Exemplo n.º 1
0
 def testExtractFeatures_multipleLayers(self):
     m = Model()
     img = toimage(np.random.random((100, 100)) * 255)
     s = BuildLayer(m, Layer.C1, m.MakeState(img))
     fs = ExtractFeatures((Layer.S1, Layer.C1), [s])
     self.assertEqual(fs.shape[0], 1)
     self.assertGreater(fs.shape[1], 0)
Exemplo n.º 2
0
 def testExtractFeatures_multipleImages(self):
     m = Model()
     img1 = toimage(np.random.random((100, 100)) * 255)
     img2 = toimage(np.random.random((100, 100)) * 255)
     s1 = BuildLayer(m, Layer.C1, m.MakeState(img1))
     s2 = BuildLayer(m, Layer.C1, m.MakeState(img2))
     fs = ExtractFeatures(Layer.S1, [s1, s2])
     self.assertEqual(fs.shape[0], 2)
     self.assertGreater(fs.shape[1], 0)
 def testComputeActivationMaps_noSaveAll(self):
     m = Model()
     img = toimage(np.random.random((100, 100)) * 255)
     exp = ExperimentData()
     exp.corpus.paths = [img]
     exp.extractor.model = Model()
     ComputeActivation(exp, Layer.C1, SinglecorePool(), save_all=False)
     states = exp.extractor.activation
     self.assertEqual(len(states), 1)
     self.assertEqual(len(states[0]), 1)
     self.assertIn(Layer.C1, states[0])
 def testComputeActivationMaps_singleLayer(self):
     m = Model()
     img = toimage(np.random.random((100, 100)) * 255)
     exp = ExperimentData()
     exp.corpus.paths = [img]
     exp.extractor.model = Model()
     ComputeActivation(exp, Layer.C1, SinglecorePool(), save_all=True)
     states = exp.extractor.activation
     self.assertEqual(len(states), 1)
     self.assertEqual(len(states[0]), 4)
     for layer in (Layer.IMAGE, Layer.RETINA, Layer.S1, Layer.C1):
         self.assertIn(layer, states[0])
Exemplo n.º 5
0
def SetModel(exp, model=None, params=None, **kw):
    """Add a model to an existing experiment.

  If `model` is passed, it is stored in the experiment's `extractor.model`
  attribute. Otherwise, the parameters are created/updated, and used to create a
  new :class:`Model` object.

  :type model: :class:`Model`
  :param model: Existing model object to use.
  :type params: :class:`Params`
  :param params: Existing model parameters to use.

  All remaining keyword arguments are treated as model parameters and overwrite
  values in the (created or passed) `params` argument. This allows the set of
  parameters to be specified in short-hand as

  >>> SetModel(param1=1, param2=2)

  without creating a :class:`Params` object.

  """
    from glimpse.models.ml import Model, Params
    if model is None:
        if params is None:
            params = Params()
        for k, v in kw.items():
            setattr(params, k, v)
        model = Model(params)
    exp.extractor.model = model
    def testShuffledAlg_default(self):
        def make_training_exp():
            exp = ExperimentData()
            exp.corpus.paths = list()
            return exp

        model = Model()
        # These patches don't match C1 structure, but that's fine. We just want to
        # test that shuffling the imprinted array data works.
        patches_per_shape = [
            np.random.random((3, 4, w, w))
            for w in model.params.s2_kernel_widths
        ]
        f = RecordedFunctionCall((patches_per_shape, None))
        with MonkeyPatch(prototype_algorithms, 'SamplePatchesFromImages', f):
            alg = ShuffledAlg()
            patches_per_shape_ = alg(
                11,  # anything numeric
                model,
                make_training_exp,
                None,
                None)
        self.assertEqual(len(patches_per_shape_),
                         len(model.params.s2_kernel_widths))
        for ps1, ps2 in zip(patches_per_shape, patches_per_shape_):
            for p1, p2 in zip(ps1, ps2):
                self.assertSequenceEqual(sorted(p1.flat), sorted(p2.flat))
    def testImprintAlg_withNorm(self):
        locs_per_shape = 'LOCS'  # some value to test for

        def make_training_exp():
            exp = ExperimentData()
            exp.corpus.paths = list()
            return exp

        model = Model(Params(s2_kernel_widths=(7, 9), s2_operation='NormRbf'))
        # These patches don't match C1 structure, but that's fine. We just want to
        # test that normalizing multi-dimensional arrays works when imprinting.
        patches_per_shape = [np.random.random((3, 4, w, w)) for w in (7, 9)]
        f = RecordedFunctionCall((patches_per_shape, locs_per_shape))
        with MonkeyPatch(prototype_algorithms, 'SamplePatchesFromImages', f):
            alg = ImprintAlg()
            patches_per_shape_ = alg(
                11,  # anything numeric
                model,
                make_training_exp,
                None,
                None)
        self.assertEqual(len(patches_per_shape_), 2)
        self.assertTrue(
            all((ps1 == ps2).all()
                for ps1, ps2 in zip(patches_per_shape, patches_per_shape_)))
        self.assertEqual(locs_per_shape, alg.locations)
    def testImprintAlg_recordLocations(self):
        locs_per_shape = 'LOCS'  # some value to test for

        def make_training_exp():
            exp = ExperimentData()
            exp.corpus.paths = list()
            return exp

        patches_per_shape = ['PATCHES%d' % i
                             for i in range(2)]  # two kernel widths
        model = Model(Params(s2_kernel_widths=(7, 9)))
        f = RecordedFunctionCall((patches_per_shape, locs_per_shape))
        with MonkeyPatch(prototype_algorithms, 'SamplePatchesFromImages', f):
            alg = ImprintAlg(True)
            patches_per_shape_ = alg(
                11,  # anything numeric
                model,
                make_training_exp,
                None,
                None)
        self.assertEqual(len(patches_per_shape_), 2)
        self.assertSequenceEqual(patches_per_shape, patches_per_shape_)
        #~ self.assertTrue(all((ps1 == ps2).all() for ps1,ps2 in zip(patches_per_shape,
        #~ patches_per_shape_)))
        self.assertEqual(locs_per_shape, alg.locations)
 def testResolveLayers(self):
     exp = ExperimentData()
     exp.extractor.model = Model()
     ResolveLayers(exp, 'C2') == [Layer.C2]
     ResolveLayers(exp, Layer.C2) == [Layer.C2]
     ResolveLayers(exp, ('C1', 'C2')) == [Layer.C1, Layer.C2]
     ResolveLayers(exp, ('C1', Layer.C2)) == [Layer.C1, Layer.C2]
     ResolveLayers(exp, (Layer.C1, Layer.C2)) == [Layer.C1, Layer.C2]
Exemplo n.º 10
0
 def _buildHelper(self, exp, layers, **kw):
     exp.extractor.model = Model()
     # Provide 12 features per instance
     extractor = lambda *args, **kw: np.random.random(
         (self.NUM_INSTANCES, 12))
     exp.corpus.paths = ["img%d.jpg" % x for x in range(self.NUM_INSTANCES)]
     exp.corpus.labels = np.array([1] * (self.NUM_INSTANCES / 2) + [2] *
                                  (self.NUM_INSTANCES / 2))
     with MonkeyPatch(experiment, 'ExtractFeatures', extractor):
         CrossValidateClassifier(exp, layers, **kw)
     self.assertEqual(len(exp.evaluation), 1)
 def testUniformAlg_default(self):
     num_prototypes = 11
     model = Model()
     alg = UniformAlg()
     patches_per_shape = alg(num_prototypes, model, None, None, None)
     self.assertEqual(len(patches_per_shape),
                      len(model.params.s2_kernel_widths))
     for ps, kshape in zip(patches_per_shape,
                           model.params.s2_kernel_shapes):
         self.assertEqual(ps.dtype, ACTIVATION_DTYPE)
         self.assertSequenceEqual(ps.shape, (num_prototypes, ) + kshape)
 def testUniformAlg_withNorm(self):
     num_prototypes = 11
     model = Model(Params(s2_kernel_widths=(7, 9), s2_operation='NormRbf'))
     alg = UniformAlg()
     patches_per_shape = alg(num_prototypes, model, None, None, None)
     self.assertEqual(len(patches_per_shape),
                      len(model.params.s2_kernel_widths))
     for ps, kshape in zip(patches_per_shape,
                           model.params.s2_kernel_shapes):
         self.assertEqual(ps.dtype, ACTIVATION_DTYPE)
         self.assertSequenceEqual(ps.shape, (num_prototypes, ) + kshape)
Exemplo n.º 13
0
 def testGetActivity_strImage(self):
   image_name = 'fake-image-name'
   layer = 'image'
   layer_data = 'IMAGE-DATA'
   exp = ExperimentData()
   exp.extractor.model = Model()
   f = RecordedFunctionCall(State({layer:layer_data}))
   with MonkeyPatch(misc, 'BuildLayer', f):
     data = misc.GetActivity(exp, image_name, layer)
   self.assertEqual(data, layer_data)
   self.assertTrue(f.called)
   self.assertEqual(f.args[1], layer)
   self.assertEqual(f.args[2][Layer.SOURCE].image_path, image_name)
 def testUniformAlg_customLimits(self):
     num_prototypes = 11
     low = -1
     high = 10
     model = Model(Params(s2_kernel_widths=(7, )))
     f = RecordedFunctionCall('PATCHES')
     with MonkeyPatch('glimpse.prototypes', 'UniformRandom', f):
         alg = UniformAlg(low=low, high=high)
         patches_per_shape = alg(num_prototypes, model, None, None, None)
     self.assertEqual(patches_per_shape,
                      ['PATCHES'] * len(model.params.s2_kernel_widths))
     self.assertTrue(f.called)
     self.assertSequenceEqual(f.args[0:1] + f.args[2:4],
                              (num_prototypes, low, high))
Exemplo n.º 15
0
 def testGetActivity_intImage_withActivity_noLayer(self):
   image_name = 0
   image_path = 'fake-image-path'
   layer = 'image'
   layer_data = 'IMAGE-DATA'
   exp = ExperimentData()
   exp.extractor.model = Model()
   exp.corpus.paths = [image_path]
   exp.extractor.activation = [State()]
   f = RecordedFunctionCall(State({layer:layer_data}))
   with MonkeyPatch(misc, 'BuildLayer', f):
     data = misc.GetActivity(exp, image_name, layer)
   self.assertEqual(data, layer_data)
   self.assertTrue(f.called)
   self.assertEqual(f.args[1], layer)
Exemplo n.º 16
0
 def test_noTrainingExp(self):
     # no call to make_training_exp(), so corpus information is never pulled
     num_prototypes = 11
     exp = ExperimentData()
     m = exp.extractor.model = Model()
     ks = [
         np.random.random((num_prototypes, ) +
                          kshape).astype(ACTIVATION_DTYPE)
         for kshape in m.params.s2_kernel_shapes
     ]
     algorithm = lambda *args, **kw: ks
     MakePrototypes(exp, num_prototypes, algorithm, pool=SinglecorePool())
     for k1, k2 in zip(ks, exp.extractor.model.s2_kernels):
         self.assertTrue((k1 == k2).all())
     self.assertIsNone(exp.extractor.training_set)
     self.assertEquals(algorithm, exp.extractor.prototype_algorithm)
Exemplo n.º 17
0
 def _buildHelper(self, exp, layers, **kw):
     exp.extractor.model = Model()
     # Provide 12 features per instance
     extractor = lambda *args, **kw: np.random.random(
         (self.NUM_INSTANCES, 12))
     exp.corpus.paths = ["img%d.jpg" % x for x in range(self.NUM_INSTANCES)]
     exp.corpus.labels = np.array([1] * (self.NUM_INSTANCES / 2) + [2] *
                                  (self.NUM_INSTANCES / 2))
     exp.extractor.activation = list()  # fake activation list
     with MonkeyPatch(experiment, 'ExtractFeatures', extractor):
         TrainAndTestClassifier(exp, layers, **kw)
     self.assertEqual(len(exp.evaluation), 1)
     eval_ = exp.evaluation[0]
     self.assertIn('classifier', eval_.results)
     self.assertIn('score', eval_.results)
     self.assertIn('score_func', eval_.results)
     self.assertIn('training_score', eval_.results)
    def testImprintAlg_default(self):
        def make_training_exp():
            exp = ExperimentData()
            exp.corpus.paths = list()
            return exp

        model = Model()
        f = RecordedFunctionCall(('PATCHES', None))
        with MonkeyPatch(prototype_algorithms, 'SamplePatchesFromImages', f):
            alg = ImprintAlg()
            patches_per_shape_ = alg(
                11,  # anything numeric
                model,
                make_training_exp,
                None,
                None)
        self.assertEqual(patches_per_shape_, 'PATCHES')
    def test_SimpleLearningAlg_default(self):
        num_prototypes = 11
        patches_per_shape = 'PATCHES'
        learner = 'LEARNER'
        model = Model()

        def make_training_exp():
            exp = ExperimentData()
            exp.corpus.paths = list()
            return exp

        f = RecordedFunctionCall(patches_per_shape)
        with MonkeyPatch('glimpse.prototypes', 'SampleAndLearnPatches', f):
            alg = _SimpleLearningAlg(learner)
            patches_per_shape_ = alg(num_prototypes, model, make_training_exp,
                                     None, None)
        self.assertSequenceEqual(f.args[2:4], (learner, num_prototypes))
Exemplo n.º 20
0
 def testLoadPrototypes(self):
     m = Model()
     ks = [
         np.random.random((10, ) + kshape).astype(ACTIVATION_DTYPE)
         for kshape in m.params.s2_kernel_shapes
     ]
     exp = ExperimentData()
     exp.extractor.model = m
     opts = MakeOpts()
     opts.extractor.no_activity = True
     with TempFile() as path:
         with open(path, 'w') as fh:
             pickle.dump(ks, fh)
         opts.extractor.prototypes.path = path
         CliWithActivity(opts, exp, SinglecorePool())
     self.assertEqual(len(exp.extractor.model.s2_kernels), len(ks))
     for s2_k, k in zip(exp.extractor.model.s2_kernels, ks):
         self.assertTrue(np.all(s2_k == k))
Exemplo n.º 21
0
 def testSetModel(self):
     # default
     exp = ExperimentData()
     SetModel(exp)
     self.assertIsNotNone(exp.extractor.model)
     # from model
     model = Model()
     exp = ExperimentData()
     SetModel(exp, model=model)
     self.assertEqual(exp.extractor.model, model)
     # from params
     params = Params()
     exp = ExperimentData()
     SetModel(exp, params=params)
     self.assertEqual(exp.extractor.model.params, params)
     # from keyword params
     exp = ExperimentData()
     SetModel(exp, image_resize_length=10)
     self.assertEqual(exp.extractor.model.params.image_resize_length, 10)
Exemplo n.º 22
0
 def test_algorithmLocations(self):
     num_prototypes = 11
     exp = ExperimentData()
     m = exp.extractor.model = Model()
     ks = [
         np.random.random((11, ) + kshape)
         for kshape in m.params.s2_kernel_shapes
     ]
     algorithm = lambda *xs: ks
     # Use image indices 1 and 3 for algorithm, relative to training set. This is
     # indices 5 and 7, relative to full image set.
     algorithm.locations = [np.array([[1,0,0,0],[3,0,0,0]])] \
         * len(m.params.s2_kernel_shapes)
     # no call to make_training_exp(), so need to set it manually
     exp.corpus.training_set = np.array([False] * 4 + [True] * 4,
                                        dtype=bool)
     MakePrototypes(exp, num_prototypes, algorithm, pool=SinglecorePool())
     self.assertEqual(len(algorithm.locations), len(ks))
     for locs in algorithm.locations:
         # algorithm used image indices 4-7 (relative to full image set)
         self.assertTrue((locs[:, 0] == (5, 7)).all())
    def test_SimpleLearningAlg_withNorm(self):
        num_prototypes = 3
        # These patches don't match C1 structure, but that's fine. We just want to
        # test normalization of patch data.
        patches_per_shape = [np.random.random((3, 4, w, w)) for w in (7, 9)]
        learner = 'LEARNER'
        model = Model()

        def make_training_exp():
            exp = ExperimentData()
            exp.corpus.paths = list()
            return exp

        f = RecordedFunctionCall(patches_per_shape)
        with MonkeyPatch('glimpse.prototypes', 'SampleAndLearnPatches', f):
            alg = _SimpleLearningAlg(learner)
            patches_per_shape_ = alg(num_prototypes, model, make_training_exp,
                                     None, None)
        self.assertEqual(len(patches_per_shape_), len(patches_per_shape))
        for ps, kshape in zip(patches_per_shape_,
                              model.params.s2_kernel_shapes):
            self.assertSequenceEqual(ps.shape, (num_prototypes, ) + kshape)
Exemplo n.º 24
0
 def testEndToEnd(self):
     NUM_PROTOS = 10
     exp = ExperimentData()
     exp.extractor.model = Model()
     with TempDir() as root:
         MakeCorpusWithImages(root,
                              a=('a1.png', 'a2.png'),
                              b=('b1.png', 'b2.png'))
         SetCorpus(exp, root)
         MakePrototypes(exp, NUM_PROTOS, 'imprint')
         ComputeActivation(exp, Layer.C2, SinglecorePool())
     TrainAndTestClassifier(exp, Layer.C2)
     self.assertEqual(len(exp.corpus.paths), 4)
     self.assertTrue((exp.corpus.labels == (0, 0, 1, 1)).all())
     self.assertEqual(exp.extractor.training_set.sum(), 2)
     self.assertEqual(len(exp.extractor.model.s2_kernels[0]), NUM_PROTOS)
     st = exp.extractor.activation[0]
     self.assertEqual(len(exp.extractor.activation), 4)
     self.assertIn(Layer.C2, st)
     self.assertEqual(len(st[Layer.C2][0]), NUM_PROTOS)
     self.assertEqual(len(exp.evaluation), 1)
     self.assertIsNotNone(exp.evaluation[0].results.score)