Exemplo n.º 1
0
        grid = None
        for (line1, line2, c) in cen_lin:
            diag1 = Line(line1)
            diag1.points = ransac.filter_near(data, diag1, 2)
            diag2 = Line(line2)
            diag2.points = ransac.filter_near(data, diag2, 2)


            grids = list(gen_corners(diag1, diag2, min(size) / 3))
            
            try:
                new_sc, new_grid = min(map(lambda g: (score(sum(g, []), data), g), grids))
                if new_sc < sc:
                    sc, grid = new_sc, new_grid
            except ValueError:
                pass
        if grid:
            break
    else:
        raise GridFittingFailedError
        
    grid_lines = [[l2ad(l, size) for l in grid[0]], 
                  [l2ad(l, size) for l in grid[1]]]
    grid_lines[0].sort(key=lambda l: l[1])
    grid_lines[1].sort(key=lambda l: l[1])
    if grid_lines[0][0][0] > grid_lines[1][0][0]:
        grid_lines = grid_lines[1], grid_lines[0]

    return grid, grid_lines

Exemplo n.º 2
0
def find(lines, size, l1, l2, bounds, hough, show_all, do_something, logger):
    logger("finding the grid")

    v1 = V(*l1[0]) - V(*l1[1])
    v2 = V(*l2[0]) - V(*l2[1])
    a, b, c, d = [V(*a) for a in bounds]
    a = projection(a, l1, v1)
    b = projection(b, l1, v1)
    c = projection(c, l2, v2)
    d = projection(d, l2, v2)

    v1, v2 = hough.lines_from_list([a, b])
    h1, h2 = hough.lines_from_list([c, d])

    delta_v = ((l1[1][1] - l1[0][1]) * hough.dt) / l1[1][0]
    delta_h = ((l2[1][1] - l2[0][1]) * hough.dt) / l2[1][0]

    im_l = Image.new('L', size)
    dr_l = ImageDraw.Draw(im_l)
    for line in sum(lines, []):
        dr_l.line(line_from_angl_dist(line, size), width=1, fill=255)

    im_l = im_l.filter(MyGaussianBlur(radius=3))
    #GaussianBlur is undocumented class, may not work in future versions of PIL
    im_l_s = im_l.tostring()

    #import time
    #start = time.time()

    f_dist = partial(job_4,
                     im_l=im_l_s,
                     v1=v1,
                     v2=v2,
                     h1=h1,
                     h2=h2,
                     dv=delta_v,
                     dh=delta_h,
                     size=size)

    x_v, y_v, x_h, y_h = Optimizer.optimize(4, 30, f_dist, 128, 512, 1)

    v1 = (v1[0] + x_v * delta_v, v1[1] + x_v)
    v2 = (v2[0] + y_v * delta_v, v2[1] + y_v)
    h1 = (h1[0] + x_h * delta_h, h1[1] + x_h)
    h2 = (h2[0] + y_h * delta_h, h2[1] + y_h)

    grid = get_grid([v1, v2], [h1, h2], size)
    grid_lines = [[l2ad(l, size) for l in grid[0]],
                  [l2ad(l, size) for l in grid[1]]]

    #print time.time() - start

    ### Show error surface
    #
    #    from gridf_analyzer import error_surface
    #    error_surface(k, im_l_s, v1_i, v2_i, h1_i, h2_i,
    #                  delta_v, delta_h, x_v, y_v, x_h, y_h, size)
    ###

    if show_all:

        ### Show grid over lines
        #
        im_t = Image.new('RGB', im_l.size, None)
        im_t_l = im_t.load()
        im_l_l = im_l.load()
        for x in xrange(im_t.size[0]):
            for y in xrange(im_t.size[1]):
                im_t_l[x, y] = (im_l_l[x, y], 0, 0)

        im_t_d = ImageDraw.Draw(im_t)
        for l in grid[0] + grid[1]:
            im_t_d.line(l, width=1, fill=(0, 255, 0))

        do_something(im_t, "lines and grid")


#
###

    return grid, grid_lines
Exemplo n.º 3
0
                    corners = corners[1:]
                corners.append(np)
                (x, y) = corners[-1]
                draw.line((x-2, y, x + 2, y), fill=color)
                draw.line((x, y+2, x, y-2), fill=color)
                if len(corners) == 4:
                    im = im_orig.copy()
                    draw = ImageDraw.Draw(im)
                    try:
                        l_vert, l_hor = lines(corners)
                    except Exception:
                        corners = corners[:-1]
                    for l in l_vert:
                        draw.line(l, fill=color, width=line_width)
                    for l in l_hor:
                        draw.line(l, fill=color, width=line_width)
                    # TODO sort by distance
                    #l_vert.sort()
                    #l_hor.sort()
                    #for i in [3, 9, 15]:
                    #    for j in [3, 9, 15]:
                    #        hoshi(intersection(line(l_vert[i][0], l_vert[i][1]),
                    #                           line(l_hor[j][0], l_hor[j][1])))
                    lines_r = [[l2ad(l, im.size) for l in l_vert], 
                               [l2ad(l, im.size) for l in l_hor]]

        screen.display_picture(im)
        clock.tick(15)


Exemplo n.º 4
0
                    corners = corners[1:]
                corners.append(np)
                (x, y) = corners[-1]
                draw.line((x - 2, y, x + 2, y), fill=color)
                draw.line((x, y + 2, x, y - 2), fill=color)
                if len(corners) == 4:
                    im = im_orig.copy()
                    draw = ImageDraw.Draw(im)
                    try:
                        l_vert, l_hor = lines(corners)
                    except Exception as e:
                        print "exception!", e
                        corners = corners[:-1]
                        continue
                    for l in l_vert:
                        draw.line(l, fill=color, width=line_width)
                    for l in l_hor:
                        draw.line(l, fill=color, width=line_width)
                    # TODO sort by distance
                    #l_vert.sort()
                    #l_hor.sort()
                    #for i in [3, 9, 15]:
                    #    for j in [3, 9, 15]:
                    #        hoshi(intersection(line(l_vert[i][0], l_vert[i][1]),
                    #                           line(l_hor[j][0], l_hor[j][1])))
                    lines_r = [[l2ad(l, im.size) for l in l_vert],
                               [l2ad(l, im.size) for l in l_hor]]

        screen.display_picture(im)
        clock.tick(15)
Exemplo n.º 5
0
def find(lines, size, l1, l2, bounds, hough, show_all, do_something, logger):
    logger("finding the grid")

    v1 = V(*l1[0]) - V(*l1[1])
    v2 = V(*l2[0]) - V(*l2[1])
    a, b, c, d = [V(*a) for a in bounds]
    a = projection(a, l1, v1) 
    b = projection(b, l1, v1) 
    c = projection(c, l2, v2) 
    d = projection(d, l2, v2) 
    
    v1, v2 = hough.lines_from_list([a, b])
    h1, h2 = hough.lines_from_list([c, d])

    delta_v = ((l1[1][1] - l1[0][1]) * hough.dt) / l1[1][0]
    delta_h = ((l2[1][1] - l2[0][1]) * hough.dt) / l2[1][0]

    im_l = Image.new('L', size)
    dr_l = ImageDraw.Draw(im_l)
    for line in sum(lines, []):
        dr_l.line(line_from_angl_dist(line, size), width=1, fill=255)

    im_l = im_l.filter(MyGaussianBlur(radius=3))
    #GaussianBlur is undocumented class, may not work in future versions of PIL
    im_l_s = im_l.tostring()

    #import time
    #start = time.time()

    f_dist = partial(job_4, im_l=im_l_s, v1=v1, v2=v2, h1=h1, h2=h2,
                     dv=delta_v, dh=delta_h, size=size)

    x_v, y_v, x_h, y_h = Optimizer.optimize(4, 30, f_dist, 128, 512, 1)

    v1 = (v1[0] + x_v * delta_v, v1[1] + x_v)
    v2 = (v2[0] + y_v * delta_v, v2[1] + y_v)
    h1 = (h1[0] + x_h * delta_h, h1[1] + x_h)
    h2 = (h2[0] + y_h * delta_h, h2[1] + y_h)

    grid = get_grid([v1, v2], [h1, h2], size) 
    grid_lines = [[l2ad(l, size) for l in grid[0]], 
                  [l2ad(l, size) for l in grid[1]]]
    
    #print time.time() - start
    
### Show error surface
#
#    from gridf_analyzer import error_surface
#    error_surface(k, im_l_s, v1_i, v2_i, h1_i, h2_i, 
#                  delta_v, delta_h, x_v, y_v, x_h, y_h, size)
###

    if show_all:

### Show grid over lines
#
        im_t = Image.new('RGB', im_l.size, None)
        im_t_l = im_t.load()
        im_l_l = im_l.load()
        for x in xrange(im_t.size[0]):
            for y in xrange(im_t.size[1]):
                im_t_l[x, y] = (im_l_l[x, y], 0, 0)

        im_t_d = ImageDraw.Draw(im_t)
        for l in grid[0] + grid[1]:
            im_t_d.line(l, width=1, fill=(0, 255, 0))

        do_something(im_t, "lines and grid")
#
###

    return grid, grid_lines