Exemplo n.º 1
0
def test_divide():
    X = np.array([[1, 5],
                  [14, 2],
                  [13, 5]])

    Y = np.array([[2, 3],
                  [2, 4],
                  [2, 11]])
    
    pm = np.array([[12,  2],
                   [13,  4],
                   [ 0,  8],
                   [14,  1],
                   [ 0,  2],
                   [ 0,  4],
                   [ 0,  8],
                   [15,  1],
                   [ 0,  2],
                   [ 0,  4],
                   [ 0,  8],
                   [ 0,  1],
                   [ 0,  2],
                   [ 0,  4],
                   [ 0,  8]])
    
    right_div = np.array([[4, 8],
                           [4, 4],
                           [4, 8]])
    
    assert_equal(right_div, gf.divide(X, Y, pm))    
Exemplo n.º 2
0
 def decode(self, W, method='euclid'):
     assert method == 'euclid' or method == 'pgz'
     t = self.R.shape[0] // 2
     n = W.shape[1]
     is_nan = False
     assert n == self.pm.shape[0]
     res = np.zeros_like(W, dtype=object)
     for i in range(W.shape[0]):
         w = W[i]
         s = gf.polyval(w, self.R, self.pm)
         if (s == 0).all():
             res[i] = w
             continue
         if method == 'euclid':
             s = s[::-1]
             z = np.zeros(2 * t + 2, dtype=np.int64)
             z[0] = 1
             s = np.concatenate((s, np.array([1])))
             r, a, lam = gf.euclid(z, s, self.pm, max_deg=t)
         else:
             lam = np.nan
             for errors in range(t, 0, -1):
                 A = [[s[k] for k in range(j, j + errors)]
                      for j in range(errors)]
                 A = np.array(A)
                 b = [s[k] for k in range(errors, errors * 2)]
                 b = np.array(b)
                 lam = gf.linsolve(A, b, self.pm)
                 if lam is not np.nan:
                     break
             if lam is np.nan:
                 res[i] = np.nan
                 is_nan = True
                 continue
             lam = np.concatenate((lam, np.array([1])))
         values = gf.polyval(lam, self.pm[:, 1], self.pm)
         num_roots = 0
         #res[i] = w
         for j in range(values.shape[0]):
             if values[j] == 0:
                 root = self.pm[j, 1]
                 alpha = gf.divide(1, root, self.pm)
                 index = self.pm[alpha - 1, 0]
                 w[n - index - 1] = 1 - w[n - index - 1]
                 num_roots += 1
         if num_roots != lam.shape[0] - 1:
             res[i] = np.nan
             is_nan = True
             continue
         res[i] = w
     if not is_nan:
         res = res.astype(np.int64)
     return res
Exemplo n.º 3
0
    def _decode(self, w, method):
        t = self.R.shape[0] // 2
        syndromes = gf.polyval(w, self.R, self.pm)
        if np.sum(syndromes != 0) == 0:
            return w

        if method == 'pgz':
            lambda_ = np.nan
            for nu in range(t, 0, -1):
                a = np.array([[syndromes[j] for j in range(i, nu + i)]
                              for i in range(nu)],
                             dtype=np.int)
                b = np.array([syndromes[i] for i in range(nu, 2 * nu)],
                             dtype=np.int)
                lambda_ = gf.linsolve(a, b, self.pm)
                if lambda_ is not np.nan:
                    break
            if lambda_ is np.nan:
                return np.full(self.n, np.nan, dtype=np.int)
            lambda_ = np.concatenate([lambda_, [1]])
        elif method == 'euclid':
            z = np.zeros([2 * t + 2], dtype=np.int)
            z[0] = 1
            syndromic_polynom = np.concatenate([syndromes[::-1], [1]])
            _, _, lambda_ = gf.euclid(z, syndromic_polynom, self.pm, max_deg=t)
        else:
            raise ValueError

        n_roots = 0
        locators_values = gf.polyval(lambda_, np.arange(1, self.n + 1),
                                     self.pm)
        for idx in range(1, self.n + 1):
            if not locators_values[idx - 1]:
                position = self.n - self.pm[gf.divide(1, idx, self.pm) - 1,
                                            0] - 1
                w[position] = 1 - w[position]
                n_roots += 1
        if n_roots != lambda_.shape[0] - 1:
            return np.full(self.n, np.nan, dtype=np.int)
        return w
Exemplo n.º 4
0
 def test_divide_all(self):
     pm = gf.gen_pow_matrix(357)
     for elem1 in pm[:, 1]:
         for elem2 in pm[:, 1]:
             a = gf.divide(np.array([[elem1]]), np.array([[elem2]]), pm)
             self.assertEqual(elem1, gf.prod(a, np.array([[elem2]]), pm))
Exemplo n.º 5
0
 def test_divide_inverse(self):
     pm = gf.gen_pow_matrix(88479)
     for elem in pm[:, 1]:
         inverse = gf.divide(np.array([[1]]), np.array([[elem]]), pm)
         self.assertEqual(1, gf.prod(inverse, np.array([[elem]]), pm))
Exemplo n.º 6
0
 def test_divide_itself(self):
     pm = gf.gen_pow_matrix(54193)
     for elem in pm[:, 1]:
         self.assertEqual(
             1, gf.divide(np.array([[elem]]), np.array([[elem]]), pm))
Exemplo n.º 7
0
 def test_divide_zero_2(self):
     pm = gf.gen_pow_matrix(10187)
     for elem in pm[:, 1]:
         self.assertEqual(
             0, gf.divide(np.array([[0]]), np.array([[elem]]), pm))
Exemplo n.º 8
0
 def test_divide_zero(self):
     pm = gf.gen_pow_matrix(104155)
     self.assertRaises(
         BaseException,
         lambda: gf.divide(np.array([[pm[-1, 1]]]), np.array([[0]]), pm))