Exemplo n.º 1
0
def binedges(bins=None, binedgs=None, limits=None, lcheckVar=True):
  ''' utility function to generate and validate bins and binegdes from either one '''
  # check input
  if bins is None and binedgs is None: raise ArgumentError
  elif bins is not None and binedgs is not None:
    if len(bins)+1 != len(binedgs): raise ArgumentError(len(bins))
  if bins is not None:
    if limits is not None: vmin, vmax = limits
    else: raise ArgumentError(bins)
    # expand bins (values refer to center of bins)
    if isinstance(bins,(int,np.integer)):
      if bins == 1: bins = np.asarray(( (vmin+vmax)/2. ,)) 
      else: bins = np.linspace(vmin,vmax,bins)  
    elif isinstance(bins,(tuple,list)) and  0 < len(bins) < 4: 
      bins = np.linspace(*bins)
    elif not isinstance(bins,(list,np.ndarray)): raise TypeError(bins)
    if len(bins) == 1: 
      tmpbinedgs = np.asarray((vmin,vmax))
    else:
      hbd = np.diff(bins) / 2. # make sure this is a float!
      tmpbinedgs = np.hstack((bins[0]-hbd[0],bins[1:]-hbd,bins[-1]+hbd[-1])) # assuming even spacing
    if binedgs is None: binedgs = tmpbinedgs # computed from bins
    elif lcheckVar: assert isEqual(binedgs, np.asarray(tmpbinedgs, dtype=binedgs.dtype))
  if binedgs is not None:
    # expand bin edges
    if not isinstance(binedgs,(tuple,list)): binedgs = np.asarray(binedgs)
    elif not isinstance(binedgs,np.ndarray): raise TypeError(binedgs)
    tmpbins = binedgs[1:] - ( np.diff(binedgs) / 2. ) # make sure this is a float!
    if bins is None: bins = tmpbins # compute from binedgs
    elif lcheckVar: assert isEqual(bins, np.asarray(tmpbins, dtype=bins.dtype))
  # return bins and binegdes
  return bins, binedgs
Exemplo n.º 2
0
def binedges(bins=None, binedgs=None, limits=None, lcheckVar=True):
  ''' utility function to generate and validate bins and binegdes from either one '''
  # check input
  if bins is None and binedgs is None: raise ArgumentError
  elif bins is not None and binedgs is not None:
    if len(bins)+1 != len(binedgs): raise ArgumentError
  if bins is not None:
    if limits is not None: vmin, vmax = limits
    else: raise ArgumentError
    # expand bins (values refer to center of bins)
    if isinstance(bins,(int,np.integer)):
      if bins == 1: bins = np.asarray(( (vmin+vmax)/2. ,)) 
      else: bins = np.linspace(vmin,vmax,bins)  
    elif isinstance(bins,(tuple,list)) and  0 < len(bins) < 4: 
      bins = np.linspace(*bins)
    elif not isinstance(bins,(list,np.ndarray)): raise TypeError
    if len(bins) == 1: 
      tmpbinedgs = np.asarray((vmin,vmax))
    else:
      hbd = np.diff(bins) / 2. # make sure this is a float!
      tmpbinedgs = np.hstack((bins[0]-hbd[0],bins[1:]-hbd,bins[-1]+hbd[-1])) # assuming even spacing
    if binedgs is None: binedgs = tmpbinedgs # computed from bins
    elif lcheckVar: assert isEqual(binedgs, np.asarray(tmpbinedgs, dtype=binedgs.dtype))
  if binedgs is not None:
    # expand bin edges
    if not isinstance(binedgs,(tuple,list)): binedgs = np.asarray(binedgs)
    elif not isinstance(binedgs,np.ndarray): raise TypeError  
    tmpbins = binedgs[1:] - ( np.diff(binedgs) / 2. ) # make sure this is a float!
    if bins is None: bins = tmpbins # compute from binedgs
    elif lcheckVar: assert isEqual(bins, np.asarray(tmpbins, dtype=bins.dtype))
  # return bins and binegdes
  return bins, binedgs
Exemplo n.º 3
0
 def train(self, dataset, observations, **kwargs):
     ''' loop over variables that need to be corrected and call method-specific training function '''
     # figure out varlist
     if self.varlist is None:
         self._getVarlist(
             dataset,
             observations)  # process all that are present in both datasets
     # loop over variables that will be corrected
     self._correction = dict()
     for varname in self.varlist:
         # get variable object
         var = dataset[varname]
         if not var.data:
             var.load()  # assume it is a VarNC, if there is no data
         obsvar = observations[varname]  # should be loaded
         if not obsvar.data:
             obsvar.load()  # assume it is a VarNC, if there is no data
         assert var.data and obsvar.data, obsvar.data
         # check if they are actually equal
         if isEqual(var.data_array,
                    obsvar.data_array,
                    eps=eps,
                    masked_equal=True):
             correction = None
         else:
             correction = self._trainVar(var, obsvar, **kwargs)
         # save correction parameters
         self._correction[varname] = correction
Exemplo n.º 4
0
 def run_test(fct, kw=0, laax=True):
   ff = partial(fct, kw=kw)
   shape = (500,100)
   data = np.arange(np.prod(shape), dtype='float').reshape(shape)
   assert data.shape == shape
   # parallel implementation using my wrapper
   pres = apply_along_axis(ff, axis, data, NP=2, ldebug=True, laax=laax)
   print pres.shape
   assert pres.shape == data.shape
   assert isZero(pres.mean(axis=axis)+kw) and isZero(pres.std(axis=axis)-1.)
   # straight-forward numpy version
   res = np.apply_along_axis(ff, axis, data)
   assert res.shape == data.shape
   assert isZero(res.mean(axis=axis)+kw) and isZero(res.std(axis=axis)-1.)
   # final test
   assert isEqual(pres, res) 
Exemplo n.º 5
0
 def run_test(fct, kw=0, laax=True):
   ff = partial(fct, kw=kw)
   shape = (500,100)
   data = np.arange(np.prod(shape), dtype='float').reshape(shape)
   assert data.shape == shape
   # parallel implementation using my wrapper
   pres = apply_along_axis(ff, axis, data, NP=2, ldebug=True, laax=laax)
   print pres.shape
   assert pres.shape == data.shape
   assert isZero(pres.mean(axis=axis)+kw) and isZero(pres.std(axis=axis)-1.)
   # straight-forward numpy version
   res = np.apply_along_axis(ff, axis, data)
   assert res.shape == data.shape
   assert isZero(res.mean(axis=axis)+kw) and isZero(res.std(axis=axis)-1.)
   # final test
   assert isEqual(pres, res) 
Exemplo n.º 6
0
 def train(self, dataset, observations, **kwargs):
     ''' loop over variables that need to be corrected and call method-specific training function '''
     # figure out varlist
     if self.varlist is None: 
         self._getVarlist(dataset, observations) # process all that are present in both datasets        
     # loop over variables that will be corrected
     self._correction = dict()
     for varname in self.varlist:
         # get variable object
         var = dataset[varname]
         if not var.data: var.load() # assume it is a VarNC, if there is no data
         obsvar = observations[varname] # should be loaded
         if not obsvar.data: obsvar.load() # assume it is a VarNC, if there is no data
         assert var.data and obsvar.data, obsvar.data      
         # check if they are actually equal
         if isEqual(var.data_array, obsvar.data_array, eps=eps, masked_equal=True):
             correction = None
         else: 
             correction = self._trainVar(var, obsvar, **kwargs)
         # save correction parameters
         self._correction[varname] = correction