Exemplo n.º 1
0
def applyLuts(LUTdict, processedimagedirectory, geoTiff):
    print(geoTiff[-13:-5])
    imageStack = gdal.Open(geoTiff).ReadAsArray()
    imageStack = np.moveaxis(imageStack, 0 ,-1)
    reflectanceImage = np.zeros(np.shape(imageStack))
    for band in np.arange(1,6):
        rawimage = processedimagedirectory + geoTiff[-13:-5] + '_{}'.format(band) + '.tif'
        #print(rawimage)
        metadatadict = metadataReader.metadataGrabber(rawimage)
        irradiance = metadatadict['Xmp.Camera.Irradiance']
        #print(irradiance)
        refIrradiance = []
        for key, value in LUTdict.items() :
            if key[0] == band-1:
                refIrradiance.append(key[1])
        refIrradiance = np.asarray(refIrradiance)
        comparison = np.abs(refIrradiance-irradiance)
        #print(comparison)
        #print(np.argmin(comparison))
        closestIrradiance = refIrradiance[np.argmin(comparison)]
        #print(closestIrradiance)
        dictionaryreadkey = (band-1,closestIrradiance)
        slope = LUTdict[dictionaryreadkey][0][0]
        intercept = LUTdict[dictionaryreadkey][1][0]
        reflectanceImage[:,:,band-1] = imageStack[:,:,band-1] * slope + intercept
        #print(np.argmin(comparison))
        print(np.max(reflectanceImage[:,:,band-1]))
    return reflectanceImage    
    '''
Exemplo n.º 2
0
def getImages(imageDirectory, plotting=True):
    import glob
    import os
    import numpy
    import context
    import matplotlib
    from matplotlib import pyplot as plt
    from context import geoTIFF
    from geoTIFF import metadataReader

    dlsDictList = [{},{},{},{},{}]
    orientation = ['Left', 'Middle', 'Right']
    for o in orientation:
        currentDirectory = imageDirectory+'/'+o+'/*.tif'
        imageList = sorted(glob.glob(currentDirectory))
        dlsDict = {"Blue": [], "Green": [], "Red": [],
                                    "NIR": [], "Red edge": []}
        for image in imageList:
            metadata = metadataReader.metadataGrabber(image)
            dlsIrrad = metadata['Xmp.DLS.SpectralIrradiance']
            bandName = metadata['Xmp.Camera.BandName']
            dlsDict[bandName].append(dlsIrrad)

        maxList = {k:max(v) for k,v in dlsDict.items()}
        maxList = sorted(maxList, key=maxList.get, reverse=True)

        if o == "Middle":
            dlsDictList[4] = dlsDict["Red edge"]


        if plotting:
            xvals = numpy.arange(380, 1000 + 10, 10)
            for k in dlsDict.keys():
                plt.figure(o)
                plt.title("Downwelling Light Sensor Orientation: {0}".format(o))
                plt.plot(xvals, dlsDict[k], label=k)
                plt.xlabel("Wavelengths [nm]")
                plt.ylabel("DLS Spectral Irradiance [W/m^2/nm]")
                plt.xlim(380, 1000)
                plt.ylim(0, max(dlsDict[maxList[0]]) + .002)
                plt.legend(loc=5)
                

            for a in [0,1]:
                annotation = "{0} max {1:.5f}".format(maxList[a],max(dlsDict[maxList[a]]))
                plt.annotate(annotation,
                        (xvals[dlsDict[maxList[a]].index(max(dlsDict[maxList[a]]))],
                        max(dlsDict[maxList[a]])))
            plt.show()
Exemplo n.º 3
0
def applyLuts(LUTdict, processedimagedirectory, geoTiff):
    #Apply our fancy LUT to an image to generate a reflectance image
    print(geoTiff[-13:-5])
    #Read in image/raster with gdal
    imageStack = gdal.Open(geoTiff).ReadAsArray()
    imageStack = np.moveaxis(imageStack, 0, -1)
    #Prepare a store of values for reflectance
    reflectanceImage = np.zeros(np.shape(imageStack))
    #Cycle through each band seperately to take advantage of ELM LUTS and doc the LUT used
    CurrentIrradiance = []
    ClosestIrradiance = []
    ReferenceImage = []
    Band = []
    for band in np.arange(1, 6):
        rawimage = processedimagedirectory + geoTiff[-13:-5] + '_{}'.format(
            band) + '.tif'
        metadatadict = metadataReader.metadataGrabber(rawimage)
        #Load in image irrradiance
        irradiance = metadatadict['Xmp.Camera.Irradiance']
        refIrradiance = []
        for key, value in LUTdict.items():
            if key[0] == band - 1:
                refIrradiance.append(key[1])
        #Find the closest irradiance between the LUT and current image
        refIrradiance = np.asarray(refIrradiance)
        comparison = np.abs(refIrradiance - irradiance)
        closestIrradiance = refIrradiance[np.argmin(comparison)]
        dictionaryreadkey = (band - 1, closestIrradiance)
        #Grab the calibration coefficients from the LUT
        slope = LUTdict[dictionaryreadkey][0][0]
        intercept = LUTdict[dictionaryreadkey][1][0]
        referenceImage = LUTdict[dictionaryreadkey][2]
        #Generate the reflectance band
        reflectanceImage[:, :, band -
                         1] = imageStack[:, :, band - 1] * slope + intercept
        print(np.max(reflectanceImage[:, :, band - 1]))
        CurrentIrradiance.append(irradiance)
        ClosestIrradiance.append(closestIrradiance)
        ReferenceImage.append(referenceImage)
        Band.append(band - 1)

    return reflectanceImage, CurrentIrradiance, ReferenceImage, ClosestIrradiance, Band
Exemplo n.º 4
0
def micasenseRawData(geotiffFilename):
    from geoTIFF import metadataReader
    import time
    import numpy as np

    irradianceDict = {}
    #For each band we are going to record a value for irradiance
    for band in np.arange(1, 6):
        rawextension = '_{}.tif'.format(str(band))
        rawFilename = geotiffFilename[:-21] + 'processed/' + geotiffFilename[
            -13:-5] + rawextension
        #print('rawFilename',rawFilename)
        metadatadict = metadataReader.metadataGrabber(rawFilename)
        irradianceDict[band] = float(
            metadatadict['Xmp.DLS.SpectralIrradiance'])

    #For a single image we record the time in which the frame was captured
    t = time.strptime(metadatadict['timeStamp'].split('T')[-1].split('.')[0],
                      '%H:%M:%S')
    frametime = (t.tm_hour - 5) * 60 + t.tm_min

    altitude = metadatadict['Exif.GPSInfo.GPSAltitude']
    resolution = metadatadict['Exif.Photo.FocalPlaneXResolution']
    return irradianceDict, frametime, altitude, resolution
Exemplo n.º 5
0
def findLUTS(missionDatafilename,
             processedimagedirectory,
             cameraresponseSR,
             logging=True):
    #Generate numerous LUT to generate reflectance imagery based on downwelling irradiance
    if logging == True:
        csvfile = '/'.join(
            missionDatafilename.split('/')[:-1]) + '/ELM_LUT_logger.csv'
        with open(csvfile, 'w', newline='\n') as currentTextFile:
            writer = csv.writer(currentTextFile, delimiter=',')
            writer.writerow([
                'Frame', 'Altitude', 'Band', 'Irradiance', 'White #',
                'White Rho', 'White Avg', 'White Std', 'Black #', 'Black Rho',
                'Black Avg', 'Black Std', 'ELM Slope', 'ELM Intercept'
            ])
    #From the target acquisition, grab every frame that had targets internal
    missionData = np.loadtxt(missionDatafilename,
                             unpack=True,
                             skiprows=1,
                             dtype=str,
                             delimiter=',')
    frames = list(np.unique(missionData[1]))
    #We need to figure out when we are at altitude, lets say we have to be within 95% of peak to be good
    Altitudes = np.loadtxt(missionDatafilename,
                           unpack=True,
                           skiprows=1,
                           usecols=4,
                           dtype=float,
                           delimiter=',')
    peakAltitude = np.max(Altitudes)
    requiredAlt = peakAltitude * 0.95

    #For each frame we have to filter according to additional criteria
    LUTdict = {}
    for name in frames:
        indices = np.where(missionData[1] == name)
        scenetargets = missionData[0][indices]
        framestd = {}
        svcdict = {}
        DNdict = {}
        #We always want the black target, as we do not run into capture issues here
        #For any of the targets we grab, we need the same data
        if '4' in scenetargets:
            indextarget4 = np.where((missionData[1] == name)
                                    & (missionData[0] == '4'))
            #Store the standard deviation
            std4 = missionData[10:15, indextarget4[0]]
            #Store the target average pixel value
            DN4 = missionData[5:10, indextarget4[0]]
            #Store the corresponding svc file number
            svcfilenumber = missionData[31, indextarget4]
            framestd['target4'] = std4
            svcdict['target4'] = svcfilenumber
            DNdict['target4'] = DN4
            #Since black will always be a valid target, lets grab a flight altitude here
            #If we are still climbing or descending, we don't want this frame
            altitude = missionData[4, indextarget4]
            if float(altitude[0][0]) < requiredAlt:
                continue
        #Ideally we want the brightest white target, but lets grab all 'whites' here
        #5 is our wooden white cal target
        if '5' in scenetargets:
            indextarget5 = np.where((missionData[1] == name)
                                    & (missionData[0] == '5'))
            std5 = missionData[10:15, indextarget5[0]]
            DN5 = missionData[5:10, indextarget5[0]]
            svcfilenumber = missionData[31, indextarget5]
            framestd['target5'] = std5
            svcdict['target5'] = svcfilenumber
            DNdict['target5'] = DN5
        #Brightest white on the tribar target
        if '1' in scenetargets:
            indextarget1 = np.where((missionData[1] == name)
                                    & (missionData[0] == '1'))
            std1 = missionData[10:15, indextarget1[0]]
            DN1 = missionData[5:10, indextarget1[0]]
            svcfilenumber = missionData[31, indextarget1]
            framestd['target1'] = std1
            svcdict['target1'] = svcfilenumber
            DNdict['target1'] = DN1
        #Our gray target on the white tribar
        if '2' in scenetargets:
            indextarget2 = np.where((missionData[1] == name)
                                    & (missionData[0] == '2'))
            std2 = missionData[10:15, indextarget2[0]]
            DN2 = missionData[5:10, indextarget2[0]]
            svcfilenumber = missionData[31, indextarget2]
            framestd['target2'] = std2
            svcdict['target2'] = svcfilenumber
            DNdict['target2'] = DN2

        #All that has been done so far is grabbing data from our target csv file
        #Now we need to manipulate all of the values
        reflectancedict = {}
        #Lets grab a reflectance value for every SVC file that we have, and
        #combining that with our camera RSR measurements
        for key, value in svcdict.items():
            SVCfilename = 'T' + value[0][0].zfill(3) + '.sig'
            SVCfile = glob.glob(SVCdirectory + '*' + SVCfilename)
            reflectancevalues = [
                findReflectance(SVCfile[0], cameraresponseSR, 'Blue'),
                findReflectance(SVCfile[0], cameraresponseSR, 'Green'),
                findReflectance(SVCfile[0], cameraresponseSR, 'Red'),
                findReflectance(SVCfile[0], cameraresponseSR, 'Red Edge'),
                findReflectance(SVCfile[0], cameraresponseSR, 'NIR')
            ]
            reflectancedict[key] = reflectancevalues

        #If we have more than two targets in scene, we have to make a decision
        #on what to use for ELM
        if len(framestd) >= 2:
            #If our standard deviation indicates saturation, we should avoid that target
            #print(framestd.values())
            for key, value in framestd.items():
                if '0' in value:
                    del reflectancedict[key]
                    del DNdict[key]
                if '0.0' in value:
                    del reflectancedict[key]
                    del DNdict[key]
            #If we still have two targets in scene, and one is black, we can do ELM
            if len(DNdict) >= 2 and 'target4' in DNdict.keys():
                for key, value in DNdict.items():
                    #Brightest target after all of this filtering is still priority
                    if 'target5' in DNdict:
                        gotoTarget = 'target5'
                    elif 'target1' in DNdict:
                        gotoTarget = 'target1'
                    elif 'target2' in DNdict:
                        gotoTarget = 'target2'
                #Grab the reflectance values and DN required for ELM
                whiteReflect = np.asarray(reflectancedict[gotoTarget])
                blackReflect = np.asarray(reflectancedict['target4'])
                whiteDN = DNdict[gotoTarget].astype(np.float)
                blackDN = DNdict['target4'].astype(np.float)
                #Perform ELM for each band
                for band in np.arange(5):
                    slope = (whiteReflect[band] - blackReflect[band]) / (
                        whiteDN[band] - blackDN[band])
                    intercept = whiteReflect[band] - slope * whiteDN[band]
                    #Grab the specialty of our method, irradiance based ELM
                    imagemetadatafile = processedimagedirectory + name[:8] + '_' + str(
                        band + 1) + '.tif'
                    metadatadict = metadataReader.metadataGrabber(
                        imagemetadatafile)
                    irradiance = metadatadict['Xmp.Camera.Irradiance']
                    #Our series of LUT for generating reflectance imagery
                    LUTdict[(band, irradiance)] = (slope, intercept, name)
                    #If we get this far we need to log some info
                    if logging == True:
                        with open(csvfile, 'a',
                                  newline='\n') as currentTextFile:
                            writer = csv.writer(currentTextFile, delimiter=',')
                            writer.writerow([
                                name, altitude[0][0], band, irradiance,
                                gotoTarget, whiteReflect[band],
                                whiteDN[band][0],
                                framestd[gotoTarget][band][0], 'target4',
                                blackReflect[band], blackDN[band][0],
                                framestd['target4'][band][0], slope[0],
                                intercept[0]
                            ])
    return LUTdict
Exemplo n.º 6
0
splitted = flightDirectory.split('/')
gpsLog = '/'.join(splitted[:-1]) + os.path.sep + "GPSLog.csv"
with open(gpsLog,'w') as resultFile:
	wr = csv.writer(resultFile)

	images = startIndex*5
	#for images in range(0,len(tiffList),5):
	while images < len(tiffList)-5:
		print("Current image number: {0}".format(images//5))
		imageList = [tiffList[images], tiffList[images+1], tiffList[images+2],
					tiffList[images+3], tiffList[images+4]]

		imageOrderDict = {}
		for image in imageList:
			imageDict = metadataGrabber(image)
			imageWavelength = imageDict['Xmp.DLS.CenterWavelength']
			imageOrderDict[image] = imageWavelength
		imageList = sorted(imageOrderDict, key=imageOrderDict.get, reverse=False)

		matchOrder = OrderImagePairs(imageList, addOne=True)
		if matchOrder is None:
			continue
		imageStack, goodCorr = stackImages(imageList, matchOrder,transformDictionary,'ECC', crop=False, bandQC=False)

		if stackQC:
			green, red, ir = imageStack[:,:,1], imageStack[:,:,2], imageStack[:,:,4]
			cv2.imshow("RGB - ' ' to accept | 'n' to reject [1 sec]",
				cv2.resize(imageStack[:,:,:3], None, fx=.5, fy=.5, interpolation=cv2.INTER_AREA))
			cv2.imshow("False Re", cv2.resize(imageStack[:,:,1:4], None, fx=.3, fy=.3, interpolation=cv2.INTER_AREA))
			cv2.imshow("False IR", cv2.resize(np.dstack((green,red, ir)), None, fx=.3, fy=.3, interpolation=cv2.INTER_AREA))
Exemplo n.º 7
0
def findLUTS(missionDatafilename,processedimagedirectory,cameraresponseSR):
    missionData = np.loadtxt(missionDatafilename,unpack = True, skiprows = 1,dtype = str, delimiter = ',')
    frames = list(np.unique(missionData[1]))
    LUTdict = {}
    for name in frames:

        indices = np.where(missionData[1] == name)
        scenetargets = missionData[0][indices]
        framestd = {}
        svcdict = {}
        DNdict = {}
        if '4' in scenetargets:
            indextarget4 = np.where((missionData[1] == name) & (missionData[0] == '4'))
            std4 = missionData[10:15,indextarget4[0]]
            DN4 = missionData[5:10,indextarget4[0]]
            svcfilenumber = missionData[31,indextarget4]
            #print(svcfilenumber)
            framestd['target4'] = std4
            svcdict['target4'] = svcfilenumber
            DNdict['target4'] = DN4
        if '5' in scenetargets:
            indextarget5 = np.where((missionData[1] == name) & (missionData[0] == '5'))
            std5 = missionData[10:15,indextarget5[0]]
            DN5 = missionData[5:10,indextarget5[0]]
            svcfilenumber = missionData[31,indextarget5]
            framestd['target5'] = std5
            svcdict['target5'] = svcfilenumber
            DNdict['target5'] = DN5
        if '1' in scenetargets:
            indextarget1 = np.where((missionData[1] == name) & (missionData[0] == '1'))
            std1 = missionData[10:15,indextarget1[0]]
            DN1 = missionData[5:10,indextarget1[0]]
            svcfilenumber = missionData[31,indextarget1]
            framestd['target1'] = std1
            svcdict['target1'] = svcfilenumber
            DNdict['target1'] = DN1
        if '2' in scenetargets:
            indextarget2 = np.where((missionData[1] == name) & (missionData[0] == '2'))
            std2 = missionData[10:15,indextarget2[0]]
            DN2 = missionData[5:10,indextarget2[0]]
            svcfilenumber = missionData[31,indextarget2]
            framestd['target2'] = std2
            svcdict['target2'] = svcfilenumber
            DNdict['target2'] = DN2
        #print(framestd)
        #print(framestd)

        reflectancedict = {}
        for key, value in svcdict.items():
            SVCfilename = 'T' + value[0][0].zfill(3) + '.sig'
            SVCfile = glob.glob(SVCdirectory + '*' + SVCfilename)
            reflectancevalues = [findReflectance(SVCfile[0],cameraresponseSR,'Blue'),findReflectance(SVCfile[0],cameraresponseSR,'Green'),findReflectance(SVCfile[0],cameraresponseSR,'Red'),findReflectance(SVCfile[0],cameraresponseSR,'Red Edge'),findReflectance(SVCfile[0],cameraresponseSR,'NIR')]
            #print(reflectancevalues)
            reflectancedict[key] = reflectancevalues

        if len(framestd) >= 2:
            for key, value in framestd.items():
                if '0.0' in value:
                    #print('deleting saturated targets')
                    del reflectancedict[key]
                    del DNdict[key]
            #print(DNdict)
                    #print(DNdict)
            if len(DNdict) >= 2 and 'target4' in DNdict.keys():
                for key,value in DNdict.items():
                    if 'target5' in DNdict:
                        gotoTarget = 'target5'
                    elif 'target1' in DNdict:
                        gotoTarget = 'target1'
                    elif 'target2' in DNdict:
                        gotoTarget = 'target2'
                #print(gotoTarget)
                #print(reflectancedict)
                #print(DNdict)
                whiteReflect = np.asarray(reflectancedict[gotoTarget])
                blackReflect = np.asarray(reflectancedict['target4'])
                whiteDN = DNdict[gotoTarget].astype(np.float)
                blackDN = DNdict['target4'].astype(np.float)
                #print(type(whiteReflect[0]))
                #print(whiteReflect)
                #print(type(blackReflect[0]))
                #print(blackReflect)
                #print(type(whiteDN))
                #print(whiteDN)
                #print(type(blackDN))
                #print(blackDN)
                for band in np.arange(5):
                    slope = (whiteReflect[band] - blackReflect[band])/(whiteDN[band] - blackDN[band])
                    #print('slope',slope)       
                    intercept = whiteReflect[band] - slope * whiteDN[band]
                    #print('intercept',intercept)
                    imagemetadatafile = processedimagedirectory + name[:8] + '_' + str(band+1) + '.tif'
                    #print(imagemetadatafile)
                    metadatadict = metadataReader.metadataGrabber(imagemetadatafile)
                    irradiance = metadatadict['Xmp.Camera.Irradiance']
                    #print('I',irradiance)
                    LUTdict[(band,irradiance)] = (slope,intercept)
                    #print('LUTdict',LUTdict)
    #print('LUTdict',LUTdict)
    return LUTdict