Exemplo n.º 1
0
    def __convert_gdf_to_bokeh_data(
            input_gdf: gpd.GeoDataFrame,
            get_gdf_structure: bool = False) -> ColumnDataSource:
        assert isinstance(
            input_gdf, gpd.GeoDataFrame
        ), f"use a GeoDataframe please => found {type(input_gdf)}"
        if get_gdf_structure:
            input_gdf = input_gdf.head(1)

        bokeh_data = ColumnDataSource({
            **{
                "x":
                input_gdf["geometry"].apply(lambda x: geometry_2_bokeh_format(
                    x, "x")).tolist(),
                "y":
                input_gdf["geometry"].apply(lambda x: geometry_2_bokeh_format(
                    x, "y")).tolist(),
            },
            **{
                column: input_gdf[column].to_list()
                for column in input_gdf.columns if column != "geometry"
            },
        })
        return bokeh_data
        
        frames = [guiddf, pubdatedf, isodf, countrydf, etypedf, epidf, evidf, bboxdf,coordf, aleveldf, ascoredf]
        df = pd.concat(frames, axis=1, ignore_index = True, names=[frames])
        return df[df[2].isin(wfpiso3)] #!IMPORTANT!#
        #return df
        

data = get_data()
data
#f = 'C:/Users/Michael/Desktop/Notebooks/test.csv'
#data.to_csv(f, encoding='utf-8')  

geometry = [Point(xy) for xy in zip(data[8])]
gdacsdf = data.drop([8], axis=1)
crs = {'init': 'epsg:4326'}
gdf = GeoDataFrame(gdacsdf, crs=crs, geometry=geometry)
gdf.head()

#Same as line 75/56
#geodata = gpd.GeoDataFrame(gdf)
#geodata.head(3)

jsondata = geodata.to_json()

m = folium.Map(tiles='stamentoner') #cartodbpositron #stamentoner #cartodbdark_matter
folium.GeoJson(jsondata).add_to(m)

m.fit_bounds(m.get_bounds())
#m.save(os.path.join('results', 'geopandas_2.html'))
m
Exemplo n.º 3
0
def log_data_frame(gdf: GeoDataFrame) -> None:
    logger.debug(gdf.head())

    buffer = StringIO()
    gdf.info(buf=buffer)
    logger.debug(buffer.getvalue())
Exemplo n.º 4
0
api = tweepy.API(auth)
keywords = ['earthquake', 'quake', 'magnitude', 'epicenter', 'magnitude', 'aftershock']

# Collect 100 tweets using the keywords:
search_results = api.search(q=' OR '.join(keywords), count=10)

df = pd.DataFrame([ {'id': result.id, 'created_at': result.created_at, 'user': '******'+result.user.name, 'text': result.text } for result in  search_results])[['id', 'created_at', 'user', 'text']]
df.display(df.head())

# What is the weather 500mm around Lyon?: 
keywords2 = ['weather' , 'forcast', 'sun', 'rain', 'clouds', 'storm']

# Only in english please !
lang = 'en'

# Get tweets around Lyon (latitide,longitude,radius):
geocode = '45.76,4.84,500km'

# Collect tweets using the keywords:
search_results2 = api.search(q=' OR '.join(keywords2), geocode=geocode, lang=lang, count=1500)


# Convert to GeoPandas:
df2 = pd.DataFrame([ {'id': result.id, 'created_at': result.created_at, 'user': '******'+result.user.name, 'text': result.text, 'geometry': result.coordinates } for result in  search_results2])[['id', 'created_at', 'user', 'text', 'geometry']]
df2['geometry'] = df2['geometry'].apply(lambda coords: np.nan if coords is None else Point(coords['coordinates']))
df2 = df2.dropna() # Remove documents without geometry point (the twitter API may obtain location using user details rather than the tweet location.).
df2 = GeoDataFrame(df2, crs = {'init': 'epsg:2263'})

display(df2.head())
    
Exemplo n.º 5
0
import pandas as pd

os.chdir("path to working directory")

# ### Create GeoDataFrames

from geopandas import GeoDataFrame
from shapely.geometry import Point, LineString

shipping_gdf = GeoDataFrame(
    shipping, geometry=[Point(xy) for xy in zip(shipping.Long, shipping.Lat)])
noShipping_gdf = GeoDataFrame(
    noShipping,
    geometry=[Point(xy) for xy in zip(noShipping.Long, noShipping.Lat)])
hq_gdf = GeoDataFrame(hq, geometry=[Point(xy) for xy in zip(hq.Long, hq.Lat)])
hq_gdf.head()

# ### Get adjusted lat/long coordinates
# https://stackoverflow.com/questions/30740046/calculate-distance-to-nearest-feature-with-geopandas


def nearest_poly(point, polygons):
    min_dist = polygons.distance(point).min()
    index = polygons.distance(point)[polygons.distance(point) ==
                                     min_dist].index[0]
    return polygons.iat[index, 0]


def getXY(pt):
    return (pt.x, pt.y)
# #convert to geodataframe

# In[6]:

geometry = [
    Point(xy) for xy in zip(df_stations.LATITUDE, df_stations.LONGITUDE)
]
df_stations = df_stations.drop(['LATITUDE', 'LONGITUDE'], axis=1)
crs = {'init': 'epsg:4326'}
geodf_stations = GeoDataFrame(df_stations, crs=crs, geometry=geometry)

# In[7]:

geodf_stations.info()
geodf_stations.head()

# In[8]:

#add a new geometry to geodf_stations of a circle of X miles around each station
#new design uses polygons that will be loaded from a shape file so drawing buffer circles around the stations will not be required
#X = 0.01
#geodf_stations['CIRCLE'] = geodf_stations.geometry.buffer(X)
#geodf_stations.geometry.name
#geodf_stations = geodf_stations.rename(columns={'geometry':'POINT'}).set_geometry('CIRCLE')
#geodf_stations.geometry.name
#geodf_stations.info()
#geodf_stations.head()

# # LOAD STATIONS FROM TRANSIT DATA
Exemplo n.º 7
0
df_stations.columns = [
    'STATION_ID', 'STOP_ID', 'STOP_NAME', 'BOROUGH', 'LATITUDE', 'LONGITUDE'
]

# convert to geodataframe

geometry = [
    Point(xy) for xy in zip(df_stations.LATITUDE, df_stations.LONGITUDE)
]
df_stations = df_stations.drop(['LATITUDE', 'LONGITUDE'], axis=1)
crs = {'init': 'epsg:4326'}
geodf_stations = GeoDataFrame(df_stations, crs=crs, geometry=geometry)

geodf_stations.info()
geodf_stations.head()

# In[8]:

#add a new geometry to geodf_stations of a circle of X miles around each station
#new design uses polygons that will be loaded from a shape file so drawing buffer circles around the stations will not be required
#X = 0.01
#geodf_stations['CIRCLE'] = geodf_stations.geometry.buffer(X)
#geodf_stations.geometry.name
#geodf_stations = geodf_stations.rename(columns={'geometry':'POINT'}).set_geometry('CIRCLE')
#geodf_stations.geometry.name
#geodf_stations.info()
#geodf_stations.head()

# # LOAD STATIONS FROM TRANSIT DATA
Exemplo n.º 8
0

# #convert to geodataframe

# In[5]:

geometry = [
    LineString(build_coord_tuples(x)) for x in df_traffic_links.LINK_POINTS
]
crs = {'init': 'epsg:4326'}
geodf_traffic_links = GeoDataFrame(df_traffic_links.drop('LINK_POINTS',
                                                         axis=1),
                                   crs=crs,
                                   geometry=geometry)
geodf_traffic_links.info()
geodf_traffic_links.head()

# In[6]:

geodf_traffic_links.plot(color='r')
plt.show()

# # JOIN TRANSIT STATIONS WITH TRAFFIC LINKS

# In[7]:

#LOAD STATION GEO DF (ALREADY PROCESSED IN STATIONS NOTEBOOK)
#file = root + 'transit/Stations_geomerged.geojson'
#geodf_stations = GeoDataFrame.from_file(file)[['STATION','geometry']]
#geodf_stations.head()
Exemplo n.º 9
0
def makeGrid(ipoints, experiment, gridsize):
    # Projections 
    gridproj = {'init': 'epsg:3740', 'no_defs': True}
    wgs84 = {'datum':'WGS84', 'no_defs':True, 'proj':'longlat'}
    # import grid script
    sys.path.insert(0, os.getcwd()+'/mapping/libs/')
    import grid as g

    opath =  os.getcwd() + '/diysco2-db/campaigns/'+experiment+'/diysco2-grid'
    if(os.path.isdir(opath)):
        print "already a folder!"
    else:
        os.mkdir(opath)

    # gridsize = 200
    ogridname = "grid_"+str(gridsize)+"m.shp"
    ofile = opath + "/" + ogridname
    print "making grid"
    g.main(ofile, ipoints.total_bounds[0], ipoints.total_bounds[2], 
        ipoints.total_bounds[1], ipoints.total_bounds[3],
        gridsize, gridsize)

    print "grid complete! "
    # read in the grid that was just made
    grid = GeoDataFrame.from_file(ofile)
    grid.crs = gridproj
    # create grid id to groupby
    grid['id'] = [i for i in range(len(grid))]

    # Read in transect to spatial subset grids in transect
    transect = GeoDataFrame.from_file(os.getcwd()+'/diysco2-db/_main_/study-area/' +'transect_epicc2sp_woss.shp')
    transect.crs = gridproj

    # subset grid
    # transectgrid = grid[grid.geometry.intersects(transect.geometry)]; print transectgrid
    sagrid = []
    for i in range(len(grid)):
        if np.array(transect.intersects(grid.geometry[i]))[0] != False:
            sagrid.append(grid.geometry[i])

    transectgrid = GeoDataFrame(sagrid)
    transectgrid.columns = ['geometry']
    transectgrid['id'] = [i for i in range(len(transectgrid))]
    transectgrid.crs = gridproj

    

    transectgrid.to_file(ofile[:-4]+"_transect.shp")
    # transectgrid.to_file(ofile[:-4]+"_transect.geojson",driver="GeoJSON")

    ## !!!Some weird things with reading in data makes the sjoin work !!! :(
    transectgrid = GeoDataFrame.from_file(ofile[:-4]+"_transect.shp")
    transectgrid.crs = gridproj
    print transectgrid.head()

    ipoints = GeoDataFrame.from_file( os.getcwd() + '/diysco2-db/campaigns/'+experiment+'/diysco2-filtered-points/all_20150528.shp')
    ipoints.crs = gridproj
    print ipoints.head()

    # ipoints['id'] = [i for i in range(len(ipoints))]
    # Spatial join points to grid
    oname = "gridjoin_"+str(gridsize)+"m.shp"
    # join_inner_df = sjoin(transectgrid, ipoints, how="inner")
    join_inner_df = sjoin(transectgrid, ipoints, how="left", op='intersects')
    # join_inner_df.to_file(opath+ "/"+oname)

    return join_inner_df
Exemplo n.º 10
0
def makePoints(experiment):
    path = os.getcwd() + '/diysco2-db/campaigns/'+experiment+'/diysco2-filtered/'
    ipaths = [os.path.join(path,i) for i in os.listdir(path) if i.endswith('.csv')]
    # experiment data
    data = [readdata(i) for i in ipaths]
    # copy data to ldata 
    ldata = [i.copy() for i in data]
    # --- print number of measurements --- #
    featcount(ldata)

    ''' ------------- Spatial Operations ------------- '''
    for i in range(0,len(ldata)):
        ldata[i].lon = ldata[i].lon.astype('float')
        ldata[i].lat = ldata[i].lat.astype('float')
        
    # need to keep datetime field
    # create geopoints
    for i in ldata:
        i['datetime'] = i.index
        
        
    for i in ldata:
        i.index = [j for j in range(len(i))]    
        i['geometry'] = GeoSeries([Point(x, y) for x, y in zip(i.lon, i.lat)])
        # convert datetime string to iso format
        i['datetime'] = i.datetime.map(lambda x: datetime.strftime(x, '%Y-%m-%dT%H:%M:%SZ'))

    print ldata[0].head()
    # Projections 
    gridproj = {'init': 'epsg:3740', 'no_defs': True}
    wgs84 = {'datum':'WGS84', 'no_defs':True, 'proj':'longlat'}

    # create geodataframe from data
    ldata = [GeoDataFrame(i) for i in ldata]

    # set projection as wgs84
    for i in ldata:
        i.crs = wgs84

    # reproject to utm zone 10N
    for i in ldata: 
        i.geometry = i.geometry.to_crs(epsg=3740)
        # i.geometry = i.geometry.to_crs(epsg=4326)

    for i in ldata:
        i = i[pd.isnull(i.geometry) == False]

    # --- Merge geodata together --- #
    mergedgeo = pd.concat([ldata[0], ldata[1],ldata[2],ldata[3],ldata[4]])
    mergedgeo = GeoDataFrame(mergedgeo)
    mergedgeo.crs = gridproj

    print len(mergedgeo)
    mergedgeo = mergedgeo[pd.isnull(mergedgeo.lat)==False]
    print len(mergedgeo)
    # mergedgeo['date'] = mergedgeo['date'].str.replace('/', '-').astype(str)
    # mergedgeo['datetime'] = mergedgeo['datetime'].astype(str)

    print mergedgeo.head()
    # mergedgeo.to_crs(wgs84)

    opath = os.getcwd() + '/diysco2-db/campaigns/'+experiment+'/diysco2-filtered-points/'
    
    print opath
    if(os.path.isdir(opath)):
        print "already a folder!"
    else:
        os.mkdir(opath)

    if(os.path.isfile(opath + 'all_20150528.geojson')):
        os.remove(opath + 'all_20150528.geojson')

    mergedgeo.to_file(opath + 'all_20150528.geojson', driver="GeoJSON")
    # with open(opath + 'all_20150528.geojson', 'w') as f:
    #       f.write(mergedgeo.to_json())
    mergedgeo.to_file(opath + 'all_20150528.shp', driver='ESRI Shapefile')
    
    return mergedgeo
    del mergedgeo
# ### Convert to GeoDataFrame

# In[160]:

from geopandas import GeoDataFrame
from shapely.geometry import Point

# In[161]:

# Initialize the geographic reference system as WGS 1984
crs = {'init': 'epsg:4326'}
# Project ot Mercator system
stations_gdf = GeoDataFrame(stations, crs=crs,
                            geometry='geometry').to_crs(epsg=3857)
stations_gdf.head()

# ### Join Trip Counts to Station Data

# In[162]:

# Count trips by station
by_startStation = indego.groupby('start_station').size().reset_index(
    name='counts')
by_startStation.head()

# In[163]:

stations_gdf = stations_gdf.merge(by_startStation,
                                  left_on='kioskId',
                                  right_on='start_station')
Exemplo n.º 12
0
# change the CRS of the shapefile to the specified projected one
all_countries.to_crs(crs=target_crs, inplace=True)


# In[6]:


# create a geometry column in our point data set for geopandas to use
rs['geometry'] = rs.apply(lambda row: Point(row['lon'], row['lat']), axis=1)

# create a new geopandas geodataframe from the point data 
points = GeoDataFrame(rs)

# you must specify its original CRS to convert it to a different (projected) one later
points.crs = original_crs
points.head()


# In[7]:


# convert the point data to the same projected CRS we specified earlier for our shapefile
points.to_crs(crs=target_crs, inplace=True)

# convert the projected points into discrete x and y columns for easy matplotlib scatterplotting
points['x'] = points['geometry'].map(lambda point: point.x)
points['y'] = points['geometry'].map(lambda point: point.y)    
points.head()


# In[8]:
Exemplo n.º 13
0
all_rps.head()

#Create geometries for sps
geometry = [Point(xy) for xy in zip(all_sps.Easting, all_sps.Northing)]
crs = {'init': 'epsg:23031'}

#Create points for sps
all_sps_points = GeoDataFrame(all_sps, crs=crs, geometry=geometry)

#Create lines for sps
all_sps_lines = all_sps_points.groupby(
    ['Line Number'])['geometry'].apply(lambda x: LineString(x.tolist()))
all_sps_lines = GeoDataFrame(all_sps_lines, geometry='geometry')

#Check
all_sps_points.head()
all_sps_lines.head()

#Create shapefiles for sps
all_sps_points.to_file(driver='ESRI Shapefile',
                       filename="result_SPS_points.shp")
all_sps_lines.to_file(driver='ESRI Shapefile', filename="result_SPS_lines.shp")

#Create geometries for rps
geometry = [Point(xy) for xy in zip(all_rps.Easting, all_rps.Northing)]
crs = {'init': 'epsg:23031'}

#Create points for rps
all_rps_points = GeoDataFrame(all_rps, crs=crs, geometry=geometry)

#Create lines for rps