Exemplo n.º 1
0
    def __init__(
        self,
        state_dim: spaces.Space,
        action_dim: spaces.Space,
        policy_layers: Tuple = (32, 32),
        value_layers: Tuple = (32, 32),
        val_type: str = "V",
        discrete: bool = True,
        num_critics: int = 2,
        **kwargs,
    ):
        super(MlpSingleActorMultiCritic, self).__init__()

        self.num_critics = num_critics

        self.actor = MlpPolicy(state_dim, action_dim, policy_layers, discrete,
                               **kwargs)
        self.critic1 = MlpValue(state_dim, action_dim, "Qsa", value_layers,
                                **kwargs)
        self.critic2 = MlpValue(state_dim, action_dim, "Qsa", value_layers,
                                **kwargs)

        self.action_scale = kwargs[
            "action_scale"] if "action_scale" in kwargs else 1
        self.action_bias = kwargs[
            "action_bias"] if "action_bias" in kwargs else 0
Exemplo n.º 2
0
    def __init__(
        self,
        state_dim: spaces.Space,
        action_dim: spaces.Space,
        shared_layers: None,
        policy_layers: Tuple = (32, 32),
        value_layers: Tuple = (32, 32),
        val_type: str = "V",
        discrete: bool = True,
        **kwargs,
    ):
        super(MlpActorCritic, self).__init__()

        self.actor = MlpPolicy(state_dim, action_dim, policy_layers, discrete, **kwargs)
        self.critic = MlpValue(state_dim, action_dim, val_type, value_layers, **kwargs)
Exemplo n.º 3
0
class MlpActorCritic(BaseActorCritic):
    """MLP Actor Critic

    Attributes:
        state_dim (int): State dimensions of the environment
        action_dim (int): Action space dimensions of the environment
        policy_layers (:obj:`list` or :obj:`tuple`): Hidden layers in the policy MLP
        value_layers (:obj:`list` or :obj:`tuple`): Hidden layers in the value MLP
        val_type (str): Value type of the critic network
        discrete (bool): True if the action space is discrete, else False
        sac (bool): True if a SAC-like network is needed, else False
        activation (str): Activation function to be used. Can be either "tanh" or "relu"
    """

    def __init__(
        self,
        state_dim: spaces.Space,
        action_dim: spaces.Space,
        shared_layers: None,
        policy_layers: Tuple = (32, 32),
        value_layers: Tuple = (32, 32),
        val_type: str = "V",
        discrete: bool = True,
        **kwargs,
    ):
        super(MlpActorCritic, self).__init__()

        self.actor = MlpPolicy(state_dim, action_dim, policy_layers, discrete, **kwargs)
        self.critic = MlpValue(state_dim, action_dim, val_type, value_layers, **kwargs)

    def get_params(self):
        actor_params = self.actor.parameters()
        critic_params = self.critic.parameters()
        return actor_params, critic_params
Exemplo n.º 4
0
    def __init__(
        self,
        framestack: int,
        action_dim: spaces.Space,
        policy_layers: Tuple = (256,),
        value_layers: Tuple = (256,),
        val_type: str = "V",
        discrete: bool = True,
        *args,
        **kwargs,
    ):
        super(CNNActorCritic, self).__init__()

        self.feature, output_size = cnn((framestack, 16, 32))
        self.actor = MlpPolicy(
            output_size, action_dim, policy_layers, discrete, **kwargs
        )
        self.critic = MlpValue(output_size, action_dim, val_type, value_layers)
Exemplo n.º 5
0
 def __init__(
     self,
     state_dim: spaces.Space,
     action_dim: spaces.Space,
     shared_layers: Tuple = (32, 32),
     policy_layers: Tuple = (32, 32),
     value_layers: Tuple = (32, 32),
     val_type: str = "V",
     discrete: bool = True,
     **kwargs,
 ):
     super(MlpSharedActorCritic, self).__init__()
     self.shared_network = mlp([state_dim] + list(shared_layers))
     self.actor = MlpPolicy(
         shared_layers[-1], action_dim, policy_layers, discrete, **kwargs
     )
     self.critic = MlpValue(
         shared_layers[-1], action_dim, val_type, value_layers, **kwargs
     )
     self.state_dim = state_dim
     self.action_dim = action_dim
Exemplo n.º 6
0
class MlpSharedActorCritic(BaseActorCritic):
    """MLP Shared Actor Critic

    Attributes:
        state_dim (int): State dimensions of the environment
        action_dim (int): Action space dimensions of the environment
        shared_layers (:obj:`list` or :obj:`tuple`): Hidden layers in the shared MLP
        policy_layers (:obj:`list` or :obj:`tuple`): Hidden layers in the policy MLP
        value_layers (:obj:`list` or :obj:`tuple`): Hidden layers in the value MLP
        val_type (str): Value type of the critic network
        discrete (bool): True if the action space is discrete, else False
        sac (bool): True if a SAC-like network is needed, else False
        activation (str): Activation function to be used. Can be either "tanh" or "relu"
    """

    def __init__(
        self,
        state_dim: spaces.Space,
        action_dim: spaces.Space,
        shared_layers: Tuple = (32, 32),
        policy_layers: Tuple = (32, 32),
        value_layers: Tuple = (32, 32),
        val_type: str = "V",
        discrete: bool = True,
        **kwargs,
    ):
        super(MlpSharedActorCritic, self).__init__()
        self.shared_network = mlp([state_dim] + list(shared_layers))
        self.actor = MlpPolicy(
            shared_layers[-1], action_dim, policy_layers, discrete, **kwargs
        )
        self.critic = MlpValue(
            shared_layers[-1], action_dim, val_type, value_layers, **kwargs
        )
        self.state_dim = state_dim
        self.action_dim = action_dim

    def get_params(self):
        actor_params = list(self.shared_network.parameters()) + list(
            self.actor.parameters()
        )
        critic_params = list(self.shared_network.parameters()) + list(
            self.critic.parameters()
        )
        return actor_params, critic_params

    def get_features(self, state: torch.Tensor):
        """Extract features from the state, which is then an input to get_action and get_value

        Args:
            state (:obj:`torch.Tensor`): The state(s) being passed

        Returns:
            features (:obj:`torch.Tensor`): The feature(s) extracted from the state
        """
        features = self.shared_network(state)
        return features

    def get_action(self, state: torch.Tensor, deterministic: bool = False):
        """Get Actions from the actor

        Arg:
            state (:obj:`torch.Tensor`): The state(s) being passed to the critics
            deterministic (bool): True if the action space is deterministic, else False

        Returns:
            action (:obj:`list`): List of actions as estimated by the critic
            distribution (): The distribution from which the action was sampled
                            (None if determinist
        """

        state = torch.as_tensor(state).float()
        shared_features = self.get_features(state)
        action_probs = self.actor(shared_features)
        action_probs = nn.Softmax(dim=-1)(action_probs)

        if deterministic:
            action = torch.argmax(action_probs, dim=-1).unsqueeze(-1).float()
            distribution = None
        else:
            distribution = Categorical(probs=action_probs)
            action = distribution.sample()

        return action, distribution

    def get_value(self, state: torch.Tensor):
        """Get Values from the Critic

        Arg:
            state (:obj:`torch.Tensor`): The state(s) being passed to the critics

        Returns:
            values (:obj:`list`): List of values as estimated by the critic
        """
        state = torch.as_tensor(state).float()

        if self.critic.val_type == "Qsa":
            # state shape = [batch_size, number of vec envs, (state_dim + action_dim)]

            # extract shared_features from just the state
            # state[:, :, :-action_dim] -> [batch_size, number of vec envs, state_dim]
            shared_features = self.shared_network(state[:, :, : -self.action_dim])

            # concatenate the actions to the extracted shared_features
            # state[:, :, -action_dim:] -> [batch_size, number of vec envs, action_dim]
            shared_features = torch.cat(
                [shared_features, state[:, :, -self.action_dim :]], dim=-1
            )

            value = self.critic(shared_features).float().squeeze(-1)
        else:
            shared_features = self.shared_network(state)
            value = self.critic(shared_features)
        return value
Exemplo n.º 7
0
class CNNActorCritic(BaseActorCritic):
    """
        CNN Actor Critic

        :param framestack: Number of previous frames to stack together
        :param action_dim: Action dimensions of the environment
        :param fc_layers: Sizes of hidden layers
        :param val_type: Specifies type of value function: (
    "V" for V(s), "Qs" for Q(s), "Qsa" for Q(s,a))
        :param discrete: True if action space is discrete, else False
        :param framestack: Number of previous frames to stack together
        :type action_dim: int
        :type fc_layers: tuple or list
        :type val_type: str
        :type discrete: bool
    """

    def __init__(
        self,
        framestack: int,
        action_dim: spaces.Space,
        policy_layers: Tuple = (256,),
        value_layers: Tuple = (256,),
        val_type: str = "V",
        discrete: bool = True,
        *args,
        **kwargs,
    ):
        super(CNNActorCritic, self).__init__()

        self.feature, output_size = cnn((framestack, 16, 32))
        self.actor = MlpPolicy(
            output_size, action_dim, policy_layers, discrete, **kwargs
        )
        self.critic = MlpValue(output_size, action_dim, val_type, value_layers)

    def get_params(self):
        actor_params = list(self.feature.parameters()) + list(self.actor.parameters())
        critic_params = list(self.feature.parameters()) + list(self.critic.parameters())
        return actor_params, critic_params

    def get_action(
        self, state: torch.Tensor, deterministic: bool = False
    ) -> torch.Tensor:
        """
                Get action from the Actor based on input

                :param state: The state being passed as input to the Actor
                :param deterministic: (True if the action space is deterministic,
        else False)
                :type state: Tensor
                :type deterministic: boolean
                :returns: action
        """
        state = self.feature(state)
        state = state.view(state.size(0), -1)

        action_probs = self.actor(state)
        action_probs = nn.Softmax(dim=-1)(action_probs)

        if deterministic:
            action = torch.argmax(action_probs, dim=-1)
            distribution = None
        else:
            distribution = Categorical(probs=action_probs)
            action = distribution.sample()

        return action, distribution

    def get_value(self, inp: torch.Tensor) -> torch.Tensor:
        """
        Get value from the Critic based on input

        :param inp: Input to the Critic
        :type inp: Tensor
        :returns: value
        """
        inp = self.feature(inp)
        inp = inp.view(inp.size(0), -1)

        value = self.critic(inp).squeeze(-1)
        return value
Exemplo n.º 8
0
class MlpSingleActorTwoCritic(BaseActorCritic):
    """MLP Actor Critic

    Attributes:
        state_dim (int): State dimensions of the environment
        action_dim (int): Action space dimensions of the environment
        policy_layers (:obj:`list` or :obj:`tuple`): Hidden layers in the policy MLP
        value_layers (:obj:`list` or :obj:`tuple`): Hidden layers in the value MLP
        val_type (str): Value type of the critic network
        discrete (bool): True if the action space is discrete, else False
        num_critics (int): Number of critics in the architecture
        sac (bool): True if a SAC-like network is needed, else False
        activation (str): Activation function to be used. Can be either "tanh" or "relu"
    """

    def __init__(
        self,
        state_dim: spaces.Space,
        action_dim: spaces.Space,
        policy_layers: Tuple = (32, 32),
        value_layers: Tuple = (32, 32),
        val_type: str = "V",
        discrete: bool = True,
        num_critics: int = 2,
        **kwargs,
    ):
        super(MlpSingleActorTwoCritic, self).__init__()

        self.num_critics = num_critics

        self.actor = MlpPolicy(state_dim, action_dim, policy_layers, discrete, **kwargs)
        self.critic1 = MlpValue(state_dim, action_dim, "Qsa", value_layers, **kwargs)
        self.critic2 = MlpValue(state_dim, action_dim, "Qsa", value_layers, **kwargs)

        self.action_scale = kwargs["action_scale"] if "action_scale" in kwargs else 1
        self.action_bias = kwargs["action_bias"] if "action_bias" in kwargs else 0

    def get_params(self):
        actor_params = self.actor.parameters()
        critic_params = list(self.critic1.parameters()) + list(
            self.critic2.parameters()
        )
        return actor_params, critic_params

    def forward(self, x):
        q1_values = self.critic1(x).squeeze(-1)
        q2_values = self.critic2(x).squeeze(-1)
        return (q1_values, q2_values)

    def get_action(self, state: torch.Tensor, deterministic: bool = False):
        """Get Actions from the actor

        Arg:
            state (:obj:`torch.Tensor`): The state(s) being passed to the critics
            deterministic (bool): True if the action space is deterministic, else False

        Returns:
            action (:obj:`list`): List of actions as estimated by the critic
            distribution (): The distribution from which the action was sampled
                            (None if determinist
        """
        state = torch.as_tensor(state).float()

        if self.actor.sac:
            mean, log_std = self.actor(state)
            std = log_std.exp()
            distribution = Normal(mean, std)

            action_probs = distribution.rsample()
            log_probs = distribution.log_prob(action_probs)
            action_probs = torch.tanh(action_probs)

            action = action_probs * self.action_scale + self.action_bias

            # enforcing action bound (appendix of SAC paper)
            log_probs -= torch.log(
                self.action_scale * (1 - action_probs.pow(2))
                + torch.finfo(torch.float32).eps
            )
            log_probs = log_probs.sum(1, keepdim=True)
            mean = torch.tanh(mean) * self.action_scale + self.action_bias

            action = (action.float(), log_probs, mean)
        else:
            action = self.actor.get_action(state, deterministic=deterministic)

        return action

    def get_value(self, state: torch.Tensor, mode="first") -> torch.Tensor:
        """Get Values from the Critic

        Arg:
            state (:obj:`torch.Tensor`): The state(s) being passed to the critics
            mode (str): What values should be returned. Types:
                "both" --> Both values will be returned
                "min" --> The minimum of both values will be returned
                "first" --> The value from the first critic only will be returned

        Returns:
            values (:obj:`list`): List of values as estimated by each individual critic
        """
        state = torch.as_tensor(state).float()

        if mode == "both":
            values = self.forward(state)
        elif mode == "min":
            values = self.forward(state)
            values = torch.min(*values).squeeze(-1)
        elif mode == "first":
            values = self.critic1(state)
        else:
            raise KeyError("Mode doesn't exist")

        return values