grid = None for (line1, line2, c) in cen_lin: diag1 = Line(line1) diag1.points = ransac.filter_near(data, diag1, 2) diag2 = Line(line2) diag2.points = ransac.filter_near(data, diag2, 2) grids = list(gen_corners(diag1, diag2, min(size) / 3)) try: new_sc, new_grid = min(map(lambda g: (score(sum(g, []), data), g), grids)) if new_sc < sc: sc, grid = new_sc, new_grid except ValueError: pass if grid: break else: raise GridFittingFailedError grid_lines = [[l2ad(l, size) for l in grid[0]], [l2ad(l, size) for l in grid[1]]] grid_lines[0].sort(key=lambda l: l[1]) grid_lines[1].sort(key=lambda l: l[1]) if grid_lines[0][0][0] > grid_lines[1][0][0]: grid_lines = grid_lines[1], grid_lines[0] return grid, grid_lines
def find(lines, size, l1, l2, bounds, hough, show_all, do_something, logger): logger("finding the grid") v1 = V(*l1[0]) - V(*l1[1]) v2 = V(*l2[0]) - V(*l2[1]) a, b, c, d = [V(*a) for a in bounds] a = projection(a, l1, v1) b = projection(b, l1, v1) c = projection(c, l2, v2) d = projection(d, l2, v2) v1, v2 = hough.lines_from_list([a, b]) h1, h2 = hough.lines_from_list([c, d]) delta_v = ((l1[1][1] - l1[0][1]) * hough.dt) / l1[1][0] delta_h = ((l2[1][1] - l2[0][1]) * hough.dt) / l2[1][0] im_l = Image.new('L', size) dr_l = ImageDraw.Draw(im_l) for line in sum(lines, []): dr_l.line(line_from_angl_dist(line, size), width=1, fill=255) im_l = im_l.filter(MyGaussianBlur(radius=3)) #GaussianBlur is undocumented class, may not work in future versions of PIL im_l_s = im_l.tostring() #import time #start = time.time() f_dist = partial(job_4, im_l=im_l_s, v1=v1, v2=v2, h1=h1, h2=h2, dv=delta_v, dh=delta_h, size=size) x_v, y_v, x_h, y_h = Optimizer.optimize(4, 30, f_dist, 128, 512, 1) v1 = (v1[0] + x_v * delta_v, v1[1] + x_v) v2 = (v2[0] + y_v * delta_v, v2[1] + y_v) h1 = (h1[0] + x_h * delta_h, h1[1] + x_h) h2 = (h2[0] + y_h * delta_h, h2[1] + y_h) grid = get_grid([v1, v2], [h1, h2], size) grid_lines = [[l2ad(l, size) for l in grid[0]], [l2ad(l, size) for l in grid[1]]] #print time.time() - start ### Show error surface # # from gridf_analyzer import error_surface # error_surface(k, im_l_s, v1_i, v2_i, h1_i, h2_i, # delta_v, delta_h, x_v, y_v, x_h, y_h, size) ### if show_all: ### Show grid over lines # im_t = Image.new('RGB', im_l.size, None) im_t_l = im_t.load() im_l_l = im_l.load() for x in xrange(im_t.size[0]): for y in xrange(im_t.size[1]): im_t_l[x, y] = (im_l_l[x, y], 0, 0) im_t_d = ImageDraw.Draw(im_t) for l in grid[0] + grid[1]: im_t_d.line(l, width=1, fill=(0, 255, 0)) do_something(im_t, "lines and grid") # ### return grid, grid_lines
corners = corners[1:] corners.append(np) (x, y) = corners[-1] draw.line((x-2, y, x + 2, y), fill=color) draw.line((x, y+2, x, y-2), fill=color) if len(corners) == 4: im = im_orig.copy() draw = ImageDraw.Draw(im) try: l_vert, l_hor = lines(corners) except Exception: corners = corners[:-1] for l in l_vert: draw.line(l, fill=color, width=line_width) for l in l_hor: draw.line(l, fill=color, width=line_width) # TODO sort by distance #l_vert.sort() #l_hor.sort() #for i in [3, 9, 15]: # for j in [3, 9, 15]: # hoshi(intersection(line(l_vert[i][0], l_vert[i][1]), # line(l_hor[j][0], l_hor[j][1]))) lines_r = [[l2ad(l, im.size) for l in l_vert], [l2ad(l, im.size) for l in l_hor]] screen.display_picture(im) clock.tick(15)
corners = corners[1:] corners.append(np) (x, y) = corners[-1] draw.line((x - 2, y, x + 2, y), fill=color) draw.line((x, y + 2, x, y - 2), fill=color) if len(corners) == 4: im = im_orig.copy() draw = ImageDraw.Draw(im) try: l_vert, l_hor = lines(corners) except Exception as e: print "exception!", e corners = corners[:-1] continue for l in l_vert: draw.line(l, fill=color, width=line_width) for l in l_hor: draw.line(l, fill=color, width=line_width) # TODO sort by distance #l_vert.sort() #l_hor.sort() #for i in [3, 9, 15]: # for j in [3, 9, 15]: # hoshi(intersection(line(l_vert[i][0], l_vert[i][1]), # line(l_hor[j][0], l_hor[j][1]))) lines_r = [[l2ad(l, im.size) for l in l_vert], [l2ad(l, im.size) for l in l_hor]] screen.display_picture(im) clock.tick(15)