Exemplo n.º 1
0
def test_make_geocube__like_error_invalid_args(load_extra_kwargs):
    soil_attribute_list = [
        "om_r",
        "sandtotal_r",
        "silttotal_r",
        "claytotal_r",
        "cec7_r",
        "ph1to1h2o_r",
        "dbthirdbar_r",
        "awc_r",
    ]

    with xarray.open_dataset(
        os.path.join(TEST_COMPARE_DATA_DIR, "soil_grid_flat.nc"),
        mask_and_scale=False,
        decode_coords="all",
    ) as xdc:
        with pytest.raises(AssertionError):
            make_geocube(
                vector_data=os.path.join(TEST_INPUT_DATA_DIR, "soil_data_flat.geojson"),
                measurements=soil_attribute_list,
                like=xdc,
                fill=-9999.0,
                **load_extra_kwargs,
            )
Exemplo n.º 2
0
def test_make_geocube__group_by_like_error_invalid_args(load_extra_kwargs):
    soil_attribute_list = [
        "cokey",
        "mukey",
        "drclassdcd",
        "hzdept_r",
        "hzdepb_r",
        "sandtotal_r",
        "silttotal_r",
        "claytotal_r",
    ]

    with xarray.open_dataset(
        os.path.join(TEST_COMPARE_DATA_DIR, "soil_grid_group.nc"),
        mask_and_scale=False,
        decode_coords="all",
    ) as xdc:
        with pytest.raises(AssertionError):
            make_geocube(
                vector_data=os.path.join(
                    TEST_INPUT_DATA_DIR, "soil_data_group.geojson"
                ),
                measurements=soil_attribute_list,
                like=xdc,
                group_by="hzdept_r",
                fill=-9999.0,
                **load_extra_kwargs,
            )
Exemplo n.º 3
0
def test_make_geocube__no_resolution_error():
    with pytest.raises(RuntimeError):
        make_geocube(
            vector_data=os.path.join(TEST_INPUT_DATA_DIR, "soil_data_flat.geojson"),
            measurements=["sandtotal_r"],
            output_crs=TEST_GARS_PROJ,
            geom=json.dumps(mapping(TEST_GARS_POLY)),
        )
Exemplo n.º 4
0
def test_make_geocube__group_by__no_resolution_error():
    with pytest.raises(RuntimeError):
        make_geocube(
            vector_data=TEST_INPUT_DATA_DIR / "soil_data_group.geojson",
            measurements=["sandtotal_r"],
            output_crs=TEST_GARS_PROJ,
            geom=json.dumps(mapping(TEST_GARS_POLY)),
            group_by="hzdept_r",
            fill=-9999.0,
        )
Exemplo n.º 5
0
def test_make_geocube__group_by__categorical(input_geodata, tmpdir):
    input_geodata["soil_type"] = [
        "sand",
        "bob",
        "clay",
        "sand",
        "silt",
        "clay",
        "sand",
    ] * 11
    soil_attribute_list = ["sandtotal_r", "silttotal_r", "soil_type", "claytotal_r"]
    out_grid = make_geocube(
        vector_data=input_geodata,
        measurements=soil_attribute_list,
        output_crs=TEST_GARS_PROJ,
        geom=json.dumps(mapping(TEST_GARS_POLY)),
        group_by="hzdept_r",
        resolution=(-10, 10),
        categorical_enums={"soil_type": ("sand", "silt", "clay")},
    )

    # test writing to netCDF
    out_grid.to_netcdf(
        str(tmpdir.mkdir("make_geocube_soil").join("soil_grid_group_categorical.nc"))
    )

    # test output data
    with xarray.open_dataset(
        os.path.join(TEST_COMPARE_DATA_DIR, "soil_grid_group_categorical.nc"),
        autoclose=True,
        mask_and_scale=False,
    ) as xdc:
        xarray.testing.assert_allclose(out_grid, xdc)

    tmpdir.remove()
Exemplo n.º 6
0
 def write_raster(self, df):
     # TODO: https://github.com/corteva/geocube/blob/master/geocube/geo_utils/geobox.py#L79
     df.rename(columns={'geom': 'geometry'}, inplace=True)
     cube = make_geocube(df,
                         measurements=["elevation"],
                         resolution=(-0.0001, 0.0001))
     cube.elevation.rio.to_raster(self.filename, bigtiff=self.bigtiff)
def rasterize(layer, layer_type):
	if layer_type == 'Boundary':
		raster = make_geocube(
			vector_data=layer,
			measurements=['code'],
			resolution=(x_grid_step, y_grid_step),
			fill=0   # optional
		)
	else:
		raster = make_geocube(
			vector_data=layer,
			measurements=['code'],
			resolution=(x_grid_step, y_grid_step),
			# fill=999   # optional
		)
	return raster
Exemplo n.º 8
0
def test_make_geocube__only_resolution(input_geodata, tmpdir):
    soil_attribute_list = [
        "om_r",
        "sandtotal_r",
        "silttotal_r",
        "claytotal_r",
        "cec7_r",
        "ph1to1h2o_r",
        "dbthirdbar_r",
        "awc_r",
    ]

    out_grid = make_geocube(
        vector_data=input_geodata,
        measurements=soil_attribute_list,
        resolution=(-0.001, 0.001),
        fill=-9999.0,
    )

    # test writing to netCDF
    out_grid.to_netcdf(
        tmpdir.mkdir("make_geocube_soil") / "soil_grid_flat_original_crs.nc")

    # test output data
    with xarray.open_dataset(
            TEST_COMPARE_DATA_DIR / "soil_grid_flat_original_crs.nc",
            mask_and_scale=False,
            decode_coords="all",
    ) as xdc:
        xarray.testing.assert_allclose(out_grid, xdc)
Exemplo n.º 9
0
def test_make_geocube__categorical(input_geodata, tmpdir):
    input_geodata["soil_type"] = [
        "sand",
        "silt",
        "clay",
        "frank",
        "silt",
        "clay",
        "sand",
    ]
    out_grid = make_geocube(
        vector_data=input_geodata,
        output_crs=TEST_GARS_PROJ,
        geom=json.dumps(mapping(TEST_GARS_POLY)),
        resolution=(-10, 10),
        categorical_enums={"soil_type": ("sand", "silt", "clay")},
        fill=-9999.0,
    )
    # test writing to netCDF
    out_grid.to_netcdf(
        str(tmpdir.mkdir("make_geocube_soil").join("soil_grid_flat_categorical.nc"))
    )

    # test output data
    with xarray.open_dataset(
        os.path.join(TEST_COMPARE_DATA_DIR, "soil_grid_flat_categorical.nc"),
        mask_and_scale=False,
        decode_coords="all",
    ) as xdc:
        xarray.testing.assert_allclose(out_grid, xdc)
Exemplo n.º 10
0
def test_make_geocube__like(input_geodata, tmpdir):
    soil_attribute_list = [
        "om_r",
        "sandtotal_r",
        "silttotal_r",
        "claytotal_r",
        "cec7_r",
        "ph1to1h2o_r",
        "dbthirdbar_r",
        "awc_r",
    ]

    with xarray.open_dataset(
        os.path.join(TEST_COMPARE_DATA_DIR, "soil_grid_flat.nc"),
        mask_and_scale=False,
        decode_coords="all",
    ) as xdc:
        out_grid = make_geocube(
            vector_data=input_geodata,
            measurements=soil_attribute_list,
            like=xdc,
            fill=-9999.0,
        )

        # test writing to netCDF
        out_grid.to_netcdf(
            str(tmpdir.mkdir("make_geocube_soil").join("soil_grid_flat.nc"))
        )
        xarray.testing.assert_allclose(out_grid, xdc)
Exemplo n.º 11
0
def test_make_geocube(input_geodata, tmpdir):
    soil_attribute_list = [
        "om_r",
        "sandtotal_r",
        "silttotal_r",
        "claytotal_r",
        "cec7_r",
        "ph1to1h2o_r",
        "dbthirdbar_r",
        "awc_r",
    ]

    out_grid = make_geocube(
        vector_data=input_geodata,
        measurements=soil_attribute_list,
        output_crs=TEST_GARS_PROJ,
        geom=json.dumps(mapping(TEST_GARS_POLY)),
        resolution=(-10, 10),
        fill=-9999.0,
    )

    # test writing to netCDF
    out_grid.to_netcdf(str(tmpdir.mkdir("make_geocube_soil").join("soil_grid_flat.nc")))

    # test output data
    with xarray.open_dataset(
        os.path.join(TEST_COMPARE_DATA_DIR, "soil_grid_flat.nc"),
        mask_and_scale=False,
        decode_coords="all",
    ) as xdc:
        xarray.testing.assert_allclose(out_grid, xdc)
Exemplo n.º 12
0
def test_make_geocube__group_by_only_resolution(input_geodata, tmpdir):
    soil_attribute_list = ["sandtotal_r", "silttotal_r", "claytotal_r"]

    out_grid = make_geocube(
        vector_data=input_geodata,
        measurements=soil_attribute_list,
        group_by="hzdept_r",
        resolution=(-0.001, 0.001),
        fill=-9999.0,
    )

    # test writing to netCDF
    out_grid.to_netcdf(
        str(tmpdir.mkdir("make_geocube_soil").join("soil_grid_grouped_original_crs.nc"))
    )

    # test output data
    with xarray.open_dataset(
        os.path.join(TEST_COMPARE_DATA_DIR, "soil_grid_grouped_original_crs.nc"),
        mask_and_scale=False,
        decode_coords="all",
    ) as xdc:
        xarray.testing.assert_allclose(out_grid, xdc)

    tmpdir.remove()
Exemplo n.º 13
0
def test_make_geocube__group_by_like(input_geodata, tmpdir):
    soil_attribute_list = [
        "cokey",
        "mukey",
        "drclassdcd",
        "hzdept_r",
        "hzdepb_r",
        "sandtotal_r",
        "silttotal_r",
        "claytotal_r",
    ]

    with xarray.open_dataset(
        os.path.join(TEST_COMPARE_DATA_DIR, "soil_grid_group.nc"),
        mask_and_scale=False,
        decode_coords="all",
    ) as xdc:
        out_grid = make_geocube(
            vector_data=input_geodata,
            measurements=soil_attribute_list,
            group_by="hzdept_r",
            like=xdc,
            fill=-9999.0,
        )

        # test writing to netCDF
        out_grid.to_netcdf(
            str(tmpdir.mkdir("make_geocube_soil").join("soil_grid_group.nc"))
        )

        xarray.testing.assert_allclose(out_grid, xdc)

    tmpdir.remove()
Exemplo n.º 14
0
def test_make_geocube__group_by_convert_with_time(input_geodata, tmpdir):
    out_grid = make_geocube(
        vector_data=input_geodata,
        datetime_measurements=["test_time_attr"],
        resolution=(-0.00001, 0.00001),
        group_by="test_attr",
        fill=-9999.0,
    )

    # test writing to netCDF
    out_grid.to_netcdf(
        str(tmpdir.mkdir("make_geocube_time").join("vector_data_group.nc"))
    )

    # test output data
    with xarray.open_dataset(
        os.path.join(TEST_COMPARE_DATA_DIR, "vector_data_group.nc"),
        mask_and_scale=False,
        decode_coords="all",
    ) as xdc:
        xarray.testing.assert_allclose(out_grid, xdc)

    assert out_grid.test_time_attr.attrs["units"] == "seconds from 1970-01-01T00:00:00"
    assert out_grid.test_time_attr.attrs["_FillValue"] == 0

    tmpdir.remove()
Exemplo n.º 15
0
 def create_geocube_density_map(self,like=None):
     if like is None:
         minx,miny,maxx,maxy=self.polygon_df.total_bounds
         r = ((maxx - minx) / self.imsize[0])
         print(r)
         self.geocube_resolution = (r,r)
         self.gc = make_geocube(self.polygon_df, [self.data_key],resolution=self.geocube_resolution)
     else:
         self.gc = make_geocube(self.polygon_df, [self.data_key],like=like)
     im = self.gc.to_array().data[0]
     im = np.nan_to_num(im,nan=self.mean_val)
     self.imsize = im.shape
     self.padded_im = np.pad(im,pad_width=self.pad_width,constant_values=self.mean_val)
     if self.gaussian_blur is not None:
         self.padded_im = gaussian_filter(self.padded_im,self.gaussian_blur)
     np.savetxt(self.density_map_fname,self.padded_im)
Exemplo n.º 16
0
def test_make_geocube__group_by(input_geodata, tmpdir):
    soil_attribute_list = [
        "cokey",
        "mukey",
        "drclassdcd",
        "hzdept_r",
        "hzdepb_r",
        "sandtotal_r",
        "silttotal_r",
        "claytotal_r",
    ]
    out_grid = make_geocube(
        vector_data=input_geodata,
        measurements=soil_attribute_list,
        output_crs=TEST_GARS_PROJ,
        geom=json.dumps(mapping(TEST_GARS_POLY)),
        group_by="hzdept_r",
        resolution=(-10, 10),
        fill=-9999.0,
    )

    # test writing to netCDF
    out_grid.to_netcdf(
        str(tmpdir.mkdir("make_geocube_soil").join("soil_grid_group.nc"))
    )

    # test output data
    with xarray.open_dataset(
        os.path.join(TEST_COMPARE_DATA_DIR, "soil_grid_group.nc"),
        mask_and_scale=False,
        decode_coords="all",
    ) as xdc:
        xarray.testing.assert_allclose(out_grid, xdc)

    tmpdir.remove()
def vector(input, output):
    from geocube.api.core import make_geocube
    grid = make_geocube(
        vector_data=merged_gpd,
        resolution=(100, 100),
    )
    grid.present.rio.to_raster(output, compress="DEFLATE")
    return (output)
Exemplo n.º 18
0
def test_make_geocube__new_bounds_crs():
    utm_cube = make_geocube(
        vector_data=os.path.join(TEST_INPUT_DATA_DIR, "wgs84_geom.geojson"),
        output_crs="epsg:32614",
        resolution=(-1, 1),
    )
    assert_almost_equal(utm_cube.id.rio.bounds(),
                        (1665478.0, 7018306.0, 1665945.0, 7018509.0))
Exemplo n.º 19
0
def get_numpy(feature, shapefile, resolution=0.1):
    grid = make_geocube(
        vector_data=shapefile,
        measurements=[feature],
        resolution=(-resolution, resolution),
    )

    slide = grid[feature]
    return slide
Exemplo n.º 20
0
def gdf_to_dataarray(gdf, crs, resolution):
    """
    df should be a geodataframe with a geometry column
    crs in format {'init': 'epsg:4326'}
    resolution in format (0.000629777416967, -0.000629777416967)
    """
    envelope = gdf.unary_union.envelope
    rasterizeable_aoi = gpd.GeoDataFrame(crs=crs, geometry=[envelope])
    rasterizeable_aoi[
        'value'] = 1  # allows us to make non empty dataset, required for resampling
    return make_geocube(vector_data=rasterizeable_aoi,
                        resolution=resolution)['value']
Exemplo n.º 21
0
def _generate_ground_truth(w, h, crop_size, annotation_polygon: Polygon,
                           pixel_annotation_value):
    """

    :param w:
    :param h:
    :param crop_size:
    :param annotation_polygon:
    :param pixel_annotation_value:
    :return:
    """

    patch_mask_polygon = Polygon([(w, h), (w + crop_size, h),
                                  (w + crop_size, h + crop_size),
                                  (w, h + crop_size)])
    patch_mask_polygon = gpd.GeoSeries(patch_mask_polygon)
    annotation_polygon = gpd.GeoSeries(annotation_polygon)

    # Get the intersection of the `patch mask and an annotation
    #
    # 'patch_mask' would fed into GeoDataFrame as dataset.
    gdf_mask = gpd.GeoDataFrame({
        'geometry': patch_mask_polygon,
        'patch_mask': pixel_annotation_value
    })

    gdf_curr_annotation = gpd.GeoDataFrame({'geometry': annotation_polygon})
    gdf_mask_curr_anno_diff = gpd.overlay(gdf_mask,
                                          gdf_curr_annotation,
                                          how='intersection')

    if not gdf_mask_curr_anno_diff.empty:
        # 'geom' work as boundary box
        mask_curr_anno_intersection_rasterized = \
            make_geocube(vector_data=gdf_mask_curr_anno_diff,
                         resolution=(1., 1.),
                         geom=json.dumps(mapping(box(w, h, w+crop_size, h+crop_size))),
                         fill=opt.pixel_anno_ignore)

        # TODO: refactor a transformation of geocube data to numpy array
        intersection_data = mask_curr_anno_intersection_rasterized.to_dict()
        intersection_data = intersection_data['data_vars']['patch_mask'][
            'data']
        patch_ground_truth = np.array(intersection_data)

        return patch_ground_truth

    return np.full((crop_size, crop_size),
                   pixel_annotation_value).astype(np.float)
Exemplo n.º 22
0
def test_make_geocube__minimize_dtype(dtype, fill, expected_type, tmpdir):
    gdf = gpd.read_file(TEST_INPUT_DATA_DIR / "soil_data_flat.geojson")
    gdf["mask"] = 1
    gdf["mask"] = gdf["mask"].astype(dtype)
    out_grid = make_geocube(
        vector_data=gdf,
        measurements=["mask"],
        output_crs=TEST_GARS_PROJ,
        geom=json.dumps(mapping(TEST_GARS_POLY)),
        resolution=(-10, 10),
        fill=fill,
    )
    assert out_grid.mask.dtype.name == expected_type
    # test writing to netCDF
    out_grid.to_netcdf(
        tmpdir.mkdir("make_geocube_soil") / "soil_grid_flat_mask.nc")
Exemplo n.º 23
0
def test_make_geocube__custom_rasterize_function__filter_null(
        function, compare_name, tmpdir):
    input_geodata = os.path.join(TEST_INPUT_DATA_DIR,
                                 "point_with_null.geojson")
    out_grid = make_geocube(
        vector_data=input_geodata,
        resolution=(-0.00001, 0.00001),
        rasterize_function=function,
    )

    # test writing to netCDF
    out_grid.to_netcdf(str(tmpdir.mkdir("geocube_custom").join(compare_name)))

    # test output data
    with xarray.open_dataset(os.path.join(TEST_COMPARE_DATA_DIR, compare_name),
                             mask_and_scale=False) as xdc:
        xarray.testing.assert_allclose(out_grid, xdc, rtol=0.1, atol=0.1)
Exemplo n.º 24
0
    def __call__(self, abstract_geometry: AbstractGeometry):
        circles, box_coord_dim = abstract_geometry.get_geom_info()

        grid_size = self._calculate_grid_size(box_coord_dim)

        boxx = self._make_box(circles, box_coord_dim)

        vector_data = self._make_geopandas_dataframe(circles, boxx)

        raster_array = make_geocube(vector_data=vector_data,
                                    resolution=grid_size,
                                    fill=0)

        x = np.array(raster_array.x)
        y = np.array(raster_array.y)
        raster_image = np.array(raster_array.tags)

        return x, y, raster_image
Exemplo n.º 25
0
def rasterize(src_vector, out_rst, res=30, column=None, verbose=False):
    """ Burns vector geometries into a raster.
    
    Args : 
        src_vector (str) : path to the source vector shapefile
        out_rst (str, optional) : path to the output raster
        res (int, optional) : the resolution of the output raster. If none, the default landsat 7 30m res will be used
        column (str, optional) : the name of the column to use as value in the output raster. default ot the first one        
    """

    # apply the verbose option
    v_print = custom_print(verbose)

    # read the vector data
    gdf = gpd.read_file(src_vector).to_crs("EPSG:4326")

    # identify the column to be burn in the raster
    if not column:
        column = gdf.columns[0]

    # optimize dtype
    dtype = rio.dtypes.get_minimum_dtype(gdf[column])

    # optimize the nodata value to meet the dtype
    fill = np.nan
    if np.issubdtype(dtype, np.integer):
        fill = 0

    # convert the metric resolution into deg (as we work in EPSG 4326)
    # consider the equator approximation : 1° = 111 Km
    res = (res / 111) * (10**(-3))

    out_grid = make_geocube(vector_data=gdf,
                            measurements=[column],
                            resolution=(-res, res),
                            fill=fill)

    # write the column to raster file
    out_grid[column].rio.to_raster(out_rst, dtype=dtype)

    v_print(
        f'The vector geometries have been burn into the raster : {out_rst}')

    return
Exemplo n.º 26
0
def make_geocube(
    output_file,
    vector_data,
    measurements,
    output_crs,
    resolution,  # pylint: disable=too-many-arguments
    align,
    geom,
    like,
    fill,
    group_by,
    interpolate_na_method,
):  # NOSONAR
    """
    Utility to load vector data into the xarray raster format.
    """
    if not resolution and isinstance(resolution, tuple):
        resolution = None
    if not align and isinstance(align, tuple):
        align = None
    if not measurements and isinstance(measurements, tuple):
        measurements = None

    if like is not None:
        like = xarray.open_dataset(like)
    try:
        gcds = core.make_geocube(
            vector_data=vector_data,
            measurements=measurements,
            output_crs=output_crs,
            resolution=resolution,
            align=align,
            geom=geom,
            like=like,
            fill=fill,
            group_by=group_by,
            interpolate_na_method=interpolate_na_method,
        )
    finally:
        if like is not None:
            like.close()

    gcds.to_netcdf(output_file)
Exemplo n.º 27
0
def fraction_raster(init_gdf, value, template_rst, out_rst):

    gdf = init_gdf.copy()
    gdf[f'{value}%'] = gdf[value] / gdf.sum(axis=1) * 100

    with rasterio.open(template_rst) as src:
        gt = src.transform
        resX = gt[0]
        resY = -gt[4]

    cube = make_geocube(
        gdf,
        measurements=[f'{value}%'],
        resolution=(resX, resY),
    )

    cube[f'{value}%'].rio.to_raster(out_rst)

    return
Exemplo n.º 28
0
def test_make_geocube__no_measurements(input_geodata, tmpdir):
    out_grid = make_geocube(
        vector_data=input_geodata,
        output_crs=TEST_GARS_PROJ,
        geom=json.dumps(mapping(TEST_GARS_POLY)),
        resolution=(-10, 10),
    )

    # test writing to netCDF
    out_grid.to_netcdf(
        str(tmpdir.mkdir("make_geocube_soil").join("soil_grid_flat.nc")))

    # test output data
    with xarray.open_dataset(os.path.join(TEST_COMPARE_DATA_DIR,
                                          "soil_grid_flat.nc"),
                             mask_and_scale=False) as xdc:
        xarray.testing.assert_allclose(out_grid, xdc)

    tmpdir.remove()
Exemplo n.º 29
0
def GeodataframeToTiff(geodata, lipascode, lipasname):
    """
    This function turns minimum travel times of each travel method (10) into a TIFF-raster.
    Arguments: Function takes a geodataframe (made with TableJoiner()-function) as geodata, and sport facility code as lipascode and name as lipasname.
    Geodataframe has to have minimum travel times to sport facility in columns specified in attr_list.
    Function has been designed for spatial resolution of 250m x 250m (MetropAccess_YKR_grid).
    As a return user gets 10 tiff-files saved to output folder.
    """
    # defining attributes that will be tranformed into TIFF-files
    attr_list = [
        "min_t_bike_f", "min_t_bike_s", "min_t_pt_r_t", "min_t_pt_r_tt",
        "min_t_pt_m_t", "min_t_car_r", "min_t_car_m", "min_t_walk",
        "min_t_car_sl", "min_t_pt_m_tt"
    ]

    # creating a raster cube from geodataframe and selected attribute values
    cube = make_geocube(vector_data=geodata,
                        measurements=attr_list,
                        resolution=(250, -250))

    # writing all
    cube.min_t_bike_f.rio.to_raster("outputs/" + lipascode + "_" + lipasname +
                                    "_bike_f_t.tiff")
    cube.min_t_pt_r_t.rio.to_raster("outputs/" + lipascode + "_" + lipasname +
                                    "_pt_r_t.tiff")
    cube.min_t_car_r.rio.to_raster("outputs/" + lipascode + "_" + lipasname +
                                   "_car_r_t.tiff")
    cube.min_t_pt_r_tt.rio.to_raster("outputs/" + lipascode + "_" + lipasname +
                                     "_pt_r_tt.tiff")
    cube.min_t_bike_s.rio.to_raster("outputs/" + lipascode + "_" + lipasname +
                                    "_bike_s_t.tiff")
    cube.min_t_pt_m_t.rio.to_raster("outputs/" + lipascode + "_" + lipasname +
                                    "_pt_m_t.tiff")
    cube.min_t_pt_m_tt.rio.to_raster("outputs/" + lipascode + "_" + lipasname +
                                     "_pt_m_tt.tiff")
    cube.min_t_car_sl.rio.to_raster("outputs/" + lipascode + "_" + lipasname +
                                    "_car_sl_t.tiff")
    cube.min_t_car_m.rio.to_raster("outputs/" + lipascode + "_" + lipasname +
                                   "_car_m_t.tiff")
    cube.min_t_walk.rio.to_raster("outputs/" + lipascode + "_" + lipasname +
                                  "_walk_f_t.tiff")
    print("Files saved.")
Exemplo n.º 30
0
def test_make_geocube__custom_rasterize_function(function, compare_name, tmpdir):
    input_geodata = os.path.join(TEST_INPUT_DATA_DIR, "time_vector_data.geojson")
    out_grid = make_geocube(
        vector_data=input_geodata,
        measurements=["test_attr", "test_time_attr", "test_str_attr"],
        resolution=(-0.00001, 0.00001),
        rasterize_function=function,
        fill=-9999.0,
    )

    # test writing to netCDF
    out_grid.to_netcdf(str(tmpdir.mkdir("geocube_custom").join(compare_name)))

    # test output data
    with xarray.open_dataset(
        os.path.join(TEST_COMPARE_DATA_DIR, compare_name),
        mask_and_scale=False,
        decode_coords="all",
    ) as xdc:
        xarray.testing.assert_allclose(out_grid, xdc, rtol=0.1, atol=0.1)