Exemplo n.º 1
0
def _range_to_anchors_and_delta(precision_range, num_anchors, dtype):
    """Calculates anchor points from precision range.

  Args:
    precision_range: As required in precision_recall_auc_loss.
    num_anchors: int, number of equally spaced anchor points.
    dtype: Data type of returned tensors.

  Returns:
    precision_values: A `Tensor` of data type dtype with equally spaced values
      in the interval precision_range.
    delta: The spacing between the values in precision_values.

  Raises:
    ValueError: If precision_range is invalid.
  """
    # Validate precision_range.
    if not 0 <= precision_range[0] <= precision_range[-1] <= 1:
        raise ValueError('precision values must obey 0 <= %f <= %f <= 1' %
                         (precision_range[0], precision_range[-1]))
    if not 0 < len(precision_range) < 3:
        raise ValueError('length of precision_range (%d) must be 1 or 2' %
                         len(precision_range))

    # Sets precision_values uniformly between min_precision and max_precision.
    values = numpy.linspace(start=precision_range[0],
                            stop=precision_range[1],
                            num=num_anchors + 2)[1:-1]
    precision_values = util.convert_and_cast(values, 'precision_values', dtype)
    delta = util.convert_and_cast(values[0] - precision_range[0], 'delta',
                                  dtype)
    # Makes precision_values [1, 1, num_anchors].
    precision_values = util.expand_outer(precision_values, 3)
    return precision_values, delta
Exemplo n.º 2
0
def _prepare_labels_logits_weights(labels, logits, weights):

    # Convert `labels` and `logits` to Tensors and standardize dtypes.
    logits = tf.convert_to_tensor(logits, name='logits')
    labels = util.convert_and_cast(labels, 'labels', logits.dtype.base_dtype)
    weights = util.convert_and_cast(weights, 'weights',
                                    logits.dtype.base_dtype)

    try:
        labels.get_shape().merge_with(logits.get_shape())
    except ValueError:
        raise ValueError(
            'logits and labels must have the same shape (%s vs %s)' %
            (logits.get_shape(), labels.get_shape()))

    original_shape = labels.get_shape().as_list()
    if labels.get_shape().ndims > 0:
        original_shape[0] = -1
    if labels.get_shape().ndims <= 1:
        labels = tf.reshape(labels, [-1, 1])
        logits = tf.reshape(logits, [-1, 1])

    if weights.get_shape().ndims == 1:
        # Weights has shape [batch_size]. Reshape to [batch_size, 1].
        weights = tf.reshape(weights, [-1, 1])
    if weights.get_shape().ndims == 0:
        # Weights is a scalar. Change shape of weights to match logits.
        weights *= tf.ones_like(logits)

    return labels, logits, weights, original_shape
Exemplo n.º 3
0
def _range_to_anchors_and_delta(precision_range, num_anchors, dtype):
  """Calculates anchor points from precision range.

  Args:
    precision_range: As required in precision_recall_auc_loss.
    num_anchors: int, number of equally spaced anchor points.
    dtype: Data type of returned tensors.

  Returns:
    precision_values: A `Tensor` of data type dtype with equally spaced values
      in the interval precision_range.
    delta: The spacing between the values in precision_values.

  Raises:
    ValueError: If precision_range is invalid.
  """
  # Validate precision_range.
  if not 0 <= precision_range[0] <= precision_range[-1] <= 1:
    raise ValueError('precision values must obey 0 <= %f <= %f <= 1' %
                     (precision_range[0], precision_range[-1]))
  if not 0 < len(precision_range) < 3:
    raise ValueError('length of precision_range (%d) must be 1 or 2' %
                     len(precision_range))

  # Sets precision_values uniformly between min_precision and max_precision.
  values = numpy.linspace(start=precision_range[0],
                          stop=precision_range[1],
                          num=num_anchors+2)[1:-1]
  precision_values = util.convert_and_cast(
      values, 'precision_values', dtype)
  delta = util.convert_and_cast(
      values[0] - precision_range[0], 'delta', dtype)
  # Makes precision_values [1, 1, num_anchors].
  precision_values = util.expand_outer(precision_values, 3)
  return precision_values, delta
Exemplo n.º 4
0
def _prepare_labels_logits_weights(labels, logits, weights):
    """Validates labels, logits, and weights.

  Converts inputs to tensors, checks shape compatibility, and casts dtype if
  necessary.

  Args:
    labels: A `Tensor` of shape [batch_size] or [batch_size, num_labels].
    logits: A `Tensor` with the same shape as `labels`.
    weights: Either `None` or a `Tensor` with shape broadcastable to `logits`.

  Returns:
    labels: Same as `labels` arg after possible conversion to tensor, cast, and
      reshape.
    logits: Same as `logits` arg after possible conversion to tensor and
      reshape.
    weights: Same as `weights` arg after possible conversion, cast, and reshape.
    original_shape: Shape of `labels` and `logits` before reshape.

  Raises:
    ValueError: If `labels` and `logits` do not have the same shape.
  """
    # Convert `labels` and `logits` to Tensors and standardize dtypes.
    logits = tf.convert_to_tensor(logits, name='logits')
    labels = util.convert_and_cast(labels, 'labels', logits.dtype.base_dtype)
    weights = util.convert_and_cast(weights, 'weights',
                                    logits.dtype.base_dtype)

    try:
        labels.get_shape().merge_with(logits.get_shape())
    except ValueError:
        raise ValueError(
            'logits and labels must have the same shape (%s vs %s)' %
            (logits.get_shape(), labels.get_shape()))

    original_shape = labels.get_shape().as_list()
    if labels.get_shape().ndims > 0:
        original_shape[0] = -1
    if labels.get_shape().ndims <= 1:
        labels = tf.reshape(labels, [-1, 1])
        logits = tf.reshape(logits, [-1, 1])

    if weights.get_shape().ndims == 1:
        # Weights has shape [batch_size]. Reshape to [batch_size, 1].
        weights = tf.reshape(weights, [-1, 1])
    if weights.get_shape().ndims == 0:
        # Weights is a scalar. Change shape of weights to match logits.
        weights *= tf.ones_like(logits)

    return labels, logits, weights, original_shape
Exemplo n.º 5
0
def _prepare_labels_logits_weights(labels, logits, weights):
  """Validates labels, logits, and weights.

  Converts inputs to tensors, checks shape compatibility, and casts dtype if
  necessary.

  Args:
    labels: A `Tensor` of shape [batch_size] or [batch_size, num_labels].
    logits: A `Tensor` with the same shape as `labels`.
    weights: Either `None` or a `Tensor` with shape broadcastable to `logits`.

  Returns:
    labels: Same as `labels` arg after possible conversion to tensor, cast, and
      reshape.
    logits: Same as `logits` arg after possible conversion to tensor and
      reshape.
    weights: Same as `weights` arg after possible conversion, cast, and reshape.
    original_shape: Shape of `labels` and `logits` before reshape.

  Raises:
    ValueError: If `labels` and `logits` do not have the same shape.
  """
  # Convert `labels` and `logits` to Tensors and standardize dtypes.
  logits = tf.convert_to_tensor(logits, name='logits')
  labels = util.convert_and_cast(labels, 'labels', logits.dtype.base_dtype)
  weights = util.convert_and_cast(weights, 'weights', logits.dtype.base_dtype)

  try:
    labels.get_shape().merge_with(logits.get_shape())
  except ValueError:
    raise ValueError('logits and labels must have the same shape (%s vs %s)' %
                     (logits.get_shape(), labels.get_shape()))

  original_shape = labels.get_shape().as_list()
  if labels.get_shape().ndims > 0:
    original_shape[0] = -1
  if labels.get_shape().ndims <= 1:
    labels = tf.reshape(labels, [-1, 1])
    logits = tf.reshape(logits, [-1, 1])

  if weights.get_shape().ndims == 1:
    # Weights has shape [batch_size]. Reshape to [batch_size, 1].
    weights = tf.reshape(weights, [-1, 1])
  if weights.get_shape().ndims == 0:
    # Weights is a scalar. Change shape of weights to match logits.
    weights *= tf.ones_like(logits)

  return labels, logits, weights, original_shape
Exemplo n.º 6
0
def maybe_create_label_priors(label_priors,
                              labels,
                              weights,
                              variables_collections):
  """Creates moving average ops to track label priors, if necessary.

  Args:
    label_priors: As required in e.g. precision_recall_auc_loss.
    labels: A `Tensor` of shape [batch_size] or [batch_size, num_labels].
    weights: As required in e.g. precision_recall_auc_loss.
    variables_collections: Optional list of collections for the variables, if
      any must be created.

  Returns:
    label_priors: A Tensor of shape [num_labels] consisting of the
      weighted label priors, after updating with moving average ops if created.
  """
  if label_priors is not None:
    label_priors = util.convert_and_cast(
        label_priors, name='label_priors', dtype=labels.dtype.base_dtype)
    return tf.squeeze(label_priors)

  label_priors = util.build_label_priors(
      labels,
      weights,
      variables_collections=variables_collections)
  return label_priors
Exemplo n.º 7
0
def _range_to_anchors_and_delta(precision_range, num_anchors, dtype):

    # Validate precision_range.
    if not 0 <= precision_range[0] <= precision_range[-1] <= 1:
        raise ValueError('precision values must obey 0 <= %f <= %f <= 1' %
                         (precision_range[0], precision_range[-1]))
    if not 0 < len(precision_range) < 3:
        raise ValueError('length of precision_range (%d) must be 1 or 2' %
                         len(precision_range))

    # Sets precision_values uniformly between min_precision and max_precision.
    values = numpy.linspace(start=precision_range[0],
                            stop=precision_range[1],
                            num=num_anchors + 2)[1:-1]
    precision_values = util.convert_and_cast(values, 'precision_values', dtype)
    delta = util.convert_and_cast(values[0] - precision_range[0], 'delta',
                                  dtype)
    # Makes precision_values [1, 1, num_anchors].
    precision_values = util.expand_outer(precision_values, 3)
    return precision_values, delta
Exemplo n.º 8
0
def maybe_create_label_priors(label_priors, labels, weights,
                              variables_collections):

    if label_priors is not None:
        label_priors = util.convert_and_cast(label_priors,
                                             name='label_priors',
                                             dtype=labels.dtype.base_dtype)
        return tf.squeeze(label_priors)

    label_priors = util.build_label_priors(
        labels, weights, variables_collections=variables_collections)
    return label_priors
Exemplo n.º 9
0
def maybe_create_label_priors(label_priors, labels, weights,
                              variables_collections):
    """Creates moving average ops to track label priors, if necessary.

  Args:
    label_priors: As required in e.g. precision_recall_auc_loss.
    labels: A `Tensor` of shape [batch_size] or [batch_size, num_labels].
    weights: As required in e.g. precision_recall_auc_loss.
    variables_collections: Optional list of collections for the variables, if
      any must be created.

  Returns:
    label_priors: A Tensor of shape [num_labels] consisting of the
      weighted label priors, after updating with moving average ops if created.
  """
    if label_priors is not None:
        label_priors = util.convert_and_cast(label_priors,
                                             name='label_priors',
                                             dtype=labels.dtype.base_dtype)
        return tf.squeeze(label_priors)

    label_priors = util.build_label_priors(
        labels, weights, variables_collections=variables_collections)
    return label_priors
Exemplo n.º 10
0
def true_positive_rate_at_false_positive_rate_loss(
        labels,
        logits,
        target_rate,
        weights=1.0,
        dual_rate_factor=0.1,
        label_priors=None,
        surrogate_type='xent',
        lambdas_initializer=tf.constant_initializer(1.0),
        reuse=None,
        variables_collections=None,
        trainable=True,
        scope=None):
    """Computes true positive rate at false positive rate loss.

  The loss is based on a surrogate of the form
      wt * loss(+) + lambdas * (wt * loss(-) - r * (1 - pi))
  where:
  - loss(-) is the loss on the negative examples
  - loss(+) is the loss on the positive examples
  - wt is a scalar or tensor of per-example weights
  - r is the target rate
  - pi is the label_priors.

  The per-example weights change not only the coefficients of individual
  training examples, but how the examples are counted toward the constraint.
  If `label_priors` is given, it MUST take `weights` into account. That is,
      label_priors = P / (P + N)
  where
      P = sum_i (wt_i on positives)
      N = sum_i (wt_i on negatives).

  Args:
    labels: A `Tensor` of shape [batch_size] or [batch_size, num_labels].
    logits: A `Tensor` with the same shape as `labels`.
    target_rate: The false positive rate at which to compute the loss. Can be a
      floating point value between 0 and 1 for a single false positive rate, or
      a `Tensor` of shape [num_labels] holding each label's false positive rate.
    weights: Coefficients for the loss. Must be a scalar or `Tensor` of shape
      [batch_size] or [batch_size, num_labels].
    dual_rate_factor: A floating point value which controls the step size for
      the Lagrange multipliers.
    label_priors: None, or a floating point `Tensor` of shape [num_labels]
      containing the prior probability of each label (i.e. the fraction of the
      training data consisting of positive examples). If None, the label
      priors are computed from `labels` with a moving average. See the notes
      above regarding the interaction with `weights` and do not set this unless
      you have a good reason to do so.
    surrogate_type: Either 'xent' or 'hinge', specifying which upper bound
      should be used for indicator functions. 'xent' will use the cross-entropy
      loss surrogate, and 'hinge' will use the hinge loss.
    lambdas_initializer: An initializer op for the Lagrange multipliers.
    reuse: Whether or not the layer and its variables should be reused. To be
      able to reuse the layer scope must be given.
    variables_collections: Optional list of collections for the variables.
    trainable: If `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    scope: Optional scope for `variable_scope`.

  Returns:
    loss: A `Tensor` of the same shape as `logits` with the component-wise
      loss.
    other_outputs: A dictionary of useful internal quantities for debugging. For
      more details, see http://arxiv.org/pdf/1608.04802.pdf.
      lambdas: A Tensor of shape [num_labels] consisting of the Lagrange
        multipliers.
      label_priors: A Tensor of shape [num_labels] consisting of the prior
        probability of each label learned by the loss, if not provided.
      true_positives_lower_bound: Lower bound on the number of true positives
        given `labels` and `logits`. This is the same lower bound which is used
        in the loss expression to be optimized.
      false_positives_upper_bound: Upper bound on the number of false positives
        given `labels` and `logits`. This is the same upper bound which is used
        in the loss expression to be optimized.

  Raises:
    ValueError: If `surrogate_type` is not `xent` or `hinge`.
  """
    with tf.variable_scope(scope,
                           'tpr_at_fpr', [labels, logits, label_priors],
                           reuse=reuse):
        labels, logits, weights, original_shape = _prepare_labels_logits_weights(
            labels, logits, weights)
        num_labels = util.get_num_labels(logits)

        # Convert other inputs to tensors and standardize dtypes.
        target_rate = util.convert_and_cast(target_rate, 'target_rate',
                                            logits.dtype)
        dual_rate_factor = util.convert_and_cast(dual_rate_factor,
                                                 'dual_rate_factor',
                                                 logits.dtype)

        # Create lambdas.
        lambdas, lambdas_variable = _create_dual_variable(
            'lambdas',
            shape=[num_labels],
            dtype=logits.dtype,
            initializer=lambdas_initializer,
            collections=variables_collections,
            trainable=trainable,
            dual_rate_factor=dual_rate_factor)
        # Maybe create label_priors.
        label_priors = maybe_create_label_priors(label_priors, labels, weights,
                                                 variables_collections)

        # Loss op and other outputs. The log(2.0) term corrects for
        # logloss not being an upper bound on the indicator function.
        weighted_loss = weights * util.weighted_surrogate_loss(
            labels,
            logits,
            surrogate_type=surrogate_type,
            positive_weights=1.0,
            negative_weights=lambdas)
        maybe_log2 = tf.log(2.0) if surrogate_type == 'xent' else 1.0
        maybe_log2 = tf.cast(maybe_log2, logits.dtype.base_dtype)
        lambda_term = lambdas * target_rate * (1.0 - label_priors) * maybe_log2
        loss = tf.reshape(weighted_loss - lambda_term, original_shape)
        other_outputs = {
            'lambdas':
            lambdas_variable,
            'label_priors':
            label_priors,
            'true_positives_lower_bound':
            true_positives_lower_bound(labels, logits, weights,
                                       surrogate_type),
            'false_positives_upper_bound':
            false_positives_upper_bound(labels, logits, weights,
                                        surrogate_type)
        }

    return loss, other_outputs
Exemplo n.º 11
0
def precision_recall_auc_loss(labels,
                              logits,
                              precision_range=(0.0, 1.0),
                              num_anchors=20,
                              weights=1.0,
                              dual_rate_factor=0.1,
                              label_priors=None,
                              surrogate_type='xent',
                              lambdas_initializer=tf.constant_initializer(1.0),
                              reuse=None,
                              variables_collections=None,
                              trainable=True,
                              scope=None):
    """Computes precision-recall AUC loss.

  The loss is based on a sum of losses for recall at a range of
  precision values (anchor points). This sum is a Riemann sum that
  approximates the area under the precision-recall curve.

  The per-example `weights` argument changes not only the coefficients of
  individual training examples, but how the examples are counted toward the
  constraint. If `label_priors` is given, it MUST take `weights` into account.
  That is,
      label_priors = P / (P + N)
  where
      P = sum_i (wt_i on positives)
      N = sum_i (wt_i on negatives).

  Args:
    labels: A `Tensor` of shape [batch_size] or [batch_size, num_labels].
    logits: A `Tensor` with the same shape as `labels`.
    precision_range: A length-two tuple, the range of precision values over
      which to compute AUC. The entries must be nonnegative, increasing, and
      less than or equal to 1.0.
    num_anchors: The number of grid points used to approximate the Riemann sum.
    weights: Coefficients for the loss. Must be a scalar or `Tensor` of shape
      [batch_size] or [batch_size, num_labels].
    dual_rate_factor: A floating point value which controls the step size for
      the Lagrange multipliers.
    label_priors: None, or a floating point `Tensor` of shape [num_labels]
      containing the prior probability of each label (i.e. the fraction of the
      training data consisting of positive examples). If None, the label
      priors are computed from `labels` with a moving average. See the notes
      above regarding the interaction with `weights` and do not set this unless
      you have a good reason to do so.
    surrogate_type: Either 'xent' or 'hinge', specifying which upper bound
      should be used for indicator functions.
    lambdas_initializer: An initializer for the Lagrange multipliers.
    reuse: Whether or not the layer and its variables should be reused. To be
      able to reuse the layer scope must be given.
    variables_collections: Optional list of collections for the variables.
    trainable: If `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    scope: Optional scope for `variable_scope`.

  Returns:
    loss: A `Tensor` of the same shape as `logits` with the component-wise
      loss.
    other_outputs: A dictionary of useful internal quantities for debugging. For
      more details, see http://arxiv.org/pdf/1608.04802.pdf.
      lambdas: A Tensor of shape [1, num_labels, num_anchors] consisting of the
        Lagrange multipliers.
      biases: A Tensor of shape [1, num_labels, num_anchors] consisting of the
        learned bias term for each.
      label_priors: A Tensor of shape [1, num_labels, 1] consisting of the prior
        probability of each label learned by the loss, if not provided.
      true_positives_lower_bound: Lower bound on the number of true positives
        given `labels` and `logits`. This is the same lower bound which is used
        in the loss expression to be optimized.
      false_positives_upper_bound: Upper bound on the number of false positives
        given `labels` and `logits`. This is the same upper bound which is used
        in the loss expression to be optimized.

  Raises:
    ValueError: If `surrogate_type` is not `xent` or `hinge`.
  """
    with tf.variable_scope(scope,
                           'precision_recall_auc',
                           [labels, logits, label_priors],
                           reuse=reuse):
        labels, logits, weights, original_shape = _prepare_labels_logits_weights(
            labels, logits, weights)
        num_labels = util.get_num_labels(logits)

        # Convert other inputs to tensors and standardize dtypes.
        dual_rate_factor = util.convert_and_cast(dual_rate_factor,
                                                 'dual_rate_factor',
                                                 logits.dtype)

        # Create Tensor of anchor points and distance between anchors.
        precision_values, delta = _range_to_anchors_and_delta(
            precision_range, num_anchors, logits.dtype)
        # Create lambdas with shape [1, num_labels, num_anchors].
        lambdas, lambdas_variable = _create_dual_variable(
            'lambdas',
            shape=[1, num_labels, num_anchors],
            dtype=logits.dtype,
            initializer=lambdas_initializer,
            collections=variables_collections,
            trainable=trainable,
            dual_rate_factor=dual_rate_factor)
        # Create biases with shape [1, num_labels, num_anchors].
        biases = tf.contrib.framework.model_variable(
            name='biases',
            shape=[1, num_labels, num_anchors],
            dtype=logits.dtype,
            initializer=tf.zeros_initializer(),
            collections=variables_collections,
            trainable=trainable)
        # Maybe create label_priors.
        label_priors = maybe_create_label_priors(label_priors, labels, weights,
                                                 variables_collections)
        label_priors = tf.reshape(label_priors, [1, num_labels, 1])

        # Expand logits, labels, and weights to shape [batch_size, num_labels, 1].
        logits = tf.expand_dims(logits, 2)
        labels = tf.expand_dims(labels, 2)
        weights = tf.expand_dims(weights, 2)

        # Calculate weighted loss and other outputs. The log(2.0) term corrects for
        # logloss not being an upper bound on the indicator function.
        loss = weights * util.weighted_surrogate_loss(
            labels,
            logits + biases,
            surrogate_type=surrogate_type,
            positive_weights=1.0 + lambdas * (1.0 - precision_values),
            negative_weights=lambdas * precision_values)
        maybe_log2 = tf.log(2.0) if surrogate_type == 'xent' else 1.0
        maybe_log2 = tf.cast(maybe_log2, logits.dtype.base_dtype)
        lambda_term = lambdas * (1.0 -
                                 precision_values) * label_priors * maybe_log2
        per_anchor_loss = loss - lambda_term
        per_label_loss = delta * tf.reduce_sum(per_anchor_loss, 2)
        # Normalize the AUC such that a perfect score function will have AUC 1.0.
        # Because precision_range is discretized into num_anchors + 1 intervals
        # but only num_anchors terms are included in the Riemann sum, the
        # effective length of the integration interval is `delta` less than the
        # length of precision_range.
        scaled_loss = tf.div(per_label_loss,
                             precision_range[1] - precision_range[0] - delta,
                             name='AUC_Normalize')
        scaled_loss = tf.reshape(scaled_loss, original_shape)

        other_outputs = {
            'lambdas':
            lambdas_variable,
            'biases':
            biases,
            'label_priors':
            label_priors,
            'true_positives_lower_bound':
            true_positives_lower_bound(labels, logits, weights,
                                       surrogate_type),
            'false_positives_upper_bound':
            false_positives_upper_bound(labels, logits, weights,
                                        surrogate_type)
        }

        return scaled_loss, other_outputs
Exemplo n.º 12
0
def true_positive_rate_at_false_positive_rate_loss(
    labels,
    logits,
    target_rate,
    weights=1.0,
    dual_rate_factor=0.1,
    label_priors=None,
    surrogate_type='xent',
    lambdas_initializer=tf.constant_initializer(1.0),
    reuse=None,
    variables_collections=None,
    trainable=True,
    scope=None):
  """Computes true positive rate at false positive rate loss.

  The loss is based on a surrogate of the form
      wt * loss(+) + lambdas * (wt * loss(-) - r * (1 - pi))
  where:
  - loss(-) is the loss on the negative examples
  - loss(+) is the loss on the positive examples
  - wt is a scalar or tensor of per-example weights
  - r is the target rate
  - pi is the label_priors.

  The per-example weights change not only the coefficients of individual
  training examples, but how the examples are counted toward the constraint.
  If `label_priors` is given, it MUST take `weights` into account. That is,
      label_priors = P / (P + N)
  where
      P = sum_i (wt_i on positives)
      N = sum_i (wt_i on negatives).

  Args:
    labels: A `Tensor` of shape [batch_size] or [batch_size, num_labels].
    logits: A `Tensor` with the same shape as `labels`.
    target_rate: The false positive rate at which to compute the loss. Can be a
      floating point value between 0 and 1 for a single false positive rate, or
      a `Tensor` of shape [num_labels] holding each label's false positive rate.
    weights: Coefficients for the loss. Must be a scalar or `Tensor` of shape
      [batch_size] or [batch_size, num_labels].
    dual_rate_factor: A floating point value which controls the step size for
      the Lagrange multipliers.
    label_priors: None, or a floating point `Tensor` of shape [num_labels]
      containing the prior probability of each label (i.e. the fraction of the
      training data consisting of positive examples). If None, the label
      priors are computed from `labels` with a moving average. See the notes
      above regarding the interaction with `weights` and do not set this unless
      you have a good reason to do so.
    surrogate_type: Either 'xent' or 'hinge', specifying which upper bound
      should be used for indicator functions. 'xent' will use the cross-entropy
      loss surrogate, and 'hinge' will use the hinge loss.
    lambdas_initializer: An initializer op for the Lagrange multipliers.
    reuse: Whether or not the layer and its variables should be reused. To be
      able to reuse the layer scope must be given.
    variables_collections: Optional list of collections for the variables.
    trainable: If `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    scope: Optional scope for `variable_scope`.

  Returns:
    loss: A `Tensor` of the same shape as `logits` with the component-wise
      loss.
    other_outputs: A dictionary of useful internal quantities for debugging. For
      more details, see http://arxiv.org/pdf/1608.04802.pdf.
      lambdas: A Tensor of shape [num_labels] consisting of the Lagrange
        multipliers.
      label_priors: A Tensor of shape [num_labels] consisting of the prior
        probability of each label learned by the loss, if not provided.
      true_positives_lower_bound: Lower bound on the number of true positives
        given `labels` and `logits`. This is the same lower bound which is used
        in the loss expression to be optimized.
      false_positives_upper_bound: Upper bound on the number of false positives
        given `labels` and `logits`. This is the same upper bound which is used
        in the loss expression to be optimized.

  Raises:
    ValueError: If `surrogate_type` is not `xent` or `hinge`.
  """
  with tf.variable_scope(scope,
                         'tpr_at_fpr',
                         [labels, logits, label_priors],
                         reuse=reuse):
    labels, logits, weights, original_shape = _prepare_labels_logits_weights(
        labels, logits, weights)
    num_labels = util.get_num_labels(logits)

    # Convert other inputs to tensors and standardize dtypes.
    target_rate = util.convert_and_cast(
        target_rate, 'target_rate', logits.dtype)
    dual_rate_factor = util.convert_and_cast(
        dual_rate_factor, 'dual_rate_factor', logits.dtype)

    # Create lambdas.
    lambdas, lambdas_variable = _create_dual_variable(
        'lambdas',
        shape=[num_labels],
        dtype=logits.dtype,
        initializer=lambdas_initializer,
        collections=variables_collections,
        trainable=trainable,
        dual_rate_factor=dual_rate_factor)
    # Maybe create label_priors.
    label_priors = maybe_create_label_priors(
        label_priors, labels, weights, variables_collections)

    # Loss op and other outputs. The log(2.0) term corrects for
    # logloss not being an upper bound on the indicator function.
    weighted_loss = weights * util.weighted_surrogate_loss(
        labels,
        logits,
        surrogate_type=surrogate_type,
        positive_weights=1.0,
        negative_weights=lambdas)
    maybe_log2 = tf.log(2.0) if surrogate_type == 'xent' else 1.0
    maybe_log2 = tf.cast(maybe_log2, logits.dtype.base_dtype)
    lambda_term = lambdas * target_rate * (1.0 - label_priors) * maybe_log2
    loss = tf.reshape(weighted_loss - lambda_term, original_shape)
    other_outputs = {
        'lambdas': lambdas_variable,
        'label_priors': label_priors,
        'true_positives_lower_bound': true_positives_lower_bound(
            labels, logits, weights, surrogate_type),
        'false_positives_upper_bound': false_positives_upper_bound(
            labels, logits, weights, surrogate_type)}

  return loss, other_outputs
Exemplo n.º 13
0
def precision_recall_auc_loss(
    labels,
    logits,
    precision_range=(0.0, 1.0),
    num_anchors=20,
    weights=1.0,
    dual_rate_factor=0.1,
    label_priors=None,
    surrogate_type='xent',
    lambdas_initializer=tf.constant_initializer(1.0),
    reuse=None,
    variables_collections=None,
    trainable=True,
    scope=None):
  """Computes precision-recall AUC loss.

  The loss is based on a sum of losses for recall at a range of
  precision values (anchor points). This sum is a Riemann sum that
  approximates the area under the precision-recall curve.

  The per-example `weights` argument changes not only the coefficients of
  individual training examples, but how the examples are counted toward the
  constraint. If `label_priors` is given, it MUST take `weights` into account.
  That is,
      label_priors = P / (P + N)
  where
      P = sum_i (wt_i on positives)
      N = sum_i (wt_i on negatives).

  Args:
    labels: A `Tensor` of shape [batch_size] or [batch_size, num_labels].
    logits: A `Tensor` with the same shape as `labels`.
    precision_range: A length-two tuple, the range of precision values over
      which to compute AUC. The entries must be nonnegative, increasing, and
      less than or equal to 1.0.
    num_anchors: The number of grid points used to approximate the Riemann sum.
    weights: Coefficients for the loss. Must be a scalar or `Tensor` of shape
      [batch_size] or [batch_size, num_labels].
    dual_rate_factor: A floating point value which controls the step size for
      the Lagrange multipliers.
    label_priors: None, or a floating point `Tensor` of shape [num_labels]
      containing the prior probability of each label (i.e. the fraction of the
      training data consisting of positive examples). If None, the label
      priors are computed from `labels` with a moving average. See the notes
      above regarding the interaction with `weights` and do not set this unless
      you have a good reason to do so.
    surrogate_type: Either 'xent' or 'hinge', specifying which upper bound
      should be used for indicator functions.
    lambdas_initializer: An initializer for the Lagrange multipliers.
    reuse: Whether or not the layer and its variables should be reused. To be
      able to reuse the layer scope must be given.
    variables_collections: Optional list of collections for the variables.
    trainable: If `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    scope: Optional scope for `variable_scope`.

  Returns:
    loss: A `Tensor` of the same shape as `logits` with the component-wise
      loss.
    other_outputs: A dictionary of useful internal quantities for debugging. For
      more details, see http://arxiv.org/pdf/1608.04802.pdf.
      lambdas: A Tensor of shape [1, num_labels, num_anchors] consisting of the
        Lagrange multipliers.
      biases: A Tensor of shape [1, num_labels, num_anchors] consisting of the
        learned bias term for each.
      label_priors: A Tensor of shape [1, num_labels, 1] consisting of the prior
        probability of each label learned by the loss, if not provided.
      true_positives_lower_bound: Lower bound on the number of true positives
        given `labels` and `logits`. This is the same lower bound which is used
        in the loss expression to be optimized.
      false_positives_upper_bound: Upper bound on the number of false positives
        given `labels` and `logits`. This is the same upper bound which is used
        in the loss expression to be optimized.

  Raises:
    ValueError: If `surrogate_type` is not `xent` or `hinge`.
  """
  with tf.variable_scope(scope,
                         'precision_recall_auc',
                         [labels, logits, label_priors],
                         reuse=reuse):
    labels, logits, weights, original_shape = _prepare_labels_logits_weights(
        labels, logits, weights)
    num_labels = util.get_num_labels(logits)

    # Convert other inputs to tensors and standardize dtypes.
    dual_rate_factor = util.convert_and_cast(
        dual_rate_factor, 'dual_rate_factor', logits.dtype)

    # Create Tensor of anchor points and distance between anchors.
    precision_values, delta = _range_to_anchors_and_delta(
        precision_range, num_anchors, logits.dtype)
    # Create lambdas with shape [1, num_labels, num_anchors].
    lambdas, lambdas_variable = _create_dual_variable(
        'lambdas',
        shape=[1, num_labels, num_anchors],
        dtype=logits.dtype,
        initializer=lambdas_initializer,
        collections=variables_collections,
        trainable=trainable,
        dual_rate_factor=dual_rate_factor)
    # Create biases with shape [1, num_labels, num_anchors].
    biases = tf.contrib.framework.model_variable(
        name='biases',
        shape=[1, num_labels, num_anchors],
        dtype=logits.dtype,
        initializer=tf.zeros_initializer(),
        collections=variables_collections,
        trainable=trainable)
    # Maybe create label_priors.
    label_priors = maybe_create_label_priors(
        label_priors, labels, weights, variables_collections)
    label_priors = tf.reshape(label_priors, [1, num_labels, 1])

    # Expand logits, labels, and weights to shape [batch_size, num_labels, 1].
    logits = tf.expand_dims(logits, 2)
    labels = tf.expand_dims(labels, 2)
    weights = tf.expand_dims(weights, 2)

    # Calculate weighted loss and other outputs. The log(2.0) term corrects for
    # logloss not being an upper bound on the indicator function.
    loss = weights * util.weighted_surrogate_loss(
        labels,
        logits + biases,
        surrogate_type=surrogate_type,
        positive_weights=1.0 + lambdas * (1.0 - precision_values),
        negative_weights=lambdas * precision_values)
    maybe_log2 = tf.log(2.0) if surrogate_type == 'xent' else 1.0
    maybe_log2 = tf.cast(maybe_log2, logits.dtype.base_dtype)
    lambda_term = lambdas * (1.0 - precision_values) * label_priors * maybe_log2
    per_anchor_loss = loss - lambda_term
    per_label_loss = delta * tf.reduce_sum(per_anchor_loss, 2)
    # Normalize the AUC such that a perfect score function will have AUC 1.0.
    # Because precision_range is discretized into num_anchors + 1 intervals
    # but only num_anchors terms are included in the Riemann sum, the
    # effective length of the integration interval is `delta` less than the
    # length of precision_range.
    scaled_loss = tf.div(per_label_loss,
                         precision_range[1] - precision_range[0] - delta,
                         name='AUC_Normalize')
    scaled_loss = tf.reshape(scaled_loss, original_shape)

    other_outputs = {
        'lambdas': lambdas_variable,
        'biases': biases,
        'label_priors': label_priors,
        'true_positives_lower_bound': true_positives_lower_bound(
            labels, logits, weights, surrogate_type),
        'false_positives_upper_bound': false_positives_upper_bound(
            labels, logits, weights, surrogate_type)}

    return scaled_loss, other_outputs
Exemplo n.º 14
0
def precision_recall_auc_loss(labels,
                              logits,
                              precision_range=(0.0, 1.0),
                              num_anchors=20,
                              weights=1.0,
                              dual_rate_factor=0.1,
                              label_priors=None,
                              surrogate_type='xent',
                              lambdas_initializer=tf.constant_initializer(1.0),
                              reuse=None,
                              variables_collections=None,
                              trainable=True,
                              scope=None):

    with tf.variable_scope(scope,
                           'precision_recall_auc',
                           [labels, logits, label_priors],
                           reuse=reuse):
        labels, logits, weights, original_shape = _prepare_labels_logits_weights(
            labels, logits, weights)
        num_labels = util.get_num_labels(logits)

        # Convert other inputs to tensors and standardize dtypes.
        dual_rate_factor = util.convert_and_cast(dual_rate_factor,
                                                 'dual_rate_factor',
                                                 logits.dtype)

        # Create Tensor of anchor points and distance between anchors.
        precision_values, delta = _range_to_anchors_and_delta(
            precision_range, num_anchors, logits.dtype)
        # Create lambdas with shape [1, num_labels, num_anchors].
        lambdas, lambdas_variable = _create_dual_variable(
            'lambdas',
            shape=[1, num_labels, num_anchors],
            dtype=logits.dtype,
            initializer=lambdas_initializer,
            collections=variables_collections,
            trainable=trainable,
            dual_rate_factor=dual_rate_factor)
        # Create biases with shape [1, num_labels, num_anchors].
        biases = tf.contrib.framework.model_variable(
            name='biases',
            shape=[1, num_labels, num_anchors],
            dtype=logits.dtype,
            initializer=tf.zeros_initializer(),
            collections=variables_collections,
            trainable=trainable)
        # Maybe create label_priors.
        label_priors = maybe_create_label_priors(label_priors, labels, weights,
                                                 variables_collections)
        label_priors = tf.reshape(label_priors, [1, num_labels, 1])

        # Expand logits, labels, and weights to shape [batch_size, num_labels, 1].
        logits = tf.expand_dims(logits, 2)
        labels = tf.expand_dims(labels, 2)
        weights = tf.expand_dims(weights, 2)

        # Calculate weighted loss and other outputs. The log(2.0) term corrects for
        # logloss not being an upper bound on the indicator function.
        loss = weights * util.weighted_surrogate_loss(
            labels,
            logits + biases,
            surrogate_type=surrogate_type,
            positive_weights=1.0 + lambdas * (1.0 - precision_values),
            negative_weights=lambdas * precision_values)
        maybe_log2 = tf.log(2.0) if surrogate_type == 'xent' else 1.0
        maybe_log2 = tf.cast(maybe_log2, logits.dtype.base_dtype)
        lambda_term = lambdas * (1.0 -
                                 precision_values) * label_priors * maybe_log2
        per_anchor_loss = loss - lambda_term
        per_label_loss = delta * tf.reduce_sum(per_anchor_loss, 2)
        # Normalize the AUC such that a perfect score function will have AUC 1.0.
        # Because precision_range is discretized into num_anchors + 1 intervals
        # but only num_anchors terms are included in the Riemann sum, the
        # effective length of the integration interval is `delta` less than the
        # length of precision_range.
        scaled_loss = tf.div(per_label_loss,
                             precision_range[1] - precision_range[0] - delta,
                             name='AUC_Normalize')
        scaled_loss = tf.reshape(scaled_loss, original_shape)

        other_outputs = {
            'lambdas':
            lambdas_variable,
            'biases':
            biases,
            'label_priors':
            label_priors,
            'true_positives_lower_bound':
            true_positives_lower_bound(labels, logits, weights,
                                       surrogate_type),
            'false_positives_upper_bound':
            false_positives_upper_bound(labels, logits, weights,
                                        surrogate_type)
        }

        return scaled_loss, other_outputs
Exemplo n.º 15
0
def true_positive_rate_at_false_positive_rate_loss(
        labels,
        logits,
        target_rate,
        weights=1.0,
        dual_rate_factor=0.1,
        label_priors=None,
        surrogate_type='xent',
        lambdas_initializer=tf.constant_initializer(1.0),
        reuse=None,
        variables_collections=None,
        trainable=True,
        scope=None):

    with tf.variable_scope(scope,
                           'tpr_at_fpr', [labels, logits, label_priors],
                           reuse=reuse):
        labels, logits, weights, original_shape = _prepare_labels_logits_weights(
            labels, logits, weights)
        num_labels = util.get_num_labels(logits)

        # Convert other inputs to tensors and standardize dtypes.
        target_rate = util.convert_and_cast(target_rate, 'target_rate',
                                            logits.dtype)
        dual_rate_factor = util.convert_and_cast(dual_rate_factor,
                                                 'dual_rate_factor',
                                                 logits.dtype)

        # Create lambdas.
        lambdas, lambdas_variable = _create_dual_variable(
            'lambdas',
            shape=[num_labels],
            dtype=logits.dtype,
            initializer=lambdas_initializer,
            collections=variables_collections,
            trainable=trainable,
            dual_rate_factor=dual_rate_factor)
        # Maybe create label_priors.
        label_priors = maybe_create_label_priors(label_priors, labels, weights,
                                                 variables_collections)

        # Loss op and other outputs. The log(2.0) term corrects for
        # logloss not being an upper bound on the indicator function.
        weighted_loss = weights * util.weighted_surrogate_loss(
            labels,
            logits,
            surrogate_type=surrogate_type,
            positive_weights=1.0,
            negative_weights=lambdas)
        maybe_log2 = tf.log(2.0) if surrogate_type == 'xent' else 1.0
        maybe_log2 = tf.cast(maybe_log2, logits.dtype.base_dtype)
        lambda_term = lambdas * target_rate * (1.0 - label_priors) * maybe_log2
        loss = tf.reshape(weighted_loss - lambda_term, original_shape)
        other_outputs = {
            'lambdas':
            lambdas_variable,
            'label_priors':
            label_priors,
            'true_positives_lower_bound':
            true_positives_lower_bound(labels, logits, weights,
                                       surrogate_type),
            'false_positives_upper_bound':
            false_positives_upper_bound(labels, logits, weights,
                                        surrogate_type)
        }

    return loss, other_outputs