Exemplo n.º 1
0
def fix_geom(db, table, geom, out_tbl, colsSelect=None, whr=None):
    """
    Remove some topological incorrections on the PostGIS data
    """

    from glass.ng.sql.q import q_to_ntbl

    if not colsSelect:
        from glass.ng.prop.sql import cols_name

        cols_tbl = [
            '{}.{}'.format(table, x)
            for x in cols_name(db, table, sanitizeSpecialWords=None)
            if x != geom
        ]

    else:
        from glass.pys import obj_to_lst

        cols_tbl = [
            '{}.{}'.format(table, x) for x in obj_to_lst(colsSelect)
            if x != geom
        ]

    Q = "SELECT {c}, ST_MakeValid({g}) AS {g} FROM {t}{w}".format(
        c=", ".join(cols_tbl),
        g=geom,
        t=table,
        w="" if not whr else " WHERE {}".format(whr))

    ntbl = q_to_ntbl(db, out_tbl, Q, api='psql')

    return ntbl
Exemplo n.º 2
0
Arquivo: col.py Projeto: jasp382/glass
def split_colval_into_cols(db_name, table, column, splitChar, new_cols,
                           new_table):
    """
    Split column value into several columns
    """

    from glass.ng.prop.sql import cols_name

    if type(new_cols) != list:
        raise ValueError('new_cols should be a list')

    nr_cols = len(new_cols)

    if nr_cols < 2:
        raise ValueError('new_cols should have 2 or more elements')

    # Get columns types from table
    tblCols = cols_name(db_name, table)

    # SQL construction
    SQL = "SELECT {}, {} FROM {}".format(
        ", ".join(tblCols), ", ".join([
            "split_part({}, '{}', {}) AS {}".format(column, splitChar, i + 1,
                                                    new_cols[i])
            for i in range(len(new_cols))
        ]), table)

    q_to_ntbl(db_name, new_table, SQL, api='psql')

    return new_table
Exemplo n.º 3
0
def rm_deadend(db, in_tbl, out_tbl):
    """
    Remove deadend
    """

    from glass.ng.prop.sql import cols_name, row_num
    from glass.ng.sql.q import q_to_ntbl
    from glass.ng.sql.tbl import rename_tbl

    # Sanitize In table
    cols = ", ".join([
        c for c in cols_name(db, in_tbl, sanitizeSpecialWords=True, api='psql')
        if c != 'geom' and c != 'gid'
    ])

    _t = q_to_ntbl(db, "san_geom",
                   ("SELECT gid, {cln}, geom, "
                    "ST_AsText(ST_StartPoint(geom)) AS pnt_start, "
                    "ST_AsText(ST_EndPoint(geom)) AS pnt_end FROM ("
                    "SELECT gid, {cln}, (ST_Dump(geom)).geom AS geom "
                    "FROM {t}"
                    ") AS foo").format(cln=cols, t=in_tbl))

    run_ = 1
    i = 1
    while run_:
        # Get Table with Points of lines to delete
        delpnt = q_to_ntbl(db, "del_pnt_{}".format(
            str(i)), ("SELECT ROW_NUMBER() OVER (ORDER BY txtgeom) AS idx, "
                      "txtgeom FROM ("
                      "SELECT txtgeom, COUNT(txtgeom) AS npnt FROM ("
                      "SELECT pnt_start AS txtgeom "
                      "FROM {t} UNION ALL "
                      "SELECT pnt_end AS txtgeom "
                      "FROM {t}"
                      ") AS tbl GROUP BY txtgeom"
                      ") AS delg WHERE npnt=1").format(t=_t))

        npnt = row_num(db, delpnt, api='psql')

        if not npnt:
            run_ = None
            break

        # Get Lines without dead-end
        Q = ("SELECT mtbl.* "
             "FROM {mtbl} AS mtbl LEFT JOIN {ptbl} AS st_tbl "
             "ON mtbl.pnt_start = st_tbl.txtgeom "
             "LEFT JOIN {ptbl} AS end_tbl "
             "ON mtbl.pnt_end = end_tbl.txtgeom "
             "WHERE st_tbl.txtgeom IS NULL AND "
             "end_tbl.txtgeom IS NULL").format(cls=cols, mtbl=_t, ptbl=delpnt)

        _t = q_to_ntbl(db, "rows_{}".format(str(i)), Q)

        i += 1

    rename_tbl(db, {_t: out_tbl})

    return out_tbl
Exemplo n.º 4
0
def distinct_to_table(db, pgtable, outable, cols=None):
    """
    Distinct values of one column to a new table
    """

    from glass.pys import obj_to_lst
    from glass.ng.sql.c import sqlcon

    cols = obj_to_lst(cols)

    if not cols:
        from glass.ng.prop.sql import cols_name

        cols = cols_name(db, pgtable, api='psql')

    con = sqlcon(db)

    cs = con.cursor()

    cs.execute(
        ("CREATE TABLE {nt} AS "
         "SELECT {cls} FROM {t} GROUP BY {cls}").format(nt=outable,
                                                        cls=', '.join(cols),
                                                        t=pgtable))

    con.commit()
    cs.close()
    con.close()

    return outable
Exemplo n.º 5
0
def select_main_geom_type(db, table, outbl, geomCol='geom'):
    """
    Assuming a table with several geometry types, this method
    counts the rows for each geometry type and select the rows with a geometry
    type with more rows
    """

    from glass.ng.sql.q import q_to_ntbl
    from glass.ng.prop.sql import cols_name

    COLS = [
        x for x in cols_name(db, table, sanitizeSpecialWords=None)
        if x != geomCol
    ]

    Q = (
        "SELECT {cols}, {geomcol} FROM ("
        "SELECT *, MAX(jtbl.geom_cont) OVER (PARTITION BY "
        "jtbl.tst) AS max_cnt FROM ("
        "SELECT {cols}, (ST_Dump({geomcol})).geom AS {geomcol}, "
        "ST_GeometryType((ST_Dump({geomcol})).geom) AS geom_type "
        "FROM {tbl}"
        ") AS foo INNER JOIN ("
        "SELECT ST_GeometryType((ST_Dump({geomcol})).geom) AS gt, "
        "COUNT(ST_GeometryType((ST_Dump({geomcol})).geom)) AS geom_cont, "
        "1 AS tst FROM {tbl} GROUP BY ST_GeometryType((ST_Dump({geomcol})).geom)"
        ") AS jtbl ON foo.geom_type = jtbl.gt"
        ") AS foo WHERE geom_cont = max_cnt").format(cols=", ".join(COLS),
                                                     geomcol=geomCol,
                                                     tbl=table)

    return q_to_ntbl(db, outbl, Q, api='psql')
Exemplo n.º 6
0
Arquivo: col.py Projeto: jasp382/glass
def change_field_type(db, table, fields, outable, cols=None):
    """
    Imagine a table with numeric data saved as text. This method convert
    that numeric data to a numeric field.
    
    fields = {'field_name' : 'field_type'}
    """

    from glass.ng.prop.sql import cols_name

    if not cols:
        cols = cols_name(db, table)

    else:
        from glass.pys import obj_to_lst

        cols = obj_to_lst(cols)

    select_fields = [f for f in cols if f not in fields]

    con = sqlcon(db)

    # Create new table with the new field with converted values
    cursor = con.cursor()

    cursor.execute(('CREATE TABLE {} AS SELECT {}, {} FROM {}').format(
        outable, ', '.join(select_fields), ', '.join([
            'CAST({f_} AS {t}) AS {f_}'.format(f_=f, t=fields[f])
            for f in fields
        ]), table))

    con.commit()
    cursor.close()
    con.close()
Exemplo n.º 7
0
def pg_erase(db, inTbl, eraseTbl, inGeom, eraseGeom, outTbl):
    """
    Erase
    """
    
    from glass.ng.prop.sql import cols_name
    from glass.ng.sql.q import q_to_ntbl
    
    cols = ["mtbl.{}".format(
        x) for x in cols_name(db, inTbl, api='psql') if x != inGeom]
    
    q = (
        "SELECT {}, ST_Difference(mtbl.{}, foo.erase_geom) AS {} "
        "FROM {} AS mtbl, "
        "("
            "SELECT ST_UnaryUnion(ST_Collect(eetbl.{})) AS erase_geom "
            "FROM {} AS eetbl "
            "INNER JOIN {} AS jtbl ON ST_Intersects(eetbl.{}, jtbl.{})"
        ") AS foo"
    ).format(
        ", ".join(cols), inGeom, inGeom, inTbl, eraseGeom, eraseTbl,
        inTbl, eraseGeom, inGeom
    )
    
    return q_to_ntbl(db, outTbl, q, api='psql')
Exemplo n.º 8
0
def del_topoerror_shps(db, shps, epsg, outfolder):
    """
    Remove topological errors from Feature Class data using PostGIS
    """
    
    import os
    from glass.pys         import obj_to_lst
    from glass.ng.prop.sql import cols_name
    from glass.ng.sql.q    import q_to_ntbl
    from glass.g.it.db    import shp_to_psql
    from glass.g.it.shp    import dbtbl_to_shp
    
    shps = obj_to_lst(shps)
    
    TABLES = shp_to_psql(db, shps, srsEpsgCode=epsg, api="shp2pgsql")
    
    NTABLE = [q_to_ntbl(
        db, "nt_{}".format(t),
        "SELECT {cols}, ST_MakeValid({tbl}.geom) AS geom FROM {tbl}".format(
            cols = ", ".join(["{}.{}".format(TABLES[t], x) for x in cols_name(
                db, TABLES[t], sanitizeSpecialWords=None
            ) if x != 'geom']),
            tbl=TABLES[t]
        ), api='psql'
    ) for t in range(len(TABLES))]
    
    for t in range(len(NTABLE)):
        dbtbl_to_shp(db, NTABLE[t], "geom", os.path.join(
            outfolder, TABLES[t]), tableIsQuery=None, api='pgsql2shp')
Exemplo n.º 9
0
Arquivo: san.py Projeto: jasp382/glass
def get_stop_words(inTbl, fidCol, txtCol, outFile,
                   lang='portuguese', inSheet=None, db=None):
    """
    Pick a text column and save it in a new column only with the stop words.
    
    Uses PostgreSQL dictionaries to get stop words
    """
    
    from glass.pys.oss     import fprop
    from glass.ng.prop.sql    import cols_name
    from glass.ng.sql.db      import create_db
    from glass.ng.it.sql import tbl_to_db
    from glass.ng.it       import db_to_tbl
    
    FILENAME = fprop(inTbl, 'fn')
    
    # Create Temp database
    db = create_db("db_" + FILENAME if not db else db)
    
    # Send table to PostgreSQL
    tbl = tbl_to_db(inTbl, db, FILENAME, sheet=inSheet, api_db='psql')
    
    cols = cols_name(db, tbl, sanitizeSpecialWords=None, api='psql')
    
    # Sanitize data  and create a new column only with stop words
    Q1 = (
        "(SELECT *, to_tsvector('{_lang}', regexp_replace("
            "regexp_replace(lower(unaccent({txt_c})), 'http://[^:\s]+(\S+)', "
            "' ', 'g'), '[^\w]+', ' ', 'g')) "
        "AS txt_data FROM {t}) AS stop_table"
    ).format(_lang=lang, txt_c=txtCol, t=tbl)
    
    Q2 = (
        "SELECT {selCols}, ARRAY_TO_STRING(array_agg("
            "word ORDER BY word_index), ' ', '*') AS {outCol}, "
        "REPLACE(CAST(STRIP("
            "stop_table.txt_data) AS text), '''', '') AS no_duplicated "
        "FROM ("
            "SELECT fid, word, CAST(UNNEST(word_index) AS integer) "
            "AS word_index FROM ("
                "SELECT fid, SPLIT_PART(tst, ';', 1) AS word, "
                "STRING_TO_ARRAY(SPLIT_PART(tst, ';', 2), ',') AS word_index FROM ("
                    "SELECT {fid} AS fid, REPLACE(REPLACE(REPLACE(REPLACE(REPLACE("
                        "CAST(UNNEST(txt_data) AS text), "
                            "',{{', ',\"{{'), ',\"{{', ';'), '}}\"', ''), "
                            "'(', ''), '}}', '') AS tst "
                    "FROM {tbl}"
                ") AS foo"
            ") AS foo2"
        ") AS foo3 INNER JOIN {tbl} ON foo3.fid = stop_table.{fid} "
        "GROUP BY {selCols}, stop_table.txt_data"
    ).format(
        outCol="clean_" + txtCol, tbl=Q1, fid=fidCol,
        selCols=", ".join(["stop_table.{}".format(i) for i in cols])
    )
    
    # Export new table
    return db_to_tbl(db, Q2, outFile, sheetsNames=inSheet)
Exemplo n.º 10
0
def q_to_obj(dbname,
             query,
             db_api='psql',
             geomCol=None,
             epsg=None,
             of='df',
             cols=None,
             dbset='default'):
    """
    Query database and convert data to Pandas Dataframe/GeoDataFrame
    
    API's Available:
    * psql;
    * sqlite;
    * mysql;

    output format options ("of" parameter):
    * df (Pandas Dataframe);
    * dict (Python Dict);
    """

    if not query.startswith('SELECT '):
        # Assuming query is a table name
        from glass.pys import obj_to_lst
        from glass.ng.prop.sql import cols_name

        cols = cols_name(dbname, query) if not cols else \
            obj_to_lst(cols)

        query = "SELECT {} FROM {}".format(
            ", ".join(["{t}.{c} AS {c}".format(t=query, c=i) for i in cols]),
            query)

    if not geomCol:
        import pandas
        from glass.ng.sql.c import alchemy_engine

        pgengine = alchemy_engine(dbname, api=db_api, dbset=dbset)

        df = pandas.read_sql(query, pgengine, columns=None)

    else:
        from geopandas import GeoDataFrame
        from glass.ng.sql.c import sqlcon

        con = sqlcon(dbname, sqlAPI='psql', dbset=dbset)

        df = GeoDataFrame.from_postgis(
            query,
            con,
            geom_col=geomCol,
            crs="EPSG:{}".format(str(epsg)) if epsg else None)

    if of == 'dict':
        df = df.to_dict(orient="records")

    return df
Exemplo n.º 11
0
Arquivo: sql.py Projeto: jasp382/glass
def add_endpnt_to_tbl(db,
                      inTable,
                      outTable,
                      idCol='gid',
                      geomCol='geom',
                      startCol="start_vertex",
                      endCol="end_vertex"):
    """
    Add start/end points columns to table
    """

    from glass.ng.sql.q import q_to_ntbl
    from glass.ng.prop.sql import cols_name

    return q_to_ntbl(db,
                     outTable,
                     ("SELECT {cols}, {stPnt}, {endPnt} FROM ("
                      "SELECT *, lead({stPnt}) OVER ("
                      "PARTITION BY {colId} ORDER BY pnt_idx) AS {endPnt} "
                      "FROM ("
                      "SELECT {cols}, pnt_idx, {stPnt}, "
                      "CASE "
                      "WHEN pnt_idx = 1 OR pnt_idx = MAX(pnt_idx) "
                      "OVER (PARTITION BY {colId}) "
                      "THEN 1 ELSE 0 END AS pnt_cat "
                      "FROM ("
                      "SELECT {cols}, "
                      "(ST_DumpPoints({geomF})).path[1] AS pnt_idx, "
                      "(ST_DumpPoints({geomF})).geom AS {stPnt} "
                      "FROM {table}"
                      ") AS foo"
                      ") AS foo2 "
                      "WHERE pnt_cat = 1"
                      ") AS foo3 "
                      "WHERE {endPnt} IS NOT NULL "
                      "ORDER BY {colId}, pnt_idx").format(cols=", ".join(
                          cols_name(db, inTable)),
                                                          stPnt=startCol,
                                                          endPnt=endCol,
                                                          colId=idCol,
                                                          geomF=geomCol,
                                                          table=inTable),
                     api='psql')
Exemplo n.º 12
0
Arquivo: sql.py Projeto: jasp382/glass
def sql_proj(dbname, tbl, otbl, oepsg, cols=None, geomCol=None,
    newGeom=None, whr=None, new_pk=None):
    """
    Reproject geometric layer to another spatial reference system (srs)
    """

    from glass.pys      import obj_to_lst
    from glass.ng.sql.q import q_to_ntbl

    geomCol = 'geom' if not geomCol else geomCol
    newGeom = 'geom' if not newGeom else newGeom

    if not cols:
        from glass.ng.prop.sql import cols_name

        cols = cols_name(dbname, tbl)

        cols.remove(geomCol)
    
    else:
        cols = obj_to_lst(cols)

        if geomCol in cols and geomCol == newGeom:
            cols.remove(geomCol)
            cols.append('{c} AS old_{c}'.format(c=geomCol))

    Q = (
        "SELECT {}, ST_Transform({}, {}) AS {} "
        "FROM {}{}"
    ).format(
        ", ".join(cols), geomCol, str(oepsg), newGeom, tbl,
        "" if not whr else " WHERE {}".format(whr)
    )

    otbl = q_to_ntbl(dbname, otbl, Q, api='psql')

    if new_pk:
        from glass.ng.sql.k  import create_pk

        create_pk(dbname, otbl, new_pk)

    return otbl
Exemplo n.º 13
0
Arquivo: sql.py Projeto: jasp382/glass
def split_lines_on_pnt(db, inTbl, pntTbl, outTbl, idlnhPnt,
                       lnhid):
    """
    Split lines on point locations
    """
    
    from glass.ng.prop.sql import cols_name
    from glass.ng.sql.q    import q_to_ntbl
    
    # Get cols of lnhTbl
    cols = ", ".join([c for c in cols_name(
        db, inTbl, sanitizeSpecialWords=True, api='psql'
    ) if c != 'geom' and c != idlnhPnt])
    
    # Force MultiLineString to LineString
    sanQ = (
        "SELECT {lid}, {cln}, (ST_Dump(geom)).geom AS geom "
        "FROM {t}) AS mtbl"
    ).format(lid=lnhid, cln=cols, t=inTbl)
    
    # Split Query
    Q = (
        "SELECT {lid}, {cln}, (ST_Dump(geom)).geom AS geom FROM ("
            "SELECT mtbl.{lid}, {cln}, "
            "CASE "
                "WHEN jtbl.{pid} IS NULL THEN mtbl.geom "
                "ELSE ST_Split(mtbl.geom, jtbl.geom) "
            "END AS geom "
            "FROM {lnh_tbl} LEFT JOIN ("
                "SELECT {pid}, ST_Collect(geom) AS geom "
                "FROM {pnt_tbl} "
                "GROUP BY {pid}"
            ") AS jtbl on mtbl.{lid} = jtbl.{pid}"
        ") AS foo"
    ).format(
        lid=lnhid, cln=cols, pid=idlnhPnt,
        lnh_tbl=sanQ, pnt_tbl=pntTbl
    )
    
    # Produce new table and return it
    return q_to_ntbl(db, outTbl, Q)
Exemplo n.º 14
0
def split_table_by_range(db, table, row_number):
    """
    Split tables in several
    """

    from glass.ng.prop.sql import cols_name, row_num
    from glass.ng.sql.q import q_to_ntbl

    rowsN = row_num(db, table, api='psql')

    nrTables = int(rowsN / float(row_number)) + 1

    COLS = cols_name(db, table)

    offset = 0
    for i in range(nrTables):
        q_to_ntbl(db,
                  '{}_{}'.format(table, str(i)),
                  "SELECT * FROM {} ORDER BY {} OFFSET {} LIMIT {} ;".format(
                      table, ', '.join(COLS), str(offset), str(row_number)),
                  api='psql')

        offset += row_number
Exemplo n.º 15
0
def check_endpoint_ispoint(db,
                           lnhTable,
                           pntTable,
                           outTable,
                           nodeStart,
                           nodeEnd,
                           pointId,
                           pntGeom="geom"):
    """
    Check if a Start/End point in a table with line geometries is a point 
    in other table.
    """

    from glass.ng.sql.q import q_to_ntbl
    from glass.ng.prop.sql import cols_name

    tCols = [
        x for x in cols_name(db, lnhTable) if x != nodeStart and x != nodeEnd
    ]

    return q_to_ntbl(
        db,
        outTable,
        ("SELECT * FROM ("
         "SELECT {fooCols}, foo.{stPnt}, foo.{endPnt}, "
         "CASE "
         "WHEN start_tbl.start_x IS NOT NULL THEN 1 ELSE 0 "
         "END AS start_isstop, "
         "CASE "
         "WHEN end_tbl.end_x IS NOT NULL THEN 1 ELSE 0 "
         "END AS end_isstop, start_tbl.start_id, end_tbl.end_id "
         "FROM ("
         "SELECT *, "
         "CAST(((round(CAST(ST_X({stPnt}) AS numeric), 4)) * 10000) "
         "AS integer) AS start_x, "
         "CAST(((round(CAST(ST_Y({stPnt}) AS numeric), 4)) * 10000) "
         "AS integer) AS start_y, "
         "CAST(((round(CAST(ST_X({endPnt}) AS numeric), 4)) * 10000) "
         "AS integer) AS end_x, "
         "CAST(((round(CAST(ST_Y({endPnt}) AS numeric), 4)) * 10000) "
         "AS integer) AS end_y "
         "FROM {lnhT}"
         ") AS foo "
         "LEFT JOIN ("
         "SELECT CAST(((round(CAST(ST_X({pntG}) AS numeric), 4)) "
         "* 10000) AS integer) AS start_x, "
         "CAST(((round(CAST(ST_Y({pntG}) AS numeric), 4)) "
         "* 10000) AS integer) AS start_y, "
         "{pntid} AS start_id FROM {pntT}"
         ") AS start_tbl "
         "ON foo.start_x = start_tbl.start_x AND "
         "foo.start_y = start_tbl.start_y "
         "LEFT JOIN ("
         "SELECT CAST(((round(CAST(ST_X({pntG}) AS numeric), 4)) "
         "* 10000) AS integer) AS end_x, "
         "CAST(((round(CAST(ST_Y({pntG}) AS numeric), 4)) "
         "* 10000) as integer) AS end_y, "
         "{pntid} AS end_id FROM {pntT}"
         ") AS end_tbl "
         "ON foo.end_x = end_tbl.end_x AND foo.end_y = end_tbl.end_y"
         ") AS foo2 "
         "GROUP BY {cols}, {stPnt}, {endPnt}, start_isstop, end_isstop, "
         "start_id, end_id").format(fooCols=", ".join(
             ["foo.{}".format(c) for c in tCols]),
                                    stPnt=nodeStart,
                                    endPnt=nodeEnd,
                                    lnhT=lnhTable,
                                    pntT=pntTable,
                                    pntG=pntGeom,
                                    cols=", ".join(tCols),
                                    pntid=pointId),
        api='psql')
Exemplo n.º 16
0
def intersection(dbname, aShp, bShp, pk, aGeom, bGeom, output,
                 primitive, priority, new_pk='fid_pk', new_geom='geom'):
    """
    Intersect two layers

    primitive is the geometric primitive (point, line, polygons)

    priority is an indication of the fields that the user wants to include in
    the output - fields of aShp or fields of bShp.
    The user could giver a list (with fields for selection) as value for the
    priority argument.
    """
    
    from glass.ng.sql.c import sqlcon
    from glass.ng.prop.sql import cols_name

    if priority == 'a':
        cols_tbl = cols_name(dbname, aShp)
        cols_tbl.remove(aGeom)
    elif priority == 'b':
        cols_tbl = cols_name(dbname, bShp)
        cols_tbl.remove(bGeom)
    elif type(priority) == type([0]):
        cols_tbl = priority
    cols_tbl.remove(pk)
    conn = sqlcon(dbname, sqlAPI='psql')
    cursor = conn.cursor()

    if primitive == 'point':
        cols_tbl = ['{t}.{c}'.format(t=aShp, c=x) for x in cols_tbl]
        if priority == 'a':
            sel_geom = "{f}.{g}".format(f=aShp, g=aGeom)
        elif priority == 'b' or type(priority) == type([]):
            sel_geom = "{f}.{g}".format(f=bShp, g=bGeom)
        cursor.execute((
            "CREATE TABLE {out} AS SELECT {cols}, {int_geom} AS {ngeom} FROM {pnt} "
            "INNER JOIN {poly} ON ST_Within({pnt}.{geom_a}, "
            "{poly}.{geom_b});").format(
                out=output,
                cols=','.join(cols_tbl),
                pnt=aShp,
                geom_a=aGeom,
                geom_b=bGeom,
                poly=bShp,
                int_geom=sel_geom, ngeom=new_geom
        ))

    elif primitive == 'line':
        cols_tbl = ['{t}.{c}'.format(t=output, c=x) for x in cols_tbl]
        cols_tbl.append(new_geom)
        cursor.execute((
            "CREATE TABLE {out} AS SELECT {cols} FROM (SELECT {shp_a}.*, "
            "(ST_DUMP(ST_Intersection({shp_b}.geom, {shp_a}.{geom_fld}))).geom "
            "FROM {shp_b} INNER JOIN {shp_a} ON ST_Intersects({shp_b}.geom, "
            "{shp_a}.{geom_fld})) As {out} WHERE ST_Dimension({out}.geom) = "
            "1;").format(
                out=output,
                cols=','.join(cols_tbl),
                shp_a=aShp,
                shp_b=bShp,
                geom_fld=aGeom
        ))

    elif primitive == 'polygon':
        cols_tbl = ['{t}.{c}'.format(t=aShp, c=x) for x in cols_tbl]
        cursor.execute((
            'CREATE TABLE {out} AS SELECT {cols}, ST_Multi(ST_Buffer'
            '(ST_Intersection({shp_b}.geom, {shp_a}.{geom_fld}), 0.0)) As '
            '{ngeom} FROM {shp_b} INNER JOIN {shp_a} ON ST_Intersects({shp_b}.geom, '
            '{shp_a}.{geom_fld}) WHERE Not ST_IsEmpty(ST_Buffer('
            'ST_Intersection({shp_b}.geom, {shp_a}.{geom_fld}), 0.0));').format(
                out=output,
                cols=','.join(cols_tbl),
                shp_a=aShp,
                shp_b = bShp,
                geom_fld=aGeom, ngeom=new_geom
        ))

    cursor.execute(
        "ALTER TABLE {out} ADD COLUMN {fid_pk} BIGSERIAL PRIMARY KEY;".format(
            out=output, fid_pk=new_pk))

    conn.commit()
    cursor.close()
    conn.close()
    return output, new_pk, new_geom
Exemplo n.º 17
0
def pgtables_to_layer_withStyle_by_col(
    pgtables, sldData, db, workName=None, storeName=None, sldGeom='Polygon',
    DATATYPE='QUANTITATIVE', TABLE_DESIGNATION=None,
    COL_DESIGNATION=None, exclude_cols=None, pathToSLDfiles=None):
    """
    Create a new Geoserver Workspace, create a postgis store and one layer
    for each table in 'pgtables'. Each layer will have
    multiple styles - one style by column in it.
    
    Parameters:
    1) pgtables
    - List of PSQL tables to be transformed as Geoserver Layers
    
    2) sldData
    - sldData should be a xls table with the styles specifications.
    For QUANTITATIVE DATA: The table should have two sheets: one for
    colors and other for intervals:
    
    COLORS SHEET STRUCTURE (Sheet Index = 0):
    cls_id | R | G | B | STROKE_R | STROKE_G | STROKE_B | STROKE_W
       1   | X | X | X |    X     |    X     |    X     |    1
       2   | X | X | X |    X     |    X     |    X     |    1
       3   | X | X | X |    X     |    X     |    X     |    1
       4   | X | X | X |    X     |    X     |    X     |    1
       5   | X | X | X |    X     |    X     |    X     |    1
    
    INTERVALS SHEET STRUCTURE (Sheet Index = 1):
          | 0 | 1 |  2 |  3 |  4 |  5
    col_0 | 0 | 5 | 10 | 15 | 20 | 25
    col_1 | 0 | 6 | 12 | 18 | 24 | 30
    ...
    col_n | 0 | 5 | 10 | 15 | 20 | 25
    
    For CATEGORICAL DATA: The table should have only one sheet:
    CATEGORICAL SHEET STRUCTURE
           | R | G | B | STROKE_R | STROKE_G | STROKE_B | STROKE_W
    attr_1 | X | X | X |    X     |    X     |    X     |    1
    attr_2 | X | X | X |    X     |    X     |    X     |    1
    ...
    attr_n | X | X | X |    X     |    X     |    X     |    1
    
    3) pgsql_con
    - Dict with parameters that will be used to connect to PostgreSQL
    d = {
        'HOST' : 'localhost', 'PORT' : '5432', 'USER' : 'postgres',
        'PASSWORD' : 'admin', 'DATABASE' : 'db_name'
    }
    
    4) workName
    - String with the name of the Geoserver workspace that will be created
    
    5) storeName
    - String with the name of the Geoserver store that will be created
    
    6) geoserver_con
    - Dict with parameters to connect to Geoserver
    
    7) sldGeom
    - Data Geometry. At the moment, the options 'Polygon' and 'Line' are
    valid.
    
    8) DATATYPE='QUANTITATIVE' | 'CATEGORICAL'
    
    9) TABLE_DESIGNATION
    - Table with the association between pgtables name and the designation
    to be used to name the Geoserver Layer.
    
    10) COL_DESIGNATION 
    - Table xls with association between each column and one
    style that will be used to present the information of that column.
    The style designation could not have blank characters.
    
    11) exclude_cols
    - One style will be created for each column in one pgtable. The columns
    in 'exclude_cols' will not have a style.
    
    12) pathToSLDfiles
    - Absolute path to the folder where the SLD (Style Layer Descriptor)
    will be stored.
    """
    
    import os; from glass.pys   import obj_to_lst
    from glass.ng.rd            import tbl_to_obj
    from glass.pys.oss          import mkdir
    from glass.ng.prop.sql      import cols_name
    from glass.g.wg.gsrv.ws     import create_ws
    from glass.g.wg.gsrv.stores import create_pgstore
    from glass.g.wg.gsrv.lyrs   import pub_pglyr
    from glass.g.wg.gsrv.sty    import create_style
    from glass.g.wg.gsrv.sty    import lst_styles
    from glass.g.wg.gsrv.sty    import del_style
    from glass.g.wg.gsrv.sty    import assign_style_to_layer
    from glass.g.wg.sld         import write_sld
    
    # Sanitize PGtables
    pgtables = obj_to_lst(pgtables)
    
    if not pgtables:
        raise ValueError('pgtables value is not valid!')
    
    exclude_cols = obj_to_lst(exclude_cols)
    
    STY_DESIGNATION = tbl_to_obj(
        COL_DESIGNATION, useFirstColAsIndex=True, output='dict', 
        colsAsArray=True
    ) if COL_DESIGNATION else None
    
    LYR_DESIGNATION = tbl_to_obj(
        TABLE_DESIGNATION, useFirstColAsIndex=True, output='dict',
        colsAsArray=True
    ) if TABLE_DESIGNATION else None
    
    # Get intervals and colors data
    if DATATYPE == 'QUANTITATIVE':
        if os.path.exists(sldData):
            FF = os.path.splitext(sldData)[1]
            if FF == '.xls' or FF == '.xlsx':
                colorsDict    = tbl_to_obj(
                    sldData, sheet=0, useFirstColAsIndex=True, output='dict'
                ); intervalsDict = tbl_to_obj(
                    sldData, sheet=1, useFirstColAsIndex=True, output='dict'
                )
            
            else:
                raise ValueError((
                    'At the moment, for DATATYPE QUANTITATIVE, sldData '
                    'has to be a xls table'
                ))
        
        else:
            raise ValueError((
                '{} is not a valid file'
            ).format(sldData))
    
    elif DATATYPE == 'CATEGORICAL':
        if os.path.exists(sldData):
            if os.path.splitext(sldData)[1] == 'xls':
                colorsDict = tbl_to_obj(
                    sldData, sheet=0, useFirstColAsIndex=True, output='dict'
                )
            
            else:
                raise ValueError((
                    'At the moment, for DATATYPE CATEGORICAL, sldData '
                    'has to be a xls table'
                ))
        else:
            raise ValueError((
                '{} is not a valid file'
            ).format(sldData))
    
    else:
        raise ValueError('{} is not avaiable at the moment'.format(DATATYPE))
    
    # Create Workspace
    workName = 'w_{}'.format(db) if not workName else workName
    
    create_ws(workName, overwrite=True)
    
    # Create Store
    storeName = db if not storeName else storeName
    create_pgstore(storeName, workName, db)
    
    # Create folder for sld's
    wTmp = mkdir(os.path.join(
        os.path.dirname(sldData), 'sldFiles'
    )) if not pathToSLDfiles else pathToSLDfiles
    
    # List styles in geoserver
    STYLES = lst_styles()
    
    # For each table in PGTABLES
    for PGTABLE in pgtables:
        # Publish Postgis table
        TITLE = None if not LYR_DESIGNATION else LYR_DESIGNATION[PGTABLE][0]
        pub_pglyr(workName, storeName, PGTABLE, title=TITLE)
        
        # List PGTABLE columns
        pgCols = cols_name(db, PGTABLE)
        
        # For each column
        for col in pgCols:
            if exclude_cols and col in exclude_cols:
                continue
            
            STYLE_NAME = '{}_{}'.format(
                PGTABLE, STY_DESIGNATION[col][0]
            ) if STY_DESIGNATION else '{}_{}'.format(PGTABLE, col)
            
            if STYLE_NAME in STYLES:
                del_style(STYLE_NAME)
            
            # Create Object with association between colors and intervals
            d = {}
            OPACITY = str(colorsDict[1]['OPACITY'])
            for i in colorsDict:
                d[i] = {
                    'R'   : colorsDict[i]['R'],
                    'G'   : colorsDict[i]['G'],
                    'B'   : colorsDict[i]['B']
                }
                
                if DATATYPE == 'QUANTITATIVE':
                    d[i]['min'] = intervalsDict[col][i-1]
                    d[i]['max'] = intervalsDict[col][i]
                
                if 'STROKE_R' in colorsDict[i] and \
                   'STROKE_G' in colorsDict[i] and \
                   'STROKE_B' in colorsDict[i]:
                    d[i]['STROKE'] = {
                        'R' : colorsDict[i]['STROKE_R'],
                        'G' : colorsDict[i]['STROKE_G'],
                        'B' : colorsDict[i]['STROKE_B']
                    }
                    
                    if 'STROKE_W' in colorsDict[i]:
                        d[i]['STROKE']['WIDTH'] = colorsDict[i]['STROKE_W']
            
            # Create SLD
            sldFile = write_sld(
                col, d,
                os.path.join(wTmp, '{}.sld'.format(col)),
                geometry=sldGeom, DATA=DATATYPE,
                opacity=OPACITY
            )
            
            # Create Style
            create_style(STYLE_NAME, sldFile)
            
            # Apply SLD
            assign_style_to_layer(STYLE_NAME, PGTABLE)
Exemplo n.º 18
0
def osm_to_relationaldb(osmData,
                        inSchema,
                        osmGeoTbl,
                        osmCatTbl,
                        osmRelTbl,
                        outSQL=None,
                        db_name=None):
    """
    PostgreSQL - OSM Data to Relational Model
    
    E.g.
    osmData = '/mnt/d/mystuff/flainar/portugal-latest.osm.pbf'
    inSchema = {
        "TBL" : ['points', 'lines', 'multipolygons'],
        'FID' : 'ogc_fid',
        "COLS" : [
            'name', 'osm_id',
            #"ST_X(wkb_geometry) AS longitude",
            #"ST_Y(wkb_geometry) AS latitude",
            "wkb_geometry AS geom",
            "NULL AS featurecategoryid",
            "NULL AS flainarcategoryid",
            "NULL AS createdby",
            "NOW() AS createdon",
            "NULL AS updatedon",
            "NULL AS deletedon"
        ],
        "NOT_KEYS" : [
            'ogc_fid', 'osm_id', 'name', "wkb_geometry",
            'healthcare2', 'other_tags', 'osm_way_id',
            'ref', 'sidewalk', 'z_order', 'is_in', 'cuisine',
            'barrier', 'busway'
        ]
    }

    osmGeoTbl = {
        "points" : {"TBL" : 'osm_position', "FID" : 'positionid'},
        "multipolygons" : {"TBL" : "osm_polygons", "FID" : 'polygonid'},
        "lines" : {"TBL" : 'osm_lines', "FID" : 'lineid'}
    }

    osmCatTbl = {
        "TBL" : 'osmcategory', "FID" : "osmcategoryid",
        "KEY_COL" : "key", "VAL_COL" : "value",
        "COLS" : [
            "NULL AS createdby", "NOW() AS createdon",
            "NULL AS updatedon", "NULL AS deletedon"
        ]
    }

    osmRelTbl = {
        "points" : {"TBL" : "position_osmcat", "FID" : 'pososmcatid'},
        "multipolygons" : {"TBL" : "polygons_osmcat", "FID" : 'polygoncatid'},
        "lines" : {"TBL" : "lines_osmcat", "FID" : 'linecatid'},
    }

    outSQL = '/mnt/d/mystuff/flainar/portugal-osmdb.sql'

    db_name='osm_pt'
    """

    from glass.pys import obj_to_lst
    from glass.pys.oss import fprop
    from glass.ng.prop.sql import cols_name
    from glass.ng.sql.q import q_to_ntbl
    from glass.ng.sql.db import create_db
    from glass.g.it.db import osm_to_psql

    inSchema["TBL"] = obj_to_lst(inSchema["TBL"])

    # Create DB
    osm_fn = fprop(osmData, 'fn')
    osm_fn = osm_fn.replace('-', '').replace('.', '')
    db = create_db(osm_fn if not db_name else db_name, api='psql')

    # Send OSM data to Database
    osm_to_psql(osmData, db)

    # Get KEYS COLUMNS
    transcols = {}
    for tbl in inSchema["TBL"]:
        transcols[tbl] = [
            c for c in cols_name(db, tbl, sanitizeSpecialWords=None)
            if c not in inSchema["NOT_KEYS"]
        ]

    # Create osmGeoTbl
    osmgeotbl = [
        q_to_ntbl(db,
                  osmGeoTbl[tbl]['TBL'],
                  ("SELECT {} AS {}, {} FROM {}").format(
                      inSchema["FID"], osmGeoTbl[tbl]["FID"],
                      ", ".join(inSchema["COLS"]), tbl),
                  api='psql') for tbl in inSchema["TBL"]
    ]

    # Create OSM categories table
    qs = []
    for tbl in inSchema["TBL"]:
        qs.extend([
            ("SELECT '{keyV}' AS {keyC}, CAST({t}.{keyV} AS text) AS {valC} "
             "FROM {t} WHERE {t}.{keyV} IS NOT NULL "
             "GROUP BY {t}.{keyV}").format(keyV=c,
                                           t=tbl,
                                           keyC=osmCatTbl["KEY_COL"],
                                           valC=osmCatTbl["VAL_COL"])
            for c in transcols[tbl]
        ])

    osmcatbl = q_to_ntbl(
        db,
        osmCatTbl["TBL"],
        ("SELECT row_number() OVER(ORDER BY {keyC}) "
         "AS {osmcatid}, {keyC}, {valC}{ocols} "
         "FROM ({q}) AS foo").format(
             q="SELECT {k}, {v} FROM ({t}) AS kvtbl GROUP BY {k}, {v}".format(
                 k=osmCatTbl["KEY_COL"],
                 v=osmCatTbl["VAL_COL"],
                 t=" UNION ALL ".join(qs),
             ) if len(inSchema["TBL"]) > 1 else " UNION ALL ".join(qs),
             keyC=osmCatTbl["KEY_COL"],
             osmcatid=osmCatTbl["FID"],
             valC=osmCatTbl["VAL_COL"],
             ocols="" if "COLS" not in osmCatTbl else ", {}".format(", ".join(
                 osmCatTbl["COLS"]))),
        api='psql')

    # Create relation table
    osmreltbl = []
    for tbl in inSchema["TBL"]:
        qs = [(
            "SELECT {fid}, '{keyV}' AS key, CAST({t}.{keyV} AS text) AS osmval "
            "FROM {t} WHERE {t}.{keyV} IS NOT NULL").format(
                fid=inSchema["FID"], keyV=c, t=tbl) for c in transcols[tbl]]

        osmreltbl.append(
            q_to_ntbl(
                db,
                osmRelTbl[tbl]["TBL"],
                ("SELECT foo.{fid} AS {nfid}, catbl.{osmcatfid} "
                 "FROM ({mtbl}) AS foo INNER JOIN {catTbl} AS catbl "
                 "ON foo.key = catbl.{catkey} AND foo.osmval = catbl.{catval}"
                 ).format(mtbl=" UNION ALL ".join(qs),
                          fid=inSchema["FID"],
                          nfid=osmRelTbl[tbl]["FID"],
                          catTbl=osmCatTbl["TBL"],
                          osmcatfid=osmCatTbl["FID"],
                          catkey=osmCatTbl["KEY_COL"],
                          catval=osmCatTbl["VAL_COL"]),
                api='psql'))

    if not outSQL:
        return osmgeotbl, osmcatbl, osmreltbl
    else:
        from glass.ng.sql.bkup import dump_tbls

        return dump_tbls(db, osmgeotbl + [osmcatbl] + osmreltbl, outSQL)