class Kratos_Execute_Test:
    def __init__(self, ProjectParameters):

        self.ProjectParameters = ProjectParameters

        self.echo_level = self.ProjectParameters["problem_data"][
            "echo_level"].GetInt()
        self.parallel_type = self.ProjectParameters["problem_data"][
            "parallel_type"].GetString()

        ## Import parallel modules if needed
        if (self.parallel_type == "MPI"):
            import KratosMultiphysics.mpi as mpi
            import KratosMultiphysics.MetisApplication as MetisApplication
            import KratosMultiphysics.TrilinosApplication as TrilinosApplication

        self.main_model_part = KratosMultiphysics.ModelPart(
            self.ProjectParameters["problem_data"]
            ["model_part_name"].GetString())
        self.main_model_part.ProcessInfo.SetValue(
            KratosMultiphysics.DOMAIN_SIZE,
            self.ProjectParameters["problem_data"]["domain_size"].GetInt())

        self.Model = {
            self.ProjectParameters["problem_data"]["model_part_name"].GetString(
            ):
            self.main_model_part
        }

        # Construct the solver (main setting methods are located in the solver_module)
        import python_solvers_wrapper_contact_structural
        self.solver = python_solvers_wrapper_contact_structural.CreateSolver(
            self.main_model_part, ProjectParameters)

        # Add variables (always before importing the model part) (it must be integrated in the ImportModelPart)
        # If we integrate it in the model part we cannot use combined solvers
        self.solver.AddVariables()

        # Read model_part (note: the buffer_size is set here) (restart can be read here)
        self.solver.ImportModelPart()

        # Add dofs (always after importing the model part) (it must be integrated in the ImportModelPart)
        # If we integrate it in the model part we cannot use combined solvers
        self.solver.AddDofs()

        # Build sub_model_parts or submeshes (rearrange parts for the application of custom processes)
        # #Get the list of the submodel part in the object Model
        for i in range(self.ProjectParameters["solver_settings"]
                       ["processes_sub_model_part_list"].size()):
            part_name = self.ProjectParameters["solver_settings"][
                "processes_sub_model_part_list"][i].GetString()
            self.Model.update(
                {part_name: self.main_model_part.GetSubModelPart(part_name)})

        # Obtain the list of the processes to be applied
        self.list_of_processes = process_factory.KratosProcessFactory(
            self.Model).ConstructListOfProcesses(
                self.ProjectParameters["constraints_process_list"])
        self.list_of_processes += process_factory.KratosProcessFactory(
            self.Model).ConstructListOfProcesses(
                self.ProjectParameters["loads_process_list"])
        if (ProjectParameters.Has("list_other_processes") == True):
            self.list_of_processes += process_factory.KratosProcessFactory(
                self.Model).ConstructListOfProcesses(
                    self.ProjectParameters["list_other_processes"])
        if (ProjectParameters.Has("json_check_process") == True):
            self.list_of_processes += process_factory.KratosProcessFactory(
                self.Model).ConstructListOfProcesses(
                    self.ProjectParameters["json_check_process"])
        if (ProjectParameters.Has("json_output_process") == True):
            self.list_of_processes += process_factory.KratosProcessFactory(
                self.Model).ConstructListOfProcesses(
                    self.ProjectParameters["json_output_process"])
        if (
                ProjectParameters.Has("contact_process_list") == True
        ):  # NOTE: Always add the contact processes the last one (to avoid problems imposing displacements)
            self.list_of_processes += process_factory.KratosProcessFactory(
                self.Model).ConstructListOfProcesses(
                    self.ProjectParameters["contact_process_list"])

        for process in self.list_of_processes:
            process.ExecuteInitialize()

        # ### START SOLUTION ####

        self.computing_model_part = self.solver.GetComputingModelPart()
        self.solver.AddProcessesList(self.list_of_processes)

        # ### Output settings start ####
        self.problem_path = os.getcwd()
        self.problem_name = self.ProjectParameters["problem_data"][
            "problem_name"].GetString()

        # ### Output settings start ####
        self.output_post = ProjectParameters.Has("output_configuration")
        if (self.output_post == True):
            if (self.parallel_type == "OpenMP"):
                from gid_output_process import GiDOutputProcess
                output_settings = ProjectParameters["output_configuration"]
                self.gid_output = GiDOutputProcess(self.computing_model_part,
                                                   self.problem_name,
                                                   output_settings)
            elif (self.parallel_type == "MPI"):
                from gid_output_process_mpi import GiDOutputProcessMPI
                output_settings = ProjectParameters["output_configuration"]
                self.gid_output = GiDOutputProcessMPI(
                    self.computing_model_part, self.problem_name,
                    output_settings)
            self.gid_output.ExecuteInitialize()

        # Sets strategies, builders, linear solvers, schemes and solving info, and fills the buffer
        self.solver.Initialize()
        self.solver.SetEchoLevel(0)  # Avoid to print anything

        if (self.output_post == True):
            self.gid_output.ExecuteBeforeSolutionLoop()

    def Solve(self):
        for process in self.list_of_processes:
            process.ExecuteBeforeSolutionLoop()

        # #Stepping and time settings (get from process info or solving info)
        # Delta time
        delta_time = self.ProjectParameters["problem_data"][
            "time_step"].GetDouble()
        # Start step
        self.main_model_part.ProcessInfo[KratosMultiphysics.TIME_STEPS] = 0
        # Start time
        time = self.ProjectParameters["problem_data"]["start_time"].GetDouble()
        # End time
        end_time = self.ProjectParameters["problem_data"][
            "end_time"].GetDouble()

        # Solving the problem (time integration)
        while (time <= end_time):
            time = time + delta_time
            self.main_model_part.ProcessInfo[
                KratosMultiphysics.TIME_STEPS] += 1
            self.main_model_part.CloneTimeStep(time)

            for process in self.list_of_processes:
                process.ExecuteInitializeSolutionStep()

            if (self.output_post == True):
                self.gid_output.ExecuteInitializeSolutionStep()

            self.solver.Clear()
            self.solver.Solve()

            if (self.output_post == True):
                self.gid_output.ExecuteFinalizeSolutionStep()

            for process in self.list_of_processes:
                process.ExecuteFinalizeSolutionStep()

            for process in self.list_of_processes:
                process.ExecuteBeforeOutputStep()

            if (self.output_post == True):
                if self.gid_output.IsOutputStep():
                    self.gid_output.PrintOutput()

            for process in self.list_of_processes:
                process.ExecuteAfterOutputStep()

        if (self.output_post == True):
            self.gid_output.ExecuteFinalize()

        for process in self.list_of_processes:
            process.ExecuteFinalize()
Exemplo n.º 2
0
        process.ExecuteFinalizeSolutionStep()

    # processes to be executed before witting the output
    for process in list_of_processes:
        process.ExecuteBeforeOutputStep()

    # write output results GiD: (frequency writing is controlled internally)
    if (gid_output.IsOutputStep()):
        gid_output.PrintOutput()

    # processes to be executed after witting the output
    for process in list_of_processes:
        process.ExecuteAfterOutputStep()

# Ending the problem (time integration finished)
gid_output.ExecuteFinalize()

for process in list_of_processes:
    process.ExecuteFinalize()

print("::[KSM Simulation]:: Analysis -END- ")
print(" ")

# Check solving information for any problem
#~ solver.InfoCheck() # InfoCheck not implemented yet.

#### END SOLUTION ####

# Measure process time
tfp = timer.clock()
# Measure wall time
Exemplo n.º 3
0
class ApplyEmbeddedSkinVisualizationProcess(KratosMultiphysics.Process):
    def __init__(self, Model, settings):

        KratosMultiphysics.Process.__init__(self)

        default_parameters = KratosMultiphysics.Parameters("""
        {
            "parallel_type"                       : "OpenMP",
            "model_part_name"                     : "origin_model_part",
            "visualization_model_part_name"       : "origin_model_part_visualization",
            "shape_functions"                     : "standard",
            "reform_model_part_at_each_time_step" : false,
            "visualization_variables"             : ["VELOCITY","PRESSURE"],
            "output_configuration"                : {
                "result_file_configuration" : {
                    "gidpost_flags" : {
                        "GiDPostMode"           : "GiD_PostBinary",
                        "WriteDeformedMeshFlag" : "WriteDeformed",
                        "WriteConditionsFlag"   : "WriteConditions",
                        "MultiFileFlag"         : "SingleFile"
                    },
                    "file_label"          : "time",
                    "output_control_type" : "time",
                    "output_frequency"    : 0.1,
                    "body_output"         : true,
                    "node_output"         : false,
                    "skin_output"         : false,
                    "nodal_results"       : []
                },
                "point_data_configuration"  : []
            }
        } """)

        settings.ValidateAndAssignDefaults(default_parameters)

        # Get the origin model part
        self.origin_model_part = Model[settings["model_part_name"].GetString()]

        # Set up the visualization model part
        visualization_buffer_size = 1
        self.visualization_model_part = Model.CreateModelPart(
            settings["visualization_model_part_name"].GetString(),
            visualization_buffer_size)
        self.visualization_model_part.ProcessInfo.SetValue(
            KratosMultiphysics.DOMAIN_SIZE,
            self.origin_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE])

        # Check that the nodal results array is empty
        if (settings["output_configuration"]["result_file_configuration"]
            ["nodal_results"].size() != 0):
            error_msg = "The nodal_results field in output_configuration is not empty.\n Add the variables in the visualization_variables field instead."
            raise Exception(error_msg)

        # Add the visualization model part variables to the visualization model part.
        # Add them to the nodal_results GiD output process list as well.
        for i_var in range(0, settings["visualization_variables"].size()):
            variable_name = settings["visualization_variables"][
                i_var].GetString()
            settings["output_configuration"]["result_file_configuration"][
                "nodal_results"].Append(variable_name)
            self.visualization_model_part.AddNodalSolutionStepVariable(
                KratosMultiphysics.KratosGlobals.GetVariable(variable_name))

        # Set an auxilar Kratos Parameters object to build the skin visualization process
        aux_params = KratosMultiphysics.Parameters("""{}""")
        aux_params.AddValue("shape_functions", settings["shape_functions"])
        aux_params.AddValue("visualization_variables",
                            settings["visualization_variables"])
        aux_params.AddValue("reform_model_part_at_each_time_step",
                            settings["reform_model_part_at_each_time_step"])

        self.EmbeddedSkinVisualizationProcess = KratosFluid.EmbeddedSkinVisualizationProcess(
            self.origin_model_part, self.visualization_model_part, aux_params)

        # Set the output variables and build the GiD output process
        if (settings["parallel_type"].GetString() == "OpenMP"):
            from gid_output_process import GiDOutputProcess
            self.gid_output = GiDOutputProcess(
                self.visualization_model_part,
                settings["visualization_model_part_name"].GetString(),
                settings["output_configuration"])
        elif (settings["parallel_type"].GetString() == "MPI"):
            from gid_output_process_mpi import GiDOutputProcessMPI
            self.gid_output = GiDOutputProcessMPI(
                self.visualization_model_part,
                settings["visualization_model_part_name"].GetString(),
                settings["output_configuration"])

    def ExecuteInitialize(self):
        self.gid_output.ExecuteInitialize()
        self.EmbeddedSkinVisualizationProcess.ExecuteInitialize()

    def ExecuteBeforeSolutionLoop(self):
        self.EmbeddedSkinVisualizationProcess.ExecuteBeforeSolutionLoop()
        self.gid_output.ExecuteBeforeSolutionLoop()

    def ExecuteInitializeSolutionStep(self):
        # Set time in case the GiD process control output is time
        self.visualization_model_part.ProcessInfo[
            KratosMultiphysics.TIME] = self.origin_model_part.ProcessInfo[
                KratosMultiphysics.TIME]

        self.EmbeddedSkinVisualizationProcess.ExecuteInitializeSolutionStep()
        self.gid_output.ExecuteInitializeSolutionStep()

    def ExecuteFinalizeSolutionStep(self):
        self.EmbeddedSkinVisualizationProcess.ExecuteFinalizeSolutionStep()
        self.gid_output.ExecuteInitializeSolutionStep()

    def ExecuteBeforeOutputStep(self):
        self.EmbeddedSkinVisualizationProcess.ExecuteBeforeOutputStep()
        if (self.gid_output.IsOutputStep()):
            self.gid_output.PrintOutput()

    def ExecuteFinalize(self):
        self.EmbeddedSkinVisualizationProcess.ExecuteFinalize()
        self.gid_output.ExecuteFinalize()