Exemplo n.º 1
0
Arquivo: main.py Projeto: tatatakky/nn
def main():
    data = getdata(sys.argv[1])
    e = data[0] #[[0,0],[0,1],[1,0],[1,1]]
    e_num = data[1] #4
    for i in range(e_num):
        print(i,end=" ")
        for j in range(inputNum):
            print(e[i][j],end=" ")
        hiddenOut = calcHidden(e[i])
        o = calcOutput(hiddenOut)
        print(o)
Exemplo n.º 2
0
def main():
    w = [1.0,1.0,1.5]
    data = getdata(sys.argv[1])  #e[0] = [[0, 0], [0, 1], [1, 0], [1, 1]] ,  e[1] = 4
    e = data[0]
    e_num = data[1]
    for i in range(e_num):
        print(i,end=" ")
        for j in range(INPUT_NUM):
            print(e[i][j],end=" ")
        o = forward(w,e[i])  #順伝播
        print(o)
Exemplo n.º 3
0
from sklearn.ensemble import AdaBoostClassifier
from getData import getdata, evaluate, MCC, Get_f1_score, Get_Accuracy, Get_Precision_score, Get_Recall
clf = AdaBoostClassifier()
address = ''
x_train, y_train, x_test, y_test = getdata(address)
clf.fit(x_train, y_train)
y_predict = clf.predict(x_test)
accuracy = Get_Accuracy(y_test, y_predict)
accuracy = round(accuracy, 3)
precision = Get_Precision_score(y_test, y_predict)
precision = round(precision, 3)
recall = Get_Recall(y_test, y_predict)
recall = round(recall, 3)
f1_score = Get_f1_score(y_test, y_predict)
f1_score = round(f1_score, 3)
mcc = MCC(y_test, y_predict)
mcc = round(mcc, 3)
print('\n')
evaluate(y_test, y_predict)
print("Precision = ", precision)
print("Accuracy_Score = ", accuracy)
print("F1-Score  = ", f1_score)
print("MCC = ", mcc)
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np
from getData import getdata

attributes, target = getdata()


def sigmoid(inX):
    return 1.0 / (1 + np.exp(-inX))


def trainLogRegres(train_x, train_y, maxIter, alpha):
    numSamples, numFeatures = np.shape(train_x)
    weights = np.ones((numFeatures, 1))
    for k in range(maxIter):
        for i in range(numSamples):
            output = sigmoid(train_x[i, :] * weights)
            #print("output")
            #print(output)
            error = train_y[i, 0] - output
            print(weights)
            weights = weights + alpha * train_x[i, :].transpose() * error
    return weights


def testLogRegres(weights, test_x, test_y):
    numSamples, numFeatures = np.shape(test_x)
    matchCount = 0
    for i in range(numSamples):
        predict = sigmoid(test_x[i, :] * weights)[0, 0] > 0.5
Exemplo n.º 5
0
def IFS(address, importence_rank):
    x_train, y_train, x_test, y_test = getdata(address)
    for i in range(len(importence_rank)):
        y_test = []
        y_train = []
        flag = importence_rank[i]
        fileList = os.listdir(address + "\\train\positive")
        flag_train = 0
        for name in fileList:
            x_train[flag_train].append(
                np.load(address + "\\train\positive\\" + name)[flag])
            y_train.append(1)
            flag_train += 1
        fileList = os.listdir(address + "\\train\\negitive")
        for name in fileList:
            x_train[flag_train].append(
                np.load(address + "\\train\\negitive\\" + name)[flag])
            y_train.append(0)
            flag_train += 1
        fileList = os.listdir(address + "\\test\positive")
        flag_test = 0
        for name in fileList:
            x_test[flag_test].append(
                np.load(address + "\\test\positive\\" + name)[flag])
            y_test.append(1)
            flag_test += 1
        fileList = os.listdir(address + "\\test\\negitive")
        for name in fileList:
            x_test[flag_test].append(
                np.load(address + "\\test\\negitive\\" + name)[flag])
            flag_test += 1
            y_test.append(0)
        kf = KFold(n_splits=10)
        kf.get_n_splits(x_train)
        accuracy_ten = 0
        precision_ten = 0
        recall_ten = 0
        f1_score_ten = 0
        mcc_ten = 0
        sen_ten = 0
        spe_ten = 0
        x2_train, y2_train = shuffle(x_train, y_train, random_state=0)
        for train_index, test_index in kf.split(x_train):
            x1_train = []
            y1_train = []
            x1_test = []
            y1_test = []
            for i in range(len(train_index)):
                x1_train.append(x2_train[train_index[i]])
                y1_train.append(y2_train[train_index[i]])
            for i in range(len(test_index)):
                x1_test.append(x2_train[test_index[i]])
                y1_test.append(y2_train[test_index[i]])
            x1_train = np.array(x1_train)
            y1_train = np.array(y1_train)
            x1_test = np.array(x1_test)
            y1_test = np.array(y1_test)
            clf = XGBClassifier()
            clf.fit(x1_train, y1_train)
            y_predict = clf.predict(x1_test)
            accuracy = Get_Accuracy(y1_test, y_predict)
            accuracy_ten += accuracy
            precision = Get_Precision_score(y1_test, y_predict)
            precision_ten += precision
            recall = Get_Recall(y1_test, y_predict)
            recall_ten += recall
            f1_score = Get_f1_score(y1_test, y_predict)
            f1_score_ten += f1_score
            mcc = MCC(y1_test, y_predict)
            mcc_ten += mcc
            sen, spe = evaluate(y1_test, y_predict)
            sen_ten += sen
            spe_ten += spe
        accuracy = accuracy_ten / 10
        precision = precision_ten / 10
        f1_score = f1_score_ten / 10
        mcc = mcc_ten / 10
        spe = spe_ten / 10
        sen = sen_ten / 10
        accuracy = round(accuracy, 3)
        precision = round(precision, 3)
        f1_score = round(f1_score, 3)
        spe = round(spe, 3)
        sen = round(sen, 3)
        mcc = round(mcc, 3)
        acc_list.append(accuracy)
        pre_list.append(precision)
        f1_list.append(f1_score)
        mcc_list.append(mcc)
        sen_list.append(sen)
        spe_list.append(spe)
Exemplo n.º 6
0
def calculate(trustFactor, startDate, endDate, predictionObjectID,
              predictionObject, *providers):
    #Get realized data
    realizedData = json.loads(
        getData.getproductiondata(startDate, endDate, predictionObjectID))
    #Create empty arrays
    selectedProviders = [None] * len(providers)
    accuracyRates = [None] * len(providers)
    i = 0
    #take date from providers
    for provider in providers:
        selectedProviders[i] = json.loads(
            getData.getdata(startDate, endDate, provider, predictionObject))
        accuracyRates[i] = 100 / len(providers)
        i = i + 1

    for selectedProvider in selectedProviders:
        #check if data lengths are equal
        if len(realizedData["data"]) > len(selectedProvider["data"]):
            print("Data lenghts are not equal between realized product and ",
                  selectedProvider["data"][0]["ShortName"])
            print("Trying to syncronize...")
            #compare with date-hour and if they are not equal this means there are missing prediction.So fill that missed production with worst prediction
            for k in range(0, len(realizedData["data"])):
                realizedDate = realizedData["data"][k]["dateText"]
                realizedTime = realizedData["data"][k]["timeText"]
                providerDate = selectedProvider["data"][k]["Instrument"]
                providerTime = providerDate[11:16]
                providerDate = providerDate[0:10]
                if realizedDate == providerDate and realizedTime == providerTime:
                    continue
                else:
                    print("One of the missed index on provider is : ", k)
                    print("Syncronizing...")
                    reserved = selectedProvider
                    error = 0
                    temp = ""
                    for provider in selectedProviders:
                        if provider == reserved:
                            continue
                        else:
                            dif = abs(realizedData["data"][k]["total"] -
                                      provider["data"][k]["Forecast"])
                            if dif > error:
                                error = dif
                                temp = provider
                    instrument = realizedDate + "T" + realizedTime + ":00.000Z"
                    forecast = temp["data"][k]["Forecast"]
                    shortname = selectedProvider["data"][0]["ShortName"]
                    name = selectedProvider["data"][0]["Name"]
                    selectedProvider["data"].insert(
                        k, {
                            'Name': name,
                            'ShortName': shortname,
                            'Forecast': forecast,
                            'Instrument': instrument
                        })
        #check if is there any missed value in realized production.If yes,delete that hour from all the providers.
        for t in range(0, len(realizedData["data"]) - 1):
            currentTime = realizedData["data"][t]["timeText"][:2]
            nextTime = realizedData["data"][t + 1]["timeText"][:2]

            if (int(currentTime) +
                    1) == int(nextTime) or (int(currentTime) == 23 and
                                            (int(nextTime)) == 00):
                continue
            else:
                print(
                    "There is a missed index in realized data.This index will be deleted: ",
                    t + 1)
                for selectedProvider in selectedProviders:
                    del selectedProvider["data"][t + 1]
    #For every provider calculate the most and least trusting provider.
    #This is ranking providers by accuracy rate for every production between providers
    for index in range(0, len(realizedData["data"])):
        realizedDate = realizedData["data"][index]["dateText"]
        realizedTime = realizedData["data"][index]["timeText"]
        providerDate = selectedProvider["data"][index]["Instrument"]
        providerTime = providerDate[11:16]
        providerDate = providerDate[0:10]
        if realizedDate == providerDate and realizedTime == providerTime:
            i = 0
            totalLapse = 0
            deltaProviders = [None] * len(providers)
            for selectedProvider in selectedProviders:
                deltaProviders[i] = abs(
                    realizedData["data"][index]["total"] -
                    selectedProvider["data"][index]["Forecast"])
                totalLapse = totalLapse + deltaProviders[i]
                i = i + 1
            i = 0
            deltaPercentageProviders = [None] * len(providers)
            for selectedProvider in selectedProviders:
                deltaPercentageProviders[i] = (100 *
                                               deltaProviders[i]) / totalLapse
                i = i + 1
            i = 0
            averageLapsePercentage = 100 / len(providers)
            for selectedProvider in selectedProviders:
                accuracyRates[i] = accuracyRates[i] + (
                    averageLapsePercentage -
                    deltaPercentageProviders[i]) / float(trustFactor)
                i = i + 1
            i = 0
            for selectedProvider in selectedProviders:
                if accuracyRates[i] > 95:
                    deliveredRemain = abs(accuracyRates[i] - 95)
                    accuracyRates[i] = accuracyRates[i] - deliveredRemain
                    j = 0
                    for selectedProvider in selectedProviders:
                        if j == i:
                            j = j + 1
                            continue
                        else:
                            accuracyRates[j] = accuracyRates[
                                j] + deliveredRemain / (len(providers) - 1)
                            j = j + 1
                if accuracyRates[i] < 5:
                    deliveredRemain = abs(accuracyRates[i] - 5)
                    accuracyRates[i] = accuracyRates[i] + deliveredRemain
                    j = 0
                    for selectedProvider in selectedProviders:
                        if j == i:
                            j = j + 1
                            continue
                        else:
                            accuracyRates[j] = accuracyRates[
                                j] - deliveredRemain / (len(providers) - 1)
                            j = j + 1
                i = i + 1
        else:
            print("This index is not same with realized: ", index)
            print(providerTime + " " + providerDate)
            print(realizedTime + " " + providerDate)
            break
    return accuracyRates