Exemplo n.º 1
0
    def test_condition_polytomous_response(self):
        """Testing polytomous response conditioning."""
        dataset = np.random.randint(1, 6, (15, 100))
        dataset[7] = np.random.randint(1, 3, (1, 100))
        output = condition_polytomous_response(dataset, trim_ends=False)

        self.assertTupleEqual(output[0].shape, dataset.shape)
        row_max_start = np.cumsum(dataset.max(axis=1))
        row_max_end = row_max_start.copy() - 1
        row_max_start = np.roll(row_max_start, 1)
        row_max_start[0] = 0

        for ndx in range(dataset.shape[0]):
            otpts = np.unique(dataset[ndx])
            otpts2 = np.unique(output[0][ndx])
            self.assertEqual(otpts.size, output[1][ndx])
            self.assertTrue(otpts2.min() == row_max_start[ndx])
            self.assertTrue(otpts2.max() == row_max_end[ndx])

        # Trim First Column but not last
        dataset[:, 0] = 1
        output = condition_polytomous_response(dataset, trim_ends=True)
        self.assertTupleEqual(
            output[0].shape, (dataset.shape[0], dataset.shape[1]-1))
        self.assertTrue(output[0].std(axis=0)[0] != 0)

        # Trim First/Last Column but not last
        dataset[:, -1] = 1
        output = condition_polytomous_response(dataset, trim_ends=True)
        self.assertTupleEqual(
            output[0].shape, (dataset.shape[0], dataset.shape[1]-2))
        self.assertTrue(output[0].std(axis=0)[0] != 0)
        self.assertTrue(output[0].std(axis=0)[-1] != 0)
Exemplo n.º 2
0
def grm_mml_eap(dataset, options=None):
    """Estimate parameters for graded response model.

    Estimate the discrimination and difficulty parameters for
    a graded response model using a mixed Bayesian / Marginal Maximum
    Likelihood algorithm, good for small sample sizes

    Args:
        dataset: [n_items, n_participants] 2d array of measured responses
        options: dictionary with updates to default options

    Returns:
        results_dictionary:
        * Discrimination: (1d array) estimate of item discriminations
        * Difficulty: (2d array) estimates of item difficulties by item thresholds
        * LatentPDF: (object) contains information about the pdf
        * Rayleigh_Scale: (int) Rayleigh scale value of the discrimination prior
        * AIC: (dictionary) null model and final model AIC value
        * BIC: (dictionary) null model and final model BIC value

    Options:
        * estimate_distribution: Boolean    
        * number_of_samples: int >= 5    
        * max_iteration: int
        * distribution: callable
        * quadrature_bounds: (float, float)
        * quadrature_n: int
        * hyper_quadrature_n: int
    """
    options = validate_estimation_options(options)

    cpr_result = condition_polytomous_response(dataset, trim_ends=False)
    responses, item_counts, valid_response_mask = cpr_result
    invalid_response_mask = ~valid_response_mask

    n_items = responses.shape[0]

    # Only use LUT
    _integral_func = _solve_integral_equations_LUT
    _interp_func = create_beta_LUT((.15, 5.05, 500), (-6, 6, 500), options)

    # Quadrature Locations
    latent_pdf = LatentPDF(options)
    theta = latent_pdf.quadrature_locations

    # Compute the values needed for integral equations
    integral_counts = list()
    for ndx in range(n_items):
        temp_output = _solve_for_constants(responses[ndx,
                                                     valid_response_mask[ndx]])
        integral_counts.append(temp_output)

    # Initialize difficulty parameters for estimation
    betas = np.full((item_counts.sum(), ), -10000.0)
    discrimination = np.ones_like(betas)
    cumulative_item_counts = item_counts.cumsum()
    start_indices = np.roll(cumulative_item_counts, 1)
    start_indices[0] = 0

    for ndx in range(n_items):
        end_ndx = cumulative_item_counts[ndx]
        start_ndx = start_indices[ndx] + 1
        betas[start_ndx:end_ndx] = np.linspace(-1, 1, item_counts[ndx] - 1)
    betas_roll = np.roll(betas, -1)
    betas_roll[cumulative_item_counts - 1] = 10000

    # Set invalid index to zero, this allows minimal
    # changes for invalid data and it is corrected
    # during integration
    responses[invalid_response_mask] = 0

    # Prior Parameters
    ray_scale = 1.0
    eap_options = {
        'distribution': stats.rayleigh(loc=.25, scale=ray_scale).pdf,
        'quadrature_n': options['hyper_quadrature_n'],
        'quadrature_bounds': (0.25, 5)
    }
    prior_pdf = LatentPDF(eap_options)
    alpha_evaluation = np.zeros((eap_options['quadrature_n'], ))

    # Meta-Prior Parameter
    hyper_options = {
        'distribution': stats.lognorm(loc=0, s=0.25).pdf,
        'quadrature_n': options['hyper_quadrature_n'],
        'quadrature_bounds': (0.1, 5)
    }
    hyper_pdf = LatentPDF(hyper_options)
    hyper_evaluation = np.zeros((hyper_options['quadrature_n'], ))
    base_hyper = (hyper_pdf.weights *
                  hyper_pdf.null_distribution).astype('float128')
    linear_hyper = base_hyper * hyper_pdf.quadrature_locations

    for iteration in range(options['max_iteration']):
        previous_discrimination = discrimination.copy()
        previous_betas = betas.copy()
        previous_betas_roll = betas_roll.copy()

        # Quadrature evaluation for values that do not change
        # This is done during the outer loop to address rounding errors
        partial_int = np.ones((responses.shape[1], theta.size))
        for item_ndx in range(n_items):
            partial_int *= _graded_partial_integral(
                theta, betas, betas_roll, discrimination, responses[item_ndx],
                invalid_response_mask[item_ndx])

        # Estimate the distribution if requested
        distribution_x_weight = latent_pdf(partial_int, iteration)
        partial_int *= distribution_x_weight

        # Update the lookup table if necessary
        if (options['estimate_distribution'] and iteration > 0):
            new_options = dict(options)
            new_options.update({'distribution': latent_pdf.cubic_splines[-1]})

            _interp_func = create_beta_LUT((.15, 5.05, 500), (-6, 6, 500),
                                           new_options)

        # EAP Discrimination Parameter
        discrimination_pdf = stats.rayleigh(loc=0.25, scale=ray_scale).pdf
        base_alpha = (prior_pdf.weights * discrimination_pdf(
            prior_pdf.quadrature_locations)).astype('float128')
        linear_alpha = (base_alpha *
                        prior_pdf.quadrature_locations).astype('float128')

        for item_ndx in range(n_items):
            # pylint: disable=cell-var-from-loop

            # Indices into linearized difficulty parameters
            start_ndx = start_indices[item_ndx]
            end_ndx = cumulative_item_counts[item_ndx]

            old_values = _graded_partial_integral(
                theta, previous_betas, previous_betas_roll,
                previous_discrimination, responses[item_ndx],
                invalid_response_mask[item_ndx])
            partial_int /= old_values

            def _local_min_func(estimate):
                # Solve integrals for diffiulty estimates
                new_betas = _integral_func(estimate, integral_counts[item_ndx],
                                           distribution_x_weight, theta,
                                           _interp_func)

                betas[start_ndx + 1:end_ndx] = new_betas
                betas_roll[start_ndx:end_ndx - 1] = new_betas
                discrimination[start_ndx:end_ndx] = estimate

                new_values = _graded_partial_integral(
                    theta, betas, betas_roll, discrimination,
                    responses[item_ndx], invalid_response_mask[item_ndx])

                new_values *= partial_int
                otpt = np.sum(new_values, axis=1)

                return np.log(otpt.clip(1e-313, np.inf)).sum()

            # Mean Discrimination Value
            for ndx, disc_location in enumerate(
                    prior_pdf.quadrature_locations):
                alpha_evaluation[ndx] = _local_min_func(disc_location)

            alpha_evaluation -= alpha_evaluation.max()
            total_probability = np.exp(alpha_evaluation.astype('float128'))
            numerator = np.sum(total_probability * linear_alpha)
            denominator = np.sum(total_probability * base_alpha)

            alpha_eap = numerator / denominator

            # Reset the Value the updated discrimination estimation
            _local_min_func(alpha_eap.astype('float64'))

            new_values = _graded_partial_integral(
                theta, betas, betas_roll, discrimination, responses[item_ndx],
                invalid_response_mask[item_ndx])

            partial_int *= new_values

        # Compute the Hyper prior mean value
        for ndx, scale_value in enumerate(hyper_pdf.quadrature_locations):
            temp_distribution = stats.rayleigh(loc=0.25, scale=scale_value).pdf
            hyper_evaluation[ndx] = np.log(
                temp_distribution(discrimination) + 1e-313).sum()

        hyper_evaluation -= hyper_evaluation.max()
        hyper_evaluation = np.exp(hyper_evaluation.astype('float128'))
        ray_scale = (np.sum(hyper_evaluation * linear_hyper) /
                     np.sum(hyper_evaluation * base_hyper)).astype('float64')

        # Check Termination Criterion
        if np.abs(previous_discrimination - discrimination).max() < 1e-3:
            break

    # Recompute partial int for later calculations
    partial_int = np.ones((responses.shape[1], theta.size))
    for item_ndx in range(n_items):
        partial_int *= _graded_partial_integral(
            theta, betas, betas_roll, discrimination, responses[item_ndx],
            invalid_response_mask[item_ndx])

    # Trim difficulties to conform to standard output
    # TODO:  look where missing values are and place NAN there instead
    # of appending them to the end
    output_betas = np.full((n_items, item_counts.max() - 1), np.nan)
    for ndx, (start_ndx,
              end_ndx) in enumerate(zip(start_indices,
                                        cumulative_item_counts)):
        output_betas[ndx, :end_ndx - start_ndx - 1] = betas[start_ndx +
                                                            1:end_ndx]

    # Compute statistics for final iteration
    null_metrics = latent_pdf.compute_metrics(
        partial_int, latent_pdf.null_distribution * latent_pdf.weights, 0)
    full_metrics = latent_pdf.compute_metrics(partial_int,
                                              distribution_x_weight,
                                              latent_pdf.n_points - 3)

    # Ability estimates
    eap_abilities = _ability_eap_abstract(partial_int, distribution_x_weight,
                                          theta)

    return {
        'Discrimination': discrimination[start_indices],
        'Difficulty': output_betas,
        'Ability': eap_abilities,
        'LatentPDF': latent_pdf,
        'Rayleigh_Scale': ray_scale,
        'AIC': {
            'final': full_metrics[0],
            'null': null_metrics[0],
            'delta': null_metrics[0] - full_metrics[0]
        },
        'BIC': {
            'final': full_metrics[1],
            'null': null_metrics[1],
            'delta': null_metrics[1] - full_metrics[1]
        }
    }
Exemplo n.º 3
0
def grm_mml(dataset, options=None):
    """Estimate parameters for graded response model.

    Estimate the discrimination and difficulty parameters for
    a graded response model using marginal maximum likelihood.

    Args:
        dataset: [n_items, n_participants] 2d array of measured responses
        options: dictionary with updates to default options

    Returns:
        discrimination: (1d array) estimate of item discriminations
        difficulty: (2d array) estimates of item diffiulties by item thresholds

    Options:
        * max_iteration: int
        * distribution: callable
        * quadrature_bounds: (float, float)
        * quadrature_n: int
    """
    options = validate_estimation_options(options)
    quad_start, quad_stop = options['quadrature_bounds']
    quad_n = options['quadrature_n']

    responses, item_counts = condition_polytomous_response(dataset, trim_ends=False)
    n_items = responses.shape[0]

    # Interpolation Locations
    theta = _get_quadrature_points(quad_n, quad_start, quad_stop)
    distribution = options['distribution'](theta)

    # Compute the values needed for integral equations
    integral_counts = list()
    for ndx in range(n_items):
        temp_output = _solve_for_constants(responses[ndx])
        integral_counts.append(temp_output)

    # Initialize difficulty parameters for estimation
    betas = np.full((item_counts.sum(),), -10000.0)
    discrimination = np.ones_like(betas)
    cumulative_item_counts = item_counts.cumsum()
    start_indices = np.roll(cumulative_item_counts, 1)
    start_indices[0] = 0

    for ndx in range(n_items):
        end_ndx = cumulative_item_counts[ndx]
        start_ndx = start_indices[ndx] + 1
        betas[start_ndx:end_ndx] = np.linspace(-1, 1,
                                               item_counts[ndx] - 1)
    betas_roll = np.roll(betas, -1)
    betas_roll[cumulative_item_counts-1] = 10000

    #############
    # 1. Start the iteration loop
    # 2. estimate discrimination
    # 3. solve for difficulties
    # 4. minimize and repeat
    #############
    for iteration in range(options['max_iteration']):
        previous_discrimination = discrimination.copy()
        previous_betas = betas.copy()
        previous_betas_roll = betas_roll.copy()

        # Quadrature evaluation for values that do not change
        # This is done during the outer loop to address rounding errors
        partial_int = _graded_partial_integral(theta, betas, betas_roll,
                                               discrimination, responses)
        partial_int *= distribution

        for item_ndx in range(n_items):
            # pylint: disable=cell-var-from-loop

            # Indices into linearized difficulty parameters
            start_ndx = start_indices[item_ndx]
            end_ndx = cumulative_item_counts[item_ndx]

            old_values = _graded_partial_integral(theta, previous_betas,
                                                  previous_betas_roll,
                                                  previous_discrimination,
                                                  responses[item_ndx][None, :])
            partial_int /= old_values

            def _local_min_func(estimate):
                # Solve integrals for diffiulty estimates
                new_betas = _solve_integral_equations(estimate,
                                                      integral_counts[item_ndx],
                                                      distribution,
                                                      theta)
                betas[start_ndx+1:end_ndx] = new_betas
                betas_roll[start_ndx:end_ndx-1] = new_betas
                discrimination[start_ndx:end_ndx] = estimate

                new_values = _graded_partial_integral(theta, betas, betas_roll,
                                                      discrimination,
                                                      responses[item_ndx][None, :])

                new_values *= partial_int
                otpt = integrate.fixed_quad(
                    lambda x: new_values, quad_start, quad_stop, n=quad_n)[0]

                return -np.log(otpt).sum()

            # Univariate minimization for discrimination parameter
            fminbound(_local_min_func, 0.2, 5.0)

            new_values = _graded_partial_integral(theta, betas, betas_roll,
                                                  discrimination,
                                                  responses[item_ndx][None, :])

            partial_int *= new_values

        if np.abs(previous_discrimination - discrimination).max() < 1e-3:
            break

    # Trim difficulties to conform to standard output
    # TODO:  look where missing values are and place NAN there instead
    # of appending them to the end
    output_betas = np.full((n_items, item_counts.max()-1), np.nan)
    for ndx, (start_ndx, end_ndx) in enumerate(zip(start_indices, cumulative_item_counts)):
        output_betas[ndx, :end_ndx-start_ndx-1] = betas[start_ndx+1:end_ndx]

    return discrimination[start_indices], output_betas
Exemplo n.º 4
0
def pcm_jml(dataset, options=None):
    """Estimate parameters for partial credit model.

    Estimate the discrimination and difficulty parameters for
    the partial credit model using joint maximum likelihood.

    Args:
        dataset: [n_items, n_participants] 2d array of measured responses
        options: dictionary with updates to default options

    Returns:
        discrimination: (1d array) estimates of item discrimination
        difficulty: (2d array) estimates of item difficulties x item thresholds

    Options:
        * max_iteration: int
    """
    options = validate_estimation_options(options)

    cpr_result = condition_polytomous_response(dataset, _reference=0.0)
    responses, item_counts, valid_response_mask = cpr_result
    invalid_response_mask = ~valid_response_mask
    n_items, n_takers = responses.shape

    # Set initial parameter estimates to default
    thetas = np.zeros((n_takers, ))

    # Initialize item parameters for iterations
    discrimination = np.ones((n_items, ))
    betas = np.full((n_items, item_counts.max() - 1), np.nan)
    scratch = np.zeros((n_items, betas.shape[1] + 1))

    for ndx in range(n_items):
        item_length = item_counts[ndx] - 1
        betas[ndx, :item_length] = np.linspace(-1, 1, item_length)

    # Set invalid index to zero, this allows minimal
    # changes for invalid data and it is corrected
    # during integration
    responses[invalid_response_mask] = 0

    for iteration in range(options['max_iteration']):
        previous_discrimination = discrimination.copy()

        #####################
        # STEP 1
        # Estimate theta, given betas / alpha
        # Loops over all persons
        #####################
        for ndx in range(n_takers):
            # pylint: disable=cell-var-from-loop
            response_set = responses[:, ndx]

            def _theta_min(theta, scratch):
                # Solves for ability parameters (theta)

                # Graded PCM Model
                scratch *= 0.
                scratch[:, 1:] = theta - betas
                scratch *= discrimination[:, None]
                np.cumsum(scratch, axis=1, out=scratch)
                np.exp(scratch, out=scratch)
                scratch /= np.nansum(scratch, axis=1)[:, None]

                # Probability associated with response
                values = np.take_along_axis(scratch,
                                            response_set[:, None],
                                            axis=1).squeeze()
                return -np.log(values[valid_response_mask[:, ndx]] +
                               1e-313).sum()

            thetas[ndx] = fminbound(_theta_min, -6, 6, args=(scratch, ))

        # Recenter theta to identify model
        thetas -= thetas.mean()
        thetas /= thetas.std(ddof=1)

        #####################
        # STEP 2
        # Estimate Betas / alpha, given Theta
        # Loops over all items
        #####################
        for ndx in range(n_items):
            # pylint: disable=cell-var-from-loop
            # Compute ML for static items
            response_set = responses[ndx]

            def _alpha_beta_min(estimates):
                # PCM_Model
                kernel = thetas[:, None] - estimates[None, :]
                kernel *= estimates[0]
                kernel[:, 0] = 0
                np.cumsum(kernel, axis=1, out=kernel)
                np.exp(kernel, out=kernel)
                kernel /= np.nansum(kernel, axis=1)[:, None]
                # Probability associated with response
                values = np.take_along_axis(kernel,
                                            response_set[:, None],
                                            axis=1).squeeze()
                return -np.log(values[valid_response_mask[ndx]]).sum()

            # Solves jointly for parameters using numerical derivatives
            initial_guess = np.concatenate(
                ([discrimination[ndx]], betas[ndx, :item_counts[ndx] - 1]))
            otpt = fmin_slsqp(_alpha_beta_min,
                              initial_guess,
                              disp=False,
                              bounds=[(.25, 4)] + [(-6, 6)] *
                              (item_counts[ndx] - 1))

            discrimination[ndx] = otpt[0]
            betas[ndx, :item_counts[ndx] - 1] = otpt[1:]

        # Check termination criterion
        if (np.abs(previous_discrimination - discrimination).max() < 1e-3):
            break

    return {'Discrimination': discrimination, 'Difficulty': betas}
Exemplo n.º 5
0
def grm_jml(dataset, options=None):
    """Estimate parameters for graded response model.

    Estimate the discrimination and difficulty parameters for
    a graded response model using joint maximum likelihood.

    Args:
        dataset: [n_items, n_participants] 2d array of measured responses
        options: dictionary with updates to default options

    Returns:
        discrimination: (1d array) estimate of item discriminations
        difficulty: (2d array) estimates of item diffiulties by item thresholds

    Options:
        * max_iteration: int
    """
    options = validate_estimation_options(options)

    cpr_result = condition_polytomous_response(dataset)
    responses, item_counts, valid_response_mask = cpr_result
    invalid_response_mask = ~valid_response_mask
    n_items, n_takers = responses.shape

    # Set initial parameter estimates to default
    thetas = np.zeros((n_takers, ))

    # Initialize difficulty parameters for iterations
    betas = np.full((item_counts.sum(), ), -10000.0)
    discrimination = np.ones_like(betas)
    cumulative_item_counts = item_counts.cumsum()
    start_indices = np.roll(cumulative_item_counts, 1)
    start_indices[0] = 0

    for ndx in range(n_items):
        end_ndx = cumulative_item_counts[ndx]
        start_ndx = start_indices[ndx] + 1
        betas[start_ndx:end_ndx] = np.linspace(-1, 1, item_counts[ndx] - 1)
    betas_roll = np.roll(betas, -1)
    betas_roll[cumulative_item_counts - 1] = 10000

    # Set invalid index to zero, this allows minimal
    # changes for invalid data and it is corrected
    # during integration
    responses[invalid_response_mask] = 0

    for iteration in range(options['max_iteration']):
        previous_betas = betas.copy()

        #####################
        # STEP 1
        # Estimate theta, given betas / alpha
        # Loops over all persons
        #####################
        for ndx in range(n_takers):

            def _theta_min(theta):
                # Solves for ability parameters (theta)
                graded_prob = (
                    irt_evaluation(betas, discrimination, theta) -
                    irt_evaluation(betas_roll, discrimination, theta))

                values = graded_prob[responses[:, ndx]]
                return -np.log(values[valid_response_mask[:, ndx]] +
                               1e-313).sum()

            thetas[ndx] = fminbound(_theta_min, -6, 6)

        # Recenter theta to identify model
        thetas -= thetas.mean()
        thetas /= thetas.std(ddof=1)
        #####################
        # STEP 2
        # Estimate Betas / alpha, given Theta
        # Loops over all items
        #####################
        for ndx in range(n_items):
            # pylint: disable=cell-var-from-loop
            # Compute ML for static items
            start_ndx = start_indices[ndx]
            end_ndx = cumulative_item_counts[ndx]

            def _alpha_beta_min(estimates):
                # Set the estimates int
                discrimination[start_ndx:end_ndx] = estimates[0]
                betas[start_ndx + 1:end_ndx] = estimates[1:]
                betas_roll[start_ndx:end_ndx - 1] = estimates[1:]

                graded_prob = (
                    irt_evaluation(betas, discrimination, thetas) -
                    irt_evaluation(betas_roll, discrimination, thetas))

                values = np.take_along_axis(graded_prob,
                                            responses[None, ndx],
                                            axis=0).squeeze()
                np.clip(values, 1e-23, np.inf, out=values)
                return -np.log(values[valid_response_mask[ndx]]).sum()

            # Solves jointly for parameters using numerical derivatives
            initial_guess = np.concatenate(
                ([discrimination[start_ndx]], betas[start_ndx + 1:end_ndx]))
            otpt = fmin_slsqp(_alpha_beta_min,
                              initial_guess,
                              disp=False,
                              f_ieqcons=_jml_inequality,
                              bounds=[(.25, 4)] + [(-6, 6)] *
                              (item_counts[ndx] - 1))

            discrimination[start_ndx:end_ndx] = otpt[0]
            betas[start_ndx + 1:end_ndx] = otpt[1:]
            betas_roll[start_ndx:end_ndx - 1] = otpt[1:]

        # Check termination criterion
        if (np.abs(previous_betas - betas).max() < 1e-3):
            break

    # Trim difficulties to conform to standard output
    # TODO:  look where missing values are and place NAN there instead
    # of appending them to the end
    output_betas = np.full((n_items, item_counts.max() - 1), np.nan)
    for ndx, (start_ndx,
              end_ndx) in enumerate(zip(start_indices,
                                        cumulative_item_counts)):
        output_betas[ndx, :end_ndx - start_ndx - 1] = betas[start_ndx +
                                                            1:end_ndx]

    return {
        'Discrimination': discrimination[start_indices],
        'Difficulty': output_betas
    }
Exemplo n.º 6
0
def grm_mml(dataset, options=None):
    """Estimate parameters for graded response model.

    Estimate the discrimination and difficulty parameters for
    a graded response model using marginal maximum likelihood.

    Args:
        dataset: [n_items, n_participants] 2d array of measured responses
        options: dictionary with updates to default options

    Returns:
        results_dictionary:
        * Discrimination: (1d array) estimate of item discriminations
        * Difficulty: (2d array) estimates of item diffiulties by item thresholds
        * LatentPDF: (object) contains information about the pdf
        * AIC: (dictionary) null model and final model AIC value
        * BIC: (dictionary) null model and final model BIC value

    Options:
        * estimate_distribution: Boolean    
        * number_of_samples: int >= 5    
        * use_LUT: boolean
        * max_iteration: int
        * distribution: callable
        * quadrature_bounds: (float, float)
        * quadrature_n: int
    """
    options = validate_estimation_options(options)

    cpr_result = condition_polytomous_response(dataset, trim_ends=False)
    responses, item_counts, valid_response_mask = cpr_result
    invalid_response_mask = ~valid_response_mask

    n_items = responses.shape[0]

    # Should we use the LUT
    _integral_func = _solve_integral_equations
    _interp_func = None
    if options['use_LUT']:
        _integral_func = _solve_integral_equations_LUT
        _interp_func = create_beta_LUT((.15, 5.05, 500), (-6, 6, 500), options)

    # Quadrature Locations
    latent_pdf = LatentPDF(options)
    theta = latent_pdf.quadrature_locations

    # Compute the values needed for integral equations
    integral_counts = list()
    for ndx in range(n_items):
        temp_output = _solve_for_constants(responses[ndx,
                                                     valid_response_mask[ndx]])
        integral_counts.append(temp_output)

    # Initialize difficulty parameters for estimation
    betas = np.full((item_counts.sum(), ), -10000.0)
    discrimination = np.ones_like(betas)
    cumulative_item_counts = item_counts.cumsum()
    start_indices = np.roll(cumulative_item_counts, 1)
    start_indices[0] = 0

    for ndx in range(n_items):
        end_ndx = cumulative_item_counts[ndx]
        start_ndx = start_indices[ndx] + 1
        betas[start_ndx:end_ndx] = np.linspace(-1, 1, item_counts[ndx] - 1)
    betas_roll = np.roll(betas, -1)
    betas_roll[cumulative_item_counts - 1] = 10000

    # Set invalid index to zero, this allows minimal
    # changes for invalid data and it is corrected
    # during integration
    responses[invalid_response_mask] = 0

    #############
    # 1. Start the iteration loop
    # 2. estimate discrimination
    # 3. solve for difficulties
    # 4. minimize and repeat
    #############
    for iteration in range(options['max_iteration']):
        previous_discrimination = discrimination.copy()
        previous_betas = betas.copy()
        previous_betas_roll = betas_roll.copy()

        # Quadrature evaluation for values that do not change
        # This is done during the outer loop to address rounding errors
        partial_int = np.ones((responses.shape[1], theta.size))
        for item_ndx in range(n_items):
            partial_int *= _graded_partial_integral(
                theta, betas, betas_roll, discrimination, responses[item_ndx],
                invalid_response_mask[item_ndx])

        # Estimate the distribution if requested
        distribution_x_weight = latent_pdf(partial_int, iteration)
        partial_int *= distribution_x_weight

        # Update the lookup table if necessary
        if (options['use_LUT'] and options['estimate_distribution']
                and iteration > 0):
            new_options = dict(options)
            new_options.update({'distribution': latent_pdf.cubic_splines[-1]})

            _interp_func = create_beta_LUT((.15, 5.05, 500), (-6, 6, 500),
                                           new_options)

        for item_ndx in range(n_items):
            # pylint: disable=cell-var-from-loop

            # Indices into linearized difficulty parameters
            start_ndx = start_indices[item_ndx]
            end_ndx = cumulative_item_counts[item_ndx]

            old_values = _graded_partial_integral(
                theta, previous_betas, previous_betas_roll,
                previous_discrimination, responses[item_ndx],
                invalid_response_mask[item_ndx])
            partial_int /= old_values

            def _local_min_func(estimate):
                # Solve integrals for diffiulty estimates
                new_betas = _integral_func(estimate, integral_counts[item_ndx],
                                           distribution_x_weight, theta,
                                           _interp_func)

                betas[start_ndx + 1:end_ndx] = new_betas
                betas_roll[start_ndx:end_ndx - 1] = new_betas
                discrimination[start_ndx:end_ndx] = estimate

                new_values = _graded_partial_integral(
                    theta, betas, betas_roll, discrimination,
                    responses[item_ndx], invalid_response_mask[item_ndx])

                new_values *= partial_int
                otpt = np.sum(new_values, axis=1)

                return -np.log(otpt).sum()

            # Univariate minimization for discrimination parameter
            fminbound(_local_min_func, 0.2, 5.0)

            new_values = _graded_partial_integral(
                theta, betas, betas_roll, discrimination, responses[item_ndx],
                invalid_response_mask[item_ndx])

            partial_int *= new_values

        if np.abs(previous_discrimination - discrimination).max() < 1e-3:
            break

    # Recompute partial int for later calculations
    partial_int = np.ones((responses.shape[1], theta.size))
    for item_ndx in range(n_items):
        partial_int *= _graded_partial_integral(
            theta, betas, betas_roll, discrimination, responses[item_ndx],
            invalid_response_mask[item_ndx])

    # Trim difficulties to conform to standard output
    # TODO:  look where missing values are and place NAN there instead
    # of appending them to the end
    output_betas = np.full((n_items, item_counts.max() - 1), np.nan)
    for ndx, (start_ndx,
              end_ndx) in enumerate(zip(start_indices,
                                        cumulative_item_counts)):
        output_betas[ndx, :end_ndx - start_ndx - 1] = betas[start_ndx +
                                                            1:end_ndx]

    # Compute statistics for final iteration
    null_metrics = latent_pdf.compute_metrics(
        partial_int, latent_pdf.null_distribution * latent_pdf.weights, 0)
    full_metrics = latent_pdf.compute_metrics(partial_int,
                                              distribution_x_weight,
                                              latent_pdf.n_points - 3)

    # Ability estimates
    eap_abilities = _ability_eap_abstract(partial_int, distribution_x_weight,
                                          theta)

    return {
        'Discrimination': discrimination[start_indices],
        'Difficulty': output_betas,
        'Ability': eap_abilities,
        'LatentPDF': latent_pdf,
        'AIC': {
            'final': full_metrics[0],
            'null': null_metrics[0],
            'delta': null_metrics[0] - full_metrics[0]
        },
        'BIC': {
            'final': full_metrics[1],
            'null': null_metrics[1],
            'delta': null_metrics[1] - full_metrics[1]
        }
    }