Exemplo n.º 1
0
def one_node_particle_estimate(
    builder,
    transition_matrix,
    variant_weights,
    start_machine_state,
    node_index,
    num_valid_nodes,
    steps,
    num_rollouts,
    max_possible_transitions,
    rng,
):
    """Approximately solve for absorbing probabilities using multiple rollouts.

  Note that this is not differentiable! Used for tests.

  Args:
    builder: The automaton builder associated with this Markov chain.
    transition_matrix: The per-variant transition matrix for this Markov chain.
    variant_weights: Weights to assign to each routing variant for each node, as
      a <float[num_nodes, num_variants]> array (which should sum to 1 across the
      last axis).
    start_machine_state: Initial machine state distribution for the starting
      nodes, as a <float[num_fsm_states]> array (which should sum to 1).
    node_index: Initial node index where the solve should start, as a int32
      scalar.
    num_valid_nodes: How many valid nodes there are.
    steps: How many steps to unroll.
    num_rollouts: How many rollout particles to simulate.
    max_possible_transitions: Maximum number of possible transitions.
    rng: Random number generator used to sample.,

  Returns:
    Estimated probabilities of absorbing at each node, as a
    <float[num_nodes]> array.
  """
    max_num_nodes = variant_weights.shape[0]

    # Run each of the rollouts.
    all_states = jax_util.vmap_with_kwargs(roll_out_transitions, rng_axis=0)(
        builder=builder,
        transition_matrix=transition_matrix,
        variant_weights=variant_weights,
        start_machine_state=start_machine_state,
        node_index=node_index,
        steps=steps,
        rng=jax.random.split(rng, num_rollouts),
        max_possible_transitions=max_possible_transitions)

    # Add up successes.
    success_counts = (jnp.zeros([max_num_nodes],
                                jnp.int32).at[all_states.final_node].add(
                                    all_states.succeeded.astype(jnp.int32)))

    # Use this to estimate probability
    approx_out_distn = success_counts / num_rollouts
    approx_out_distn = jnp.where(
        jnp.arange(max_num_nodes) < num_valid_nodes, approx_out_distn, 0)

    return approx_out_distn
Exemplo n.º 2
0
 def unshared_routing_initializer(rng_key, unused_shape):
     key_per_edge = jax.random.split(rng_key, num_out_edges)
     return jax_util.vmap_with_kwargs(
         builder.initialize_routing_gates,
         key_axis=0)(key=key_per_edge,
                     num_fsm_states=num_fsm_states,
                     num_variants=num_variants,
                     logistic_noise=gate_noise)
def all_nodes_particle_estimate(
    builder,
    transition_matrix,
    variant_weights,
    start_machine_states,
    num_valid_nodes,
    steps,
    num_rollouts,
    max_possible_transitions,
    rng,
):
  """Particle-based estimate of absorbing probabilities.

  Not differentiable!

  Args:
    builder: The automaton builder associated with this Markov chain.
    transition_matrix: The per-variant transition matrix for this Markov chain.
    variant_weights: Weights to assign to each routing variant for each node, as
      a <float[num_nodes, num_nodes, num_variants]> array (which should sum to 1
      across the last axis).
    start_machine_states: Initial machine state distribution for the starting
      nodes, as a <float[num_nodes, num_fsm_states]> array (which should sum to
      1 across the last axis).
    num_valid_nodes: How many valid nodes there are.
    steps: How many steps of the automaton to simulate.
    num_rollouts: How many rollout particles to simulate.
    max_possible_transitions: Maximum number of possible transitions.
    rng: Random number generator for rollouts.

  Returns:
    Estimated probabilities of absorbing at each node, as a
    <float[num_nodes, num_nodes]> array.
  """
  num_nodes = start_machine_states.shape[0]

  # Map our rollout across nodes.
  all_nodes_roll_out_fn = jax_util.vmap_with_kwargs(
      one_node_particle_estimate,
      variant_weights_axis=0,
      start_machine_state_axis=0,
      node_index_axis=0,
      rng_axis=0)

  return all_nodes_roll_out_fn(
      builder=builder,
      transition_matrix=transition_matrix,
      variant_weights=variant_weights,
      start_machine_state=start_machine_states,
      node_index=jnp.arange(num_nodes),
      num_valid_nodes=num_valid_nodes,
      steps=steps,
      num_rollouts=num_rollouts,
      max_possible_transitions=max_possible_transitions,
      rng=jax.random.split(rng, num_nodes))
 def unshared_routing_initializer(rng_key, unused_shape):
   key_per_edge = jax.random.split(rng_key, num_out_edges)
   routing_probs = jax_util.vmap_with_kwargs(
       builder.initialize_routing_params, key_axis=0)(
           key=key_per_edge,
           num_fsm_states=num_fsm_states,
           num_variants=num_variants,
           noise_factor=initialization_noise_factor)
   if legacy_initialize:
     return routing_probs
   return jax.tree_map(lambda x: jnp.log(x + initialize_smoothing),
                       routing_probs)
    def test_vmap_with_kwargs(self):
        def foo(x, y, z, w):
            return jnp.sum(x + y[0] + z["bar"] + w)

        foo_vmapped = jax_util.vmap_with_kwargs(foo,
                                                positional_axes=(0, ),
                                                y_axis=1,
                                                z_axes={"bar": 2})
        result = foo_vmapped(jnp.full((5, 2, 2), 1.),
                             y=[jnp.full((2, 5, 2), 2.)],
                             z={"bar": jnp.full((2, 2, 5), 3.)},
                             w=jnp.full((2, 2), 4.))
        np.testing.assert_allclose(result, np.full((5, ), 40.))
Exemplo n.º 6
0
    def apply(
        self,
        encoded_graph,
        dynamic_metadata,
        static_metadata,
        builder,
        num_out_edges=1,
        num_intermediate_states=0,
        variant_weights=None,
        steps=None,
        share_states_across_edges=True,
        backtrack_fails_prob=0.001,
        initialization_noise_factor=0.01,
        legacy_initialize=True,
        initialize_smoothing=0.001,
        use_gate_parameterization=False,
        gate_noise=0.2,
        logit_scaling="learned",
        dynamic_scaling_absolute_shift=1.0,
        dynamic_scaling_relative_shift=1.0,
        estimator_type="solver",
        sampling_max_possible_transitions=None,
    ):
        """Apply the graph finite-state automaton layer.

    Args:
      encoded_graph: Graph structure to run the automaton on.
      dynamic_metadata: Metadata about the actual unpadded graph. Unused.
      static_metadata: Statically-known metadata about the graph size. If
        encoded_graph is padded, this should reflect the padded size, not the
        original size.
      builder: Builder object that encoded the graph. Determines the shape of
        the automaton parameters.
      num_out_edges: How many distinct "edge types" to produce. Each of these
        corresponds to a different automaton start state.
      num_intermediate_states: How many intermediate states to include. These
        states are only used inside the automaton, and don't get exposed as
        start states for an edge type. If share_states_across_edges is True, all
        of the edge types will share the same set of intermediate states. If
        share_states_across_edges is False, each edge type will have its OWN set
        of `num_intermediate_states` states.
      variant_weights: Optional <float32[num_nodes, num_nodes, num_variants]> or
        <float32[num_nodes, num_nodes, num_out_edges, num_variants]> array that
        has nonnegative elements that sum to 1 along the last axis. If provided,
        variant_weights[i, j, (e,) v] specifies how much policy variant v should
        be used (for edge type e) when starting from node i and arriving at
        intermediate node j. Variants correspond to the start-node-conditioned
        observations described in Appendix C.2.
      steps: How many steps to use when solving the automaton. If not provided,
        uses the number of nodes in the graph. Smaller numbers of steps may make
        it impossible to reach certain nodes in the graph; larger numbers may
        allow additional backtracking and state changes at the expense of
        additional compute time.
      share_states_across_edges: Whether the different edge types share the same
        set of states. If True, any state can transition to any other state
        (even to a different start state). If False, every edge type gets a
        separate set of `1 + num_intermediate_states` that are not shared; in
        other words, every output edge uses a distinct finite state machine.
      backtrack_fails_prob: Backtracking decay factor; determines how often the
        automaton halts when it tries to take the BACKTRACK action. If the
        automaton attempts to backtrack with close to 100% probability, this
        ensures numerical stability and counteracts noise.
      initialization_noise_factor: How much noise to use when initializing the
        automaton policy (see AutomatonBuilder.initialize_routing_params)
      legacy_initialize: Whether to use legacy initialization, which sets the
        log-space softmax weights as Dirichlet random samples (instead of
        setting the softmax output distribution as Dirichlet random samples).
        Defaults to True so that we can reload old configs; new runs should use
        False.
      initialize_smoothing: Controls how much we smooth the initial parameters
        toward a uniform distribution. For small values, this is effectively a
        lower bound of the probability we take each action. If zero, we can
        sample arbitrarily small starting probabilities from the Dirichlet
        distribution. (Specifically, we adjust the sampled probabilities as
        `p_init(x) = (p_sampled(x) + c)/(1 + n*c)` where `n` is the number of
        possible actions and `c = initialize_smoothing`.
      use_gate_parameterization: Whether to use gate parameterization instead of
        default parameterization. If so, the other initialization args are
        ignored.
      gate_noise: Logistic noise for gate parameterization.
      logit_scaling: One of "none", "learned", "dynamic"
      dynamic_scaling_absolute_shift: For dynamic scaling, how much extra to
        shift logits, in an absolute sense, after shifting for mean magnitude.
      dynamic_scaling_relative_shift: For dynamic scaling, how much extra to
        shift logits, relative to standard deviation of magnitude, after
        shifting for mean magnitude
      estimator_type: One of "solver", "one_sample".
      sampling_max_possible_transitions: Number of possible outgoing transitions
        for any given start node. Used to accelerate the sampling process when
        estimator is "one_sample".

    Returns:
      <float32[num_out_edges, num_nodes, num_nodes]> weighted adjacency
      matrix for `num_out_edges` new edge types.
    """
        del dynamic_metadata
        num_nodes = static_metadata.num_nodes
        steps = steps if steps is not None else num_nodes
        assert logit_scaling in ("none", "learned", "dynamic")

        if variant_weights is None:
            num_variants = 1
            variant_out_edge_axis = None
            variant_weights = jnp.ones((num_nodes, num_nodes, num_variants))
        elif variant_weights.ndim == 3:
            num_variants = variant_weights.shape[-1]
            variant_out_edge_axis = None
            if variant_weights.shape != (num_nodes, num_nodes, num_variants):
                raise ValueError(
                    f"variant_weights shape {variant_weights.shape} doesn't match "
                    f"expected shape ({num_nodes}, {num_nodes}, <anything>)")
        elif variant_weights.ndim == 4:
            num_variants = variant_weights.shape[-1]
            variant_out_edge_axis = 2
            if variant_weights.shape != (num_nodes, num_nodes, num_out_edges,
                                         num_variants):
                raise ValueError(
                    f"variant_weights shape {variant_weights.shape} doesn't match "
                    "expected shape"
                    f"({num_nodes}, {num_nodes}, {num_out_edges}, <anything>)")
        else:
            raise ValueError(
                f"Invalid variant_weights shape {variant_weights.shape};"
                " expected 3 or 4 axes")

        if share_states_across_edges:
            num_fsm_states = num_out_edges + num_intermediate_states

            # Initialize or retrieve the automaton parameters; these parameters are
            # shared across all edge types.
            if use_gate_parameterization:

                def shared_routing_initializer(rng_key, unused_shape):
                    return builder.initialize_routing_gates(
                        key=rng_key,
                        num_fsm_states=num_fsm_states,
                        num_variants=num_variants,
                        logistic_noise=gate_noise)

                routing_gates = self.param(
                    "routing_gate_logits_shared",
                    shape=None,
                    initializer=shared_routing_initializer)
                routing_gates = side_outputs.encourage_discrete_logits(
                    routing_gates,
                    distribution_type="binary",
                    name="routing_gate_logits_shared")
                routing_params = builder.routing_gates_to_probs(routing_gates)

            else:

                def shared_routing_initializer(rng_key, unused_shape):
                    routing_probs = builder.initialize_routing_params(
                        key=rng_key,
                        num_fsm_states=num_fsm_states,
                        num_variants=num_variants,
                        noise_factor=initialization_noise_factor)
                    if legacy_initialize:
                        return routing_probs
                    return jax.tree_map(
                        lambda x: jnp.log(x + initialize_smoothing),
                        routing_probs)

                log_routing_params = self.param(
                    "log_routing_params_shared",
                    shape=None,
                    initializer=shared_routing_initializer)
                routing_params = builder.routing_softmax(log_routing_params)

            # Don't precompute constants if we are tracing an XLA computation; wait
            # until we know a value for our parameters by adding a fake data
            # dependence.
            trigger = jax.tree_leaves(routing_params)[0]
            variant_weights = jax.lax.tie_in(trigger, variant_weights)

            # Build the automaton on the provided graph.
            transition_matrix = builder.build_transition_matrix(
                routing_params, encoded_graph, static_metadata)

            # Each edge type is a start state.
            if num_intermediate_states > 0:
                start_machine_states = jnp.concatenate([
                    jax.lax.tie_in(trigger, jnp.eye(num_out_edges)),
                    jax.lax.tie_in(
                        trigger,
                        jnp.zeros((num_out_edges, num_intermediate_states)))
                ], 1)
            else:
                start_machine_states = jax.lax.tie_in(trigger,
                                                      jnp.eye(num_out_edges))

            start_machine_states = jnp.broadcast_to(
                start_machine_states,
                (num_nodes, num_out_edges, num_fsm_states))

            # Solve for absorbing distribution for each of the starting states by
            # vmapping across the dimensions that depend on the start state.
            if estimator_type == "solver":
                absorbing_solution = jax_util.vmap_with_kwargs(
                    automaton_builder.all_nodes_absorbing_solve,
                    variant_weights_axis=variant_out_edge_axis,
                    start_machine_states_axis=1)(
                        builder=builder,
                        transition_matrix=transition_matrix,
                        variant_weights=variant_weights,
                        start_machine_states=start_machine_states,
                        steps=steps,
                        backtrack_fails_prob=backtrack_fails_prob)
            elif estimator_type == "one_sample":
                assert sampling_max_possible_transitions is not None
                rollout_each_node_fn = jax_util.vmap_with_kwargs(
                    automaton_sampling.roll_out_transitions,
                    variant_weights_axis=0,
                    start_machine_state_axis=0,
                    node_index_axis=0,
                    rng_axis=0)
                rollout_each_edgetype_fn = jax_util.vmap_with_kwargs(
                    rollout_each_node_fn,
                    variant_weights_axis=variant_out_edge_axis,
                    start_machine_state_axis=1,
                    rng_axis=0)
                all_states = rollout_each_edgetype_fn(
                    builder=builder,
                    transition_matrix=transition_matrix,
                    variant_weights=variant_weights,
                    start_machine_state=start_machine_states,
                    node_index=jnp.arange(num_nodes),
                    steps=steps,
                    max_possible_transitions=sampling_max_possible_transitions,
                    rng=jax.random.split(flax.nn.make_rng(),
                                         num_out_edges * num_nodes).reshape(
                                             [num_out_edges, num_nodes, -1]))

                def set_absorbing(final_node, succeeded):
                    return jnp.zeros([num_nodes]).at[final_node].set(succeeded)

                # absorbing_solution is [num_out_edges, num_nodes, num_nodes]
                absorbing_solution = jax.vmap(jax.vmap(set_absorbing))(
                    all_states.final_node, all_states.succeeded)

                side_outputs.SideOutput(
                    all_states.log_prob,
                    name="one_sample_log_prob_per_edge_per_node")

                # Somewhat of a hack: associate the log prob with its own learned
                # baseline as a side output, so it can be trained alongside the rest
                # of the model, but don't do anything with it until the loss function.
                one_sample_reward_baseline = self.param(
                    "one_sample_reward_baseline",
                    shape=(),
                    initializer=jax.nn.initializers.zeros)
                side_outputs.SideOutput(one_sample_reward_baseline,
                                        name="one_sample_reward_baseline")
            else:
                raise ValueError(f"Invalid estimator {estimator_type}")

            # Rescale the logits.
            logits = model_util.safe_logit(absorbing_solution)
            if logit_scaling == "learned":
                # Learned scaling and shifting.
                logits = model_util.ScaleAndShift(logits)
            elif logit_scaling == "dynamic":
                # Dynamic scaling only implemented with gates.
                assert use_gate_parameterization
                # First, quantify how discrete the gates are. Conceptually, we want
                # to quantify how far away from zero the logits are, in a differentiable
                # way. To make it smooth, use logsumexp:
                relevant_gates = [
                    routing_gates.move_gates, routing_gates.accept_gates
                ]
                soft_abs_logits = [
                    jnp.logaddexp(g, -g) for g in relevant_gates
                ]
                # Take a mean and standard deviation over these logits to summarize.
                logit_mean = (sum(jnp.sum(x) for x in soft_abs_logits) /
                              sum(x.size for x in soft_abs_logits))
                logit_var = (sum(
                    jnp.sum(jnp.square(x - logit_mean))
                    for x in soft_abs_logits) / sum(x.size
                                                    for x in soft_abs_logits))
                logit_std = jnp.sqrt(logit_var)
                side_outputs.SideOutput(logit_mean, name="gate_logit_abs_mean")
                side_outputs.SideOutput(logit_std, name="gate_logit_abs_std")
                # Now, use these to choose an adjustment factor. Intuitively, the "off"
                # gates should be centered around (-logit_mean). So anything that
                # gets sufficiently more mass than that should be "on". We consider
                # two notions of "sufficiently": either relative to the variance in
                # logits, or absolute.
                shift_threshold = (-logit_mean +
                                   dynamic_scaling_absolute_shift +
                                   dynamic_scaling_relative_shift * logit_std)
                side_outputs.SideOutput(shift_threshold,
                                        name="shift_threshold")
                # Adjust so that values at the shift threshold are mapped to edges of
                # weight 0.5
                logits = logits - shift_threshold

        else:
            num_fsm_states = 1 + num_intermediate_states

            if estimator_type != "solver":
                raise NotImplementedError(
                    "Sampling estimators not implemented for unshared states.")

            # Different automaton parameters for each start state
            if use_gate_parameterization:

                def unshared_routing_initializer(rng_key, unused_shape):
                    key_per_edge = jax.random.split(rng_key, num_out_edges)
                    return jax_util.vmap_with_kwargs(
                        builder.initialize_routing_gates,
                        key_axis=0)(key=key_per_edge,
                                    num_fsm_states=num_fsm_states,
                                    num_variants=num_variants,
                                    logistic_noise=gate_noise)

                routing_gates = self.param(
                    "routing_gate_logits_unshared",
                    shape=None,
                    initializer=unshared_routing_initializer)
                routing_gates = side_outputs.encourage_discrete_logits(
                    routing_gates,
                    distribution_type="binary",
                    name="routing_gate_logits_unshared")
                stacked_routing_params = jax.vmap(
                    builder.routing_gates_to_probs)(routing_gates)

            else:

                def unshared_routing_initializer(rng_key, unused_shape):
                    key_per_edge = jax.random.split(rng_key, num_out_edges)
                    routing_probs = jax_util.vmap_with_kwargs(
                        builder.initialize_routing_params,
                        key_axis=0)(key=key_per_edge,
                                    num_fsm_states=num_fsm_states,
                                    num_variants=num_variants,
                                    noise_factor=initialization_noise_factor)
                    if legacy_initialize:
                        return routing_probs
                    return jax.tree_map(
                        lambda x: jnp.log(x + initialize_smoothing),
                        routing_probs)

                log_routing_params = self.param(
                    "log_routing_params_unshared",
                    shape=None,
                    initializer=unshared_routing_initializer)
                stacked_routing_params = jax.vmap(
                    builder.routing_softmax)(log_routing_params)

            def solve_one(one_edge_routing_params, one_edge_variant_weights):
                """Run one of the edge-specific automata."""
                # Build the automaton on the provided graph.
                transition_matrix = builder.build_transition_matrix(
                    one_edge_routing_params, encoded_graph, static_metadata)

                # Start state is always state 0.
                start_machine_states = jnp.broadcast_to(
                    (jnp.arange(num_fsm_states) == 0)[None, :],
                    (num_nodes, num_fsm_states))

                return automaton_builder.all_nodes_absorbing_solve(
                    builder=builder,
                    transition_matrix=transition_matrix,
                    variant_weights=one_edge_variant_weights,
                    start_machine_states=start_machine_states,
                    steps=steps,
                    backtrack_fails_prob=backtrack_fails_prob)

            absorbing_solution = jax.vmap(
                solve_one,
                in_axes=(0, variant_out_edge_axis),
            )(stacked_routing_params, variant_weights)

            # Rescale the logits.
            logits = model_util.safe_logit(absorbing_solution)
            if logit_scaling == "learned":
                # Learned scaling and shifting.
                logits = model_util.ScaleAndShift(logits)
            elif logit_scaling == "dynamic":
                raise NotImplementedError(
                    "Dynamic scaling not implemented for unshared")

        logits = side_outputs.encourage_discrete_logits(
            logits, distribution_type="binary", name="edge_logits")
        result = jax.nn.sigmoid(logits)
        return result