Exemplo n.º 1
0
def main():
    for num_points in [100]:
        models_path = "./data/1kabc/simple/val"
        optimal_numbers, losses = [], []
        for model_name in tqdm(sorted(os.listdir(models_path))):
            model_path = os.path.join(models_path, model_name)
            # model_path = "./data/1kabc/simple/train/00070090_73b2f35a88394199b6fd1ab8_003.obj"
            model = Model(model_path)
            model.generate_view_points(num_points)
            optimal, loss = find_greedy_optimal(model, do_rec=True)
            optimal_numbers.append(len(optimal))
            losses.append(loss)

        print("Model: ", model_path, "Optimal number: ",
              np.mean(optimal_numbers), "Loss: ", np.mean(losses))
Exemplo n.º 2
0
    def reset(self):
        """
        Reset the environment for new episode.
        Randomly (or not) generate CAD model for this episode.
        """
        if self.models_path is not None:
            self.model_path = os.path.join(self.models_path,
                                      random.sample(os.listdir(self.models_path), 1)[0])
        self.model = Model(self.model_path, resolution_image=self.image_size)
        self.model.generate_view_points(self.number_of_view_points)
        
        if self.illustrate:
            self.model.illustrate().display()

            self.plot = k3d.plot()
            self.plot.display()
        
        init_action = self.action_space.sample()
        observation = self.model.get_observation(init_action)
        return observation, init_action
Exemplo n.º 3
0
Arquivo: axis.py Projeto: girvel/Sedna
def create_axis(dimensions, size, color, **kw):
    return Model(
        dimensions,
        [
            Primitive(
                Line(
                    Vector.get_zero_vector(dimensions),
                    Vector(*(size if i == d else 0 for i in range(dimensions)))
                ),
                color,
                arrow=LAST)
            for d in range(dimensions)
        ],
        **kw)
Exemplo n.º 4
0
Arquivo: cube.py Projeto: girvel/Sedna
def create_cube(size, dimensions, color="black", **kw):
    lines = []

    for d in range(dimensions**2):
        point = Vector(*(size * (d & 2**i == 2**i) for i in range(dimensions)))

        for n in range(dimensions):
            if point.coordinates[n] == 0:
                lines.append(
                    Line(
                        point,
                        Vector(*(point.coordinates[i] if i != n else size
                                 for i in range(dimensions)))))
    return Model(dimensions, [Primitive(l, color) for l in lines], **kw)
Exemplo n.º 5
0
class Environment(gym.Env):
    def __init__(self,
                 models_path=None,
                 model_path=None,
                 number_of_view_points=100,
                 similarity_threshold=0.95,
                 image_size=512,
                 illustrate=False):
        super().__init__()

        self.model_path = model_path
        self.models_path = models_path
        self.number_of_view_points = number_of_view_points
        self.image_size = image_size
        self.illustrate = illustrate

        self.action_space = spaces.Discrete(number_of_view_points)
        self.observation_space = spaces.Dict({
            'depth_map':
            spaces.Box(-np.inf,
                       np.inf, (image_size, image_size),
                       dtype=np.float32),
        })

        self._similarity_threshold = similarity_threshold
        self._reconstruction_depth = 10

        self.model = None
        self.plot = None

    def reset(self):
        """
        Reset the environment for new episode.
        Randomly (or not) generate CAD model for this episode.
        """
        if self.models_path is not None:
            self.model_path = os.path.join(
                self.models_path,
                random.sample(os.listdir(self.models_path), 1)[0])
        self.model = Model(self.model_path, resolution_image=self.image_size)
        self.model.generate_view_points(self.number_of_view_points)

        if self.illustrate:
            self.model.illustrate().display()

            self.plot = k3d.plot()
            self.plot.display()

        init_action = self.action_space.sample()
        observation = self.model.get_observation(init_action)
        return observation, init_action

    def step(self, action):
        """
        Get new observation from current position (action), count step reward, decide whether to stop.
        Args:
            action: int
        return: 
            next_state: List[List[List[int, int, int]]]
            reward: float
            done: bool
            info: Tuple
        """
        assert self.action_space.contains(action)
        observation = self.model.get_observation(action)

        reward = self.step_reward(observation)
        done = reward >= self._similarity_threshold

        return observation, reward, done, {}

    def render(self, action, observation, plot=None):
        if plot is None:
            plot = self.plot

        plot = illustrate_points([self.model.get_point(action)],
                                 size=0.5,
                                 plot=plot)

        plot = observation.illustrate(plot, size=0.03)
        return plot

    def step_reward(self, observation):
        # THINK ABOUT yet another reward
        return self.model.observation_similarity(observation)

        if self.illustrate:
            illustrate_mesh(vertices, faces).display()
        return reward

    def _get_mesh(self, observation):
        faces, vertices = poisson_reconstruction(
            observation.points,
            observation.normals,
            depth=self._reconstruction_depth)
        return vertices, faces

    def final_reward(self, observation):
        vertices, faces = self._get_mesh(observation)
        reward = self.model.surface_similarity(vertices, faces)
        return reward