
    for r, donnees in mult_donnees.items():
        print("r = " + str(r))
        m = GenericModele(pyriemann.classification.MDM(), donnees)
        m.dataToCov()
        s = m.f1Score()
        result.append([r, s])
    print("reactionTime,f1score : " + str(result))
    return result
Exemplo n.º 3
0
def testKNNBrut(mult_donnees):
    print("debut test knn brut")
    result = []
    for r, donnees in mult_donnees.items():
        print("r = " + str(r))
        neigh = KNeighborsClassifier(n_neighbors=3)
        m = GenericModele(neigh, donnees)
        m.vectorize()
        s = m.f1Score()
        result.append([r, s])
    print("reactionTime,f1score : " + str(result))
    return result
Exemplo n.º 4
0
def testSVMBrut(mult_donnees):
    print("debut test SVM brut")
    result = []
    for r, donnees in mult_donnees.items():
        print("r = " + str(r))
        clf = SVC(gamma='auto', probability=True, max_iter=100, verbose=1)
        m = GenericModele(clf, donnees)
        m.vectorize()
        s = m.f1Score()
        result.append([r, s])
    print("reactionTime,f1score : " + str(result))
    return result
Exemplo n.º 5
0
def testCovSVM(mult_donnees,mesDonnees_test):
    print("debut test cov SVM")
    result=[]
    for r,donnees in mult_donnees.items():
        print("r = "+str(r))
        clf = SVC(gamma='auto',probability=True,max_iter=100,verbose=1)
        m = GenericModele(clf,donnees)
        m.dataToCov()
        m.vectorize()
        m.fit()
        s = m.score(mesDonnees_test[r].data,mesDonnees_test[r].labels)
        result.append([r,s])
    print("reactionTime,f1score : "+str(result))
    return result
Exemplo n.º 6
0
def testKNNTF(mult_donnees,mesDonnees_test):
    print("debut test knn tf")
    result=[]
    for r,donnees in mult_donnees.items():
        print("r = "+str(r))
        neigh = KNeighborsClassifier(n_neighbors=3)
        m = GenericModele(neigh,donnees)
        m.dataToTf()
        m.vectorize(tf=True)
        m.fit()
        s = m.score(mesDonnees_test[r].data,mesDonnees_test[r].labels)
        result.append([r,s])
    print("reactionTime,f1score : "+str(result))
    return result
Exemplo n.º 7
0
def testKNNPaseBas(nbPoint,slider,mult_donnees,mesDonnees_test):
    print("debut test passe bas knn")
    result=[]
    for r,donnees in mult_donnees.items():
        print("r = "+str(r))
        neigh = KNeighborsClassifier(n_neighbors=3)
        m = GenericModele(neigh,donnees)
        m.vectorize()
        m.dataToMoy(nbPoint,slider)
        m.fit()
        s = m.score(mesDonnees_test[r].data,mesDonnees_test[r].labels)
        result.append([r,s])
    print("reactionTime,f1score : "+str(result))
    return result
Exemplo n.º 8
0
def testRiemannKNN(mult_donnees,mesDonnees_test):
    print("debut test riemann KNN")
    result=[]
    for r,donnees in mult_donnees.items():
        print("r = "+str(r))
        m = GenericModele(pyriemann.classification.KNearestNeighbor(n_neighbors=3),donnees)
        m.dataToCov()
        m.fit()
        s = m.score(mesDonnees_test[r].data,mesDonnees_test[r].labels)
        result.append([r,s])
    print("reactionTime,f1score : "+str(result))
    return result
Exemplo n.º 9
0
def testRiemannMDMPlusXdawn(mult_donnees,mesDonnees_test):
    print("debut test riemann MDM")
    result=[]
    for r,donnees in mult_donnees.items():
        print("r = "+str(r))
        m = GenericModele(pyriemann.classification.MDM(),donnees)
        m.dataToXdawnCov()
        m.fit()
        s = m.score(mesDonnees_test[r].data,mesDonnees_test[r].labels)
        result.append([r,s])
    print("reactionTime,f1score : "+str(result))
    return result
Exemplo n.º 10
0
def testSVMPaseBas(nbPoint, slider, mult_donnees):
    print("debut test passe bas SVM")
    result = []
    for r, donnees in mult_donnees.items():
        print("r = " + str(r))
        clf = SVC(gamma='auto', probability=True, max_iter=100, verbose=1)
        m = GenericModele(clf, donnees)
        m.vectorize()
        m.dataToMoy(nbPoint, slider)
        s = m.f1Score()
        result.append([r, s])
    print("reactionTime,f1score : " + str(result))
    return result
Exemplo n.º 11
0

myFileList = ["data/subject1/Session1/1.gdf"]
reactTimeToTest = [1, 0.1, 0.04]

mesDonnees = dict()
for r in reactTimeToTest:
    mesDonnees[r] = dataLoader.DataLoader(myFileList, r)

os.mkdir("resultats/TFKNN_valeurs_k")
for r, donnees in mesDonnees.items():
    print(r)
    result = []
    for k in range(1, 20, 2):
        neigh = KNeighborsClassifier(n_neighbors=k)
        m = GenericModele(neigh, donnees)
        m.dataToTf()
        m.vectorize(tf=True)
        m.dataToMoy(nbPoint, slider)
        s = m.f1Score()
        result.append([k, s])
    plt.clf()
    f = plt.figure()
    plt.title("F1 score en fonction de la valeur de k")
    plt.xlabel("Valeur de k")
    plt.ylabel("F1 score")
    plt.plot([re[0] for re in result], [re[1] for re in result])
    name = "resultats/TFKNN_valeurs_k/KNN_tf_valeur_de_k_pour_time_" + str(r)
    f.savefig(name + ".pdf", bbox_inches='tight')
    saveResult(name + ".csv", result)
Exemplo n.º 12
0
import pyriemann
import csv


def saveResult(name, result):
    myfile = open(name, 'w')
    wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)
    wr.writerow(["Time(second)", "F1 Score"])
    for r in result:
        wr.writerow(r)


reactTimeToTest = [1, 0.1, 0.04]

for r in reactTimeToTest:
    print(r)
    result = []
    for k in range(1, 50, 2):
        m = GenericModele(
            r, pyriemann.classification.KNearestNeighbor(n_neighbors=k))
        m.load_data_from_file("data/subject1/Session1/1.gdf")
        m.dataToCov()
        s = m.f1Score()
        result.append([k, s])
    plt.clf()
    f = plt.figure()
    plt.plot([re[0] for re in result], [re[1] for re in result])
    name = "resultats/riemannKNN_valeur_de_k_pour_time_" + str(r)
    f.savefig(name + ".pdf", bbox_inches='tight')
    saveResult(name + ".csv", result)
Exemplo n.º 13
0
        wr.writerow(r)


myFileList = ["data/subject1/Session1/1.gdf"]
reactTimeToTest = [1, 0.1, 0.04]

mesDonnees = dict()
for r in reactTimeToTest:
    mesDonnees[r] = dataLoader.DataLoader(myFileList, r)

os.mkdir("resultats/rieamannKNN_valeurs_k")
for r, donnees in mesDonnees.items():
    print(r)
    result = []
    for k in range(1, 20, 2):
        m = GenericModele(
            pyriemann.classification.KNearestNeighbor(n_neighbors=k), donnees)
        m.dataToCov()
        s = m.f1Score()
        print([k, s])
        result.append([k, s])
    plt.clf()
    f = plt.figure()
    plt.title("F1 score en fonction de la valeur de k")
    plt.xlabel("Valeur de k")
    plt.ylabel("F1 score")
    plt.plot([re[0] for re in result], [re[1] for re in result])
    name = "resultats/rieamannKNN_valeurs_k/riemannKNN_valeur_de_k_pour_time_" + str(
        r)
    f.savefig(name + ".pdf", bbox_inches='tight')
    saveResult(name + ".csv", result)
Exemplo n.º 14
0
        wr.writerow(r)


myFileList = ["data/subject1/Session1/1.gdf"]
reactTimeToTest = [1, 0.1, 0.04]

mesDonnees = dict()
for r in reactTimeToTest:
    mesDonnees[r] = dataLoader.DataLoader(myFileList, r)

os.mkdir("resultats/BrutKNN_valeurs_k")
for r, donnees in mesDonnees.items():
    print(r)
    result = []
    for k in range(1, 20, 2):
        neigh = KNeighborsClassifier(n_neighbors=k)
        m = GenericModele(neigh, donnees)
        m.vectorize()
        s = m.f1Score()
        result.append([k, s])
    plt.clf()
    f = plt.figure()
    plt.title("F1 score en fonction de la valeur de k")
    plt.xlabel("Valeur de k")
    plt.ylabel("F1 score")
    plt.plot([re[0] for re in result], [re[1] for re in result])
    name = "resultats/BrutKNN_valeurs_k/KNN_brut_valeur_de_k_pour_time_" + str(
        r)
    f.savefig(name + ".pdf", bbox_inches='tight')
    saveResult(name + ".csv", result)