Exemplo n.º 1
0
def test_import_box():
    s = Simulator(mode='headless')
    scene = StadiumScene()
    s.import_scene(scene)
    print(s.objects)
    # wall = [pos, dim]
    wall = [[[0, 7, 1.01], [10, 0.2, 1]], [[0, -7, 1.01], [6.89, 0.1, 1]],
            [[7, -1.5, 1.01], [0.1, 5.5, 1]], [[-7, -1, 1.01], [0.1, 6, 1]],
            [[-8.55, 5, 1.01], [1.44, 0.1, 1]], [[8.55, 4, 1.01], [1.44, 0.1, 1]]]

    obstacles = [[[-0.5, 2, 1.01], [3.5, 0.1, 1]], [[4.5, -1, 1.01], [1.5, 0.1, 1]],
                 [[-4, -2, 1.01], [0.1, 2, 1]], [[2.5, -4, 1.01], [1.5, 0.1, 1]]]

    for i in range(len(wall)):
        curr = wall[i]
        obj = BoxShape(curr[0], curr[1])
        s.import_object(obj)

    for i in range(len(obstacles)):
        curr = obstacles[i]
        obj = BoxShape(curr[0], curr[1])
        s.import_object(obj)

    config = parse_config(os.path.join(gibson2.root_path, '../test/test.yaml'))
    turtlebot1 = Turtlebot(config)
    turtlebot2 = Turtlebot(config)
    s.import_robot(turtlebot1)
    s.import_robot(turtlebot2)
    turtlebot1.set_position([6., -6., 0.])
    turtlebot2.set_position([-3., 4., 0.])

    for i in range(100):
        s.step()
    s.disconnect()
Exemplo n.º 2
0
def test_turtlebot_position():
    s = Simulator(mode='headless')
    scene = StadiumScene()
    s.import_scene(scene)
    turtlebot = Turtlebot(config)
    s.import_robot(turtlebot)

    turtlebot.set_position([0, 0, 5])

    nbody = p.getNumBodies()
    pos = turtlebot.get_position()
    s.disconnect()
    assert nbody == 5
    assert np.allclose(pos, np.array([0, 0, 5]))
Exemplo n.º 3
0
def test_import_building_viewing():
    s = Simulator(mode='headless')
    scene = BuildingScene('Ohoopee')
    s.import_scene(scene)
    assert s.objects == list(range(2))

    turtlebot1 = Turtlebot(config)
    turtlebot2 = Turtlebot(config)
    turtlebot3 = Turtlebot(config)

    s.import_robot(turtlebot1)
    s.import_robot(turtlebot2)
    s.import_robot(turtlebot3)

    turtlebot1.set_position([0.5, 0, 0.5])
    turtlebot2.set_position([0, 0, 0.5])
    turtlebot3.set_position([-0.5, 0, 0.5])

    for i in range(10):
        s.step()
        #turtlebot1.apply_action(np.random.randint(4))
        #turtlebot2.apply_action(np.random.randint(4))
        #turtlebot3.apply_action(np.random.randint(4))

    s.disconnect()
Exemplo n.º 4
0
def show_action_sensor_space():
    s = Simulator(mode='headless')
    scene = StadiumScene()
    s.import_scene(scene)

    turtlebot = Turtlebot(config)
    s.import_robot(turtlebot)
    turtlebot.set_position([0, 1, 0.5])

    ant = Ant(config)
    s.import_robot(ant)
    ant.set_position([0, 2, 0.5])

    h = Humanoid(config)
    s.import_robot(h)
    h.set_position([0, 3, 2])

    jr = JR2(config)
    s.import_robot(jr)
    jr.set_position([0, 4, 0.5])

    jr2 = JR2_Kinova(config)
    s.import_robot(jr2)
    jr2.set_position([0, 5, 0.5])

    husky = Husky(config)
    s.import_robot(husky)
    husky.set_position([0, 6, 0.5])

    quad = Quadrotor(config)
    s.import_robot(quad)
    quad.set_position([0, 7, 0.5])

    for robot in s.robots:
        print(type(robot), len(robot.ordered_joints), robot.calc_state().shape)

    for i in range(100):
        s.step()

    s.disconnect()
Exemplo n.º 5
0
def test_multiagent():
    s = Simulator(mode='headless')
    scene = StadiumScene()
    s.import_scene(scene)
    turtlebot1 = Turtlebot(config)
    turtlebot2 = Turtlebot(config)
    turtlebot3 = Turtlebot(config)

    s.import_robot(turtlebot1)
    s.import_robot(turtlebot2)
    s.import_robot(turtlebot3)

    turtlebot1.set_position([1, 0, 0.5])
    turtlebot2.set_position([0, 0, 0.5])
    turtlebot3.set_position([-1, 0, 0.5])

    nbody = p.getNumBodies()
    for i in range(100):
        #turtlebot1.apply_action(1)
        #turtlebot2.apply_action(1)
        #turtlebot3.apply_action(1)
        s.step()

    s.disconnect()
    assert nbody == 7
Exemplo n.º 6
0
def rollout(traj, headless=False):
    SCENE, traj_id, instr_id, instr, starting_coords = traj
    # instr = "Keep going and don't stop"
    # starting_coords = [0, 0, 0]

    seq = tok.encode_sentence(instr)
    tokens = tok.split_sentence(instr)

    seq_lengths = [np.argmax(seq == padding_idx, axis=0)]
    seq = torch.from_numpy(np.expand_dims(seq, 0)).cuda()
    # seq_lengths[seq_lengths == 0] = seq.shape[1]  # Full length

    ctx, h_t, c_t, ctx_mask = encoder(seq, seq_lengths)
    question = h_t

    pre_feat = torch.zeros(batch_size, opts.img_feat_input_dim).cuda()
    pre_ctx_attend = torch.zeros(batch_size, opts.rnn_hidden_size).cuda()

    # Gibson stuff

    # 72 fov for 600, 60 for 480
    # mode = gui for debug, headless for run
    s = Simulator(mode='gui', resolution=640, fov=75, panorama=True)
    scene = BuildingScene(SCENE)
    # scene = StadiumScene()
    ids = s.import_scene(scene)
    robot = Turtlebot(config)
    ped_id = s.import_robot(robot)
    heading_feat_tensor = torch.Tensor(heading_elevation_feat()).view([im_per_ob, 128]).cuda()

    s.step()
    robot.set_position(starting_coords)

    def apply_action(bot: robot, action_idx: int, depth_ok: list, headless=False) -> bool:
        print(action_idx)
        # action_idx is expected to be 0-13, TODO: make nicer...
        if action_idx == 0 or action_idx > 12 or not depth_ok[action_idx - 1]:
            print("STOP")
            return True
        action_idx -= 1
        #if action_idx < 3 or (action_idx < 12 and action_idx > 9):
        bot.turn_right(0.5235988 * action_idx)
        s.step()
        if(not headless):
            time.sleep(0.2)
        bot.move_forward(0.5)
        return False
        # else:
        #     if action_idx < 7:
        #         bot.turn_left(1.57)
        #     else:
        #         bot.turn_right(1.57)

    bot_is_running = True

    while bot_is_running:
        s.step()
        gib_out = s.renderer.render_robot_cameras(modes=('rgb', '3d'))

        rgb = gib_out[::2]
        depth = np.array(gib_out[1::2])

        processed_rgb = list(map(transform_img, rgb))
        batch_obs = np.concatenate(processed_rgb)
        imgnet_input = torch.Tensor(batch_obs).cuda()
        imgnet_output = torch.zeros([im_per_ob, 2048]).cuda()

        # depth processing and filtering
        # depth: [36, ]
        depth *= depth
        depth = depth[:, :, :, :3].sum(axis=3)
        depth = np.sqrt(depth)
        # filter out 0 distances that are presumably from infinity dist
        depth[depth < 0.0001] = 10

        # TODO: generalize to non-horizontal moves
        depth_ok = depth[12:24, 200:440, 160:480].min(axis=2).min(axis=1)
        fig=plt.figure(figsize=(8, 2))
        for n, i in enumerate([0, 3, 6, 9]):
            fig.add_subplot(1, 4, n + 1)
            plt.imshow(depth[12 + i])
        plt.show()
        # depth_ok *= depth_ok > 1
        print(depth_ok)
        depth_ok = depth_ok > 0.8

        print(depth_ok)

        # Each observation has 36 inputs
        # We pass rgb images through frozen embedder
        for i in range(im_per_ob // B_S):
            def hook_fn(m, last_input, o):
                imgnet_output[i*B_S:(i+1)*B_S, :] = \
                    o.detach().squeeze(2).squeeze(2)
            imgnet_input[B_S * i : B_S * (i + 1)]
            # imgnet_output[B_S * i : B_S * (i + 1)] = resnet(minibatch).detach()
        imgnet_output = torch.cat([imgnet_output, heading_feat_tensor], 1)

        pano_img_feat = imgnet_output.view([1, im_per_ob, 2176])
        navigable_feat = torch.zeros([1, 16, 2176]).cuda()
        navigable_feat[0, 1:13] = imgnet_output[12:24] * torch.Tensor(depth_ok).cuda().view(12, 1)

        # TODO: make nicer as stated above
        navigable_index = [list(map(int, depth_ok))]
        print(navigable_index)

        # NB: depth_ok replaces navigable_index
        h_t, c_t, pre_ctx_attend, img_attn, ctx_attn, logit, value, navigable_mask = model(
            pano_img_feat, navigable_feat, pre_feat, question, h_t, c_t, ctx,
            pre_ctx_attend, navigable_index, ctx_mask)

        print("ATTN")
        print(ctx_attn[0])
        print(img_attn[0])
        plt.bar(range(len(tokens)), ctx_attn.detach().cpu()[0][:len(tokens)])
        plt.xticks(range(len(tokens)), tokens)
        plt.show()
        plt.bar(range(16), img_attn.detach().cpu()[0])
        plt.show()

        print("NMASK")
        print(navigable_mask)
        logit.data.masked_fill_((navigable_mask == 0).data, -float('inf'))
        m = torch.Tensor([[False] + list(map(lambda b: not b, navigable_index[0])) + [False, False, False]], dtype=bool).cuda()
        logit.data.masked_fill_(m, -float('inf'))
        action = _select_action(logit, [False])
        ended = apply_action(robot, action[0], depth_ok)
        bot_is_running = not ended or not headless

        if not headless:
            time.sleep(.3)