Exemplo n.º 1
0
    def __fit(self, peripheral_data_frames, population_data_frame, s):

        # -----------------------------------------------------
        # Send the complete fit command.

        cmd = dict()
        cmd["type_"] = "RelboostModel.fit"
        cmd["name_"] = self.name

        cmd["peripheral_names_"] = [df.name for df in peripheral_data_frames]
        cmd["population_name_"] = population_data_frame.name

        comm.send_string(s, json.dumps(cmd))

        # -----------------------------------------------------
        # Do the actual fitting

        begin = time.time()

        print("Loaded data. Features are now being trained...")

        msg = comm.recv_string(s)

        end = time.time()

        # ----------------------------------------------------------------------
        # Print final message

        if "Trained" in msg:
            print(msg)
            self.__print_time_taken(begin, end, "Time taken: ")
        else:
            raise Exception(msg)
Exemplo n.º 2
0
def is_alive():
    """
    Checks if engine is running.

    Returns:
        bool: True if the engine is running and accepting commands, False otherwise 
    """

    ## ---------------------------------------------------------------

    cmd = dict()
    cmd["type_"] = "is_alive"
    cmd["name_"] = ""

    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    try:
        s.connect((getml.host, getml.port))
    except ConnectionRefusedError:
        return False

    comm.send_string(s, json.dumps(cmd))

    s.close()

    return True
Exemplo n.º 3
0
def execute(query):
    """
    Executes an SQL query on the database.

    Args:
        query (str): The SQL query to be executed.
    """

    # -------------------------------------------
    # Prepare command.

    cmd = dict()

    cmd["name_"] = ""
    cmd["type_"] = "Database.execute"

    # -------------------------------------------
    # Send JSON command to engine.

    s = comm.send_and_receive_socket(cmd)

    # -------------------------------------------
    # Send the actual query.

    comm.send_string(s, query)

    # -------------------------------------------
    # Make sure that everything went well.

    msg = comm.recv_string(s)

    s.close()

    if msg != "Success!":
        raise Exception(msg)
Exemplo n.º 4
0
    def __close(self, s):

        cmd = dict()
        cmd["type_"] = "RelboostModel.close"
        cmd["name_"] = self.name

        comm.send_string(s, json.dumps(cmd))

        msg = comm.recv_string(s)

        if msg != "Success!":
            raise Exception(msg)
Exemplo n.º 5
0
    def from_json(self, json_str, append=False, time_formats=["%Y-%m-%dT%H:%M:%s%z", "%Y-%m-%d %H:%M:%S", "%Y-%m-%d"]):
        """
        Fill from JSON

        Fills the data frame with data from a JSON string. 

        Args:
            json_str (str): The JSON string containing the data.
            append (bool): If a DataFrame already exists, should json_str be appended?
            time_formats (str): The formats tried when parsing time stamps.
                Refer to https://pocoproject.org/docs/Poco.DateTimeFormatter.html#9946 for the options.
        """


        # -------------------------------------------
        # Send JSON command to getml engine

        cmd = dict()
        cmd["type_"] = "DataFrame.from_json"
        cmd["name_"] = self.name

        cmd["categoricals_"] = self.categorical_names
        cmd["discretes_"] = self.discrete_names
        cmd["join_keys_"] = self.join_key_names
        cmd["numericals_"] = self.numerical_names
        cmd["targets_"] = self.target_names
        cmd["time_stamps_"] = self.time_stamp_names

        cmd["append_"] = append
        cmd["time_formats_"] = time_formats

        s = comm.send_and_receive_socket(cmd)

        # -------------------------------------------
        # Send the JSON string

        comm.send_string(s, json_str)

        # -------------------------------------------
        # Make sure everything went well and close
        # connection

        msg = comm.recv_string(s)

        s.close()

        if msg != "Success!":
            raise Exception(msg)

        # -------------------------------------------

        return self
Exemplo n.º 6
0
    def send(self, data_frame, sock = None):
        """Send data to the getml engine.

        If sock is None, it will call a function to create
        a new socket, use it for the data transfer and close it
        afterwards. If, instead, a socket is provided, it just sends
        all the data but does not close it.

        Args:
            data_frame (pandas.DataFrame): Data Frame that you want to be
                appended to the existing data.
            sock (optional): Socket connecting the Python API with the
                getML engine.

        """

        # ------------------------------------------------------

        if data_frame is not None:
            self.__check_plausibility(data_frame)

        # ------------------------------------------------------
        # Send data frame itself

        cmd = dict()
        cmd["type_"] = "DataFrame"
        cmd["name_"] = self.name

        if sock is None:
            s = comm.send_and_receive_socket(cmd)
        else:
            s = sock
            comm.send_string(s, json.dumps(cmd))

        msg = comm.recv_string(s)

        if msg != "Success!":
            raise Exception(msg)
            
        # ------------------------------------------------------
        # Send individual columns to getml engine

        self.__send_data(data_frame, s)

        # ------------------------------------------------------

        self.__close(s)
        
        if sock is None:
            s.close()

        return self
Exemplo n.º 7
0
def __get_categorical(self, sock=None):
    """
    Transform column to numpy array

    Args:
        sock: Socket connecting the Python API with the getML
            engine.
    """

    # -------------------------------------------
    # Build command string

    cmd = dict()

    cmd["name_"] = self.thisptr["df_name_"]
    cmd["type_"] = "CategoricalColumn.get"

    cmd["col_"] = self.thisptr

    # -------------------------------------------
    # Send command to engine
    if sock is None:
        s = comm.send_and_receive_socket(cmd)
    else:
        s = sock
        comm.send_string(s, json.dumps(cmd))

    msg = comm.recv_string(s)

    # -------------------------------------------
    # Make sure everything went well, receive data
    # and close connection

    if msg != "Found!":
        s.close()
        raise Exception(msg)

    mat = comm.recv_categorical_matrix(s)

    # -------------------------------------------
    # Close connection.
    if sock is None:
        s.close()

    # -------------------------------------------

    return mat.ravel()
Exemplo n.º 8
0
    def append(self, data_frame, sock=None):
        """Appends data to tables that already exist on the getml engine.

        If sock is None, it will call a function to create a new
        socket, use it for the data transfer and close it
        afterwards. If, instead, a socket is provided, it just sends
        all the data but does not close it.

        Args:
            data_frame (pandas.DataFrame): Table that you want to be
                appended to the existing data.
            sock (optional): Socket connecting the Python API with the
                getML engine.

        """

        # ------------------------------------------------------

        self.__check_plausibility(data_frame)

        # ------------------------------------------------------
        # Create connection.

        cmd = dict()
        cmd["type_"] = "DataFrame.append"
        cmd["name_"] = self.name

        if sock is None:
            s = comm.send_and_receive_socket(cmd)
        else:
            s = sock
            comm.send_string(s, json.dumps(cmd))

        # ------------------------------------------------------
        # Send individual matrices to getml engine

        self.__send_data(data_frame, s)

        # ------------------------------------------------------

        self.__close(s)
        
        if sock is None:
            s.close()

        return self
Exemplo n.º 9
0
    def __transform(self,
                    peripheral_data_frames,
                    population_data_frame,
                    s,
                    score=False,
                    predict=False,
                    table_name=""):

        # -----------------------------------------------------
        # Prepare the command for the getML engine

        cmd = dict()
        cmd["type_"] = "RelboostModel.transform"
        cmd["name_"] = self.name

        cmd["score_"] = score
        cmd["predict_"] = predict

        cmd["peripheral_names_"] = [df.name for df in peripheral_data_frames]
        cmd["population_name_"] = population_data_frame.name

        cmd["table_name_"] = table_name

        comm.send_string(s, json.dumps(cmd))

        # -----------------------------------------------------
        # Do the actual transformation

        msg = comm.recv_string(s)

        if msg == "Success!":
            if table_name == "":
                yhat = comm.recv_matrix(s)
            else:
                yhat = None
        else:
            raise Exception(msg)

        # -----------------------------------------------------

        return yhat
Exemplo n.º 10
0
    def send(self, numpy_array, s):
        """
        Sends the object to the engine, data taken from a numpy array.

        Args:
            numpy_array (:class:`numpy.ndarray`): Number of columns should match the number of columns of the object itself.
            s: Socket
        """

        # -------------------------------------------
        # Send own JSON command to getml engine

        comm.send_string(s, json.dumps(self.thisptr))

        # -------------------------------------------
        # Send data to getml engine

        if self.thisptr["type_"] == "CategoricalColumn":
            comm.send_categorical_matrix(s, numpy_array)

        elif self.thisptr["type_"] == "Column":
            comm.send_matrix(s, numpy_array)

        # -------------------------------------------
        # Make sure everything went well

        msg = comm.recv_string(s)

        if msg != "Success!":
            raise Exception(msg)

        # -------------------------------------------

        if len(numpy_array.shape) > 1:
            self.colnames = self.colnames or [
                "column_" + str(i + 1) for i in range(numpy_array.shape[1])
            ]
Exemplo n.º 11
0
def __get(self, sock=None):
    """
    Transform column to numpy array

    Args:
        sock: Socket connecting the Python API with the getML
            engine.
    """

    # -------------------------------------------
    # Build command string

    cmd = dict()

    cmd["name_"] = self.thisptr["df_name_"]
    cmd["type_"] = "Column.get"

    cmd["col_"] = self.thisptr

    # -------------------------------------------
    # Establish communication with getml engine

    if sock is None:
        s = comm.send_and_receive_socket(cmd)
    else:
        s = sock
        comm.send_string(s, json.dumps(cmd))

    msg = comm.recv_string(s)

    # -------------------------------------------
    # Make sure everything went well, receive data
    # and close connection

    if msg != "Found!":
        s.close()
        raise Exception(msg)

    mat = comm.recv_matrix(s)

    # -------------------------------------------
    # Close connection.

    if sock is None:
        s.close()

    # -------------------------------------------
    # If this is a time stamp, then transform to
    # pd.Timestamp.

    if self.thisptr["type_"] == "Column":
        if self.thisptr[
                "role_"] == "time_stamp" or "time stamp" in self.thisptr[
                    "unit_"]:
            shape = mat.shape
            mat = [pd.Timestamp(ts_input=ts, unit="D") for ts in mat.ravel()]
            mat = np.asarray(mat)
            mat.reshape(shape[0], shape[1])

    # -------------------------------------------

    return mat.ravel()