Exemplo n.º 1
0
def test_equal_area_penalties(debug=False):
    # %%

    optim_spec = OptimizationSpec(nnls=True, max_nfev=999)
    noise_spec = NoiseSpec(active=True, seed=1, std_dev=1e-8)

    wavelengths = np.arange(650, 670, 2)
    time_p1 = np.linspace(-1, 2, 50, endpoint=False)
    time_p2 = np.linspace(2, 10, 30, endpoint=False)
    time_p3 = np.geomspace(10, 50, num=20)
    times = np.concatenate([time_p1, time_p2, time_p3])

    irf_loc = float(times[20])
    irf_width = float((times[1] - times[0]) * 10)
    irf = IrfSpec(irf_loc, irf_width)

    amplitude = 1
    location1 = float(wavelengths[2])  # 2
    location2 = float(wavelengths[-3])  # -3
    width1 = float((wavelengths[1] - wavelengths[0]) * 5)
    width2 = float((wavelengths[1] - wavelengths[0]) * 3)
    shape1 = ShapeSpec(amplitude, location1, width1)
    shape2 = ShapeSpec(amplitude, location2, width2)
    dataset_spec = DatasetSpec(times, wavelengths, irf, [shape1, shape2])

    wavelengths = dataset_spec.wavelengths
    equ_interval = [(min(wavelengths), max(wavelengths))]
    weight = 0.01
    # %% The base model specification (mspec)
    base = {
        "initial_concentration": {
            "j1": {
                "compartments": ["s1", "s2"],
                "parameters": ["i.1", "i.2"],
            },
        },
        "megacomplex": {
            "mc1": {
                "k_matrix": ["k1"]
            },
        },
        "k_matrix": {
            "k1": {
                "matrix": {
                    ("s1", "s1"): "kinetic.1",
                    ("s2", "s2"): "kinetic.2",
                }
            }
        },
        "irf": {
            "irf1": {
                "type": "gaussian",
                "center": "irf.center",
                "width": "irf.width"
            },
        },
        "dataset": {
            "dataset1": {
                "initial_concentration": "j1",
                "megacomplex": ["mc1"],
                "irf": "irf1",
            },
        },
    }

    shape = {
        "shape": {
            "sh1": {
                "type": "gaussian",
                "amplitude": "shapes.amps.1",
                "location": "shapes.locs.1",
                "width": "shapes.width.1",
            },
            "sh2": {
                "type": "gaussian",
                "amplitude": "shapes.amps.2",
                "location": "shapes.locs.2",
                "width": "shapes.width.2",
            },
        }
    }

    dataset_shape = {
        "shape": {
            "s1": "sh1",
            "s2": "sh2",
        }
    }

    equ_area = {
        "equal_area_penalties": [
            {
                "source": "s1",
                "target": "s2",
                "parameter": "rela.1",
                "source_intervals": equ_interval,
                "target_intervals": equ_interval,
                "weight": weight,
            },
        ],
    }
    mspec = ModelSpec(base, shape, dataset_shape, equ_area)

    rela = 1.0  # relation between areas
    irf = dataset_spec.irf
    [sh1, sh2] = dataset_spec.shapes
    pspec_base = {
        "kinetic": [1e-1, 5e-3],
        "i": [0.5, 0.5, {
            "vary": False
        }],
        "irf": [["center", irf.location], ["width", irf.width]],
    }
    pspec_equa_area = {
        "rela": [rela, {
            "vary": False
        }],
    }
    pspec_shape = {
        "shapes": {
            "amps": [sh1.amplitude, sh2.amplitude],
            "locs": [sh1.location, sh2.location],
            "width": [sh1.width, sh2.width],
        },
    }
    pspec = ParameterSpec(pspec_base, pspec_equa_area, pspec_shape)

    # derivates:
    mspec_sim = dict(deepcopy(mspec.base), **mspec.shape)
    mspec_sim["dataset"]["dataset1"].update(mspec.dataset_shape)

    mspec_fit_wp = dict(deepcopy(mspec.base), **mspec.equ_area)
    mspec_fit_np = dict(deepcopy(mspec.base))

    model_sim = KineticSpectrumModel.from_dict(mspec_sim)
    model_wp = KineticSpectrumModel.from_dict(mspec_fit_wp)
    model_np = KineticSpectrumModel.from_dict(mspec_fit_np)
    print(model_np)

    # %% Parameter specification (pspec)

    pspec_sim = dict(deepcopy(pspec.base), **pspec.shapes)
    param_sim = ParameterGroup.from_dict(pspec_sim)

    # For the wp model we create two version of the parameter specification
    # One has all inputs fixed, the other has all but the first free
    # for both we perturb kinetic parameters a bit to give the optimizer some work
    pspec_wp = dict(deepcopy(pspec.base), **pspec.equal_area)
    pspec_wp["kinetic"] = [v * 1.01 for v in pspec_wp["kinetic"]]
    pspec_wp.update({"i": [[1, {"vary": False}], 1]})

    pspec_np = dict(deepcopy(pspec.base))

    param_wp = ParameterGroup.from_dict(pspec_wp)
    param_np = ParameterGroup.from_dict(pspec_np)

    # %% Print models with parameters
    print(model_sim.markdown(param_sim))
    print(model_wp.markdown(param_wp))
    print(model_np.markdown(param_np))

    # %%
    simulated_data = model_sim.simulate(
        "dataset1",
        param_sim,
        axes={
            "time": times,
            "spectral": wavelengths
        },
        noise=noise_spec.active,
        noise_std_dev=noise_spec.std_dev,
        noise_seed=noise_spec.seed,
    )
    # %%
    simulated_data = prepare_time_trace_dataset(simulated_data)
    # make a copy to keep an intact reference
    data = deepcopy(simulated_data)

    # %% Optimizing model without penalty (np)

    dataset = {"dataset1": data}
    scheme_np = Scheme(
        model=model_np,
        parameters=param_np,
        data=dataset,
        nnls=optim_spec.nnls,
        nfev=optim_spec.max_nfev,
    )
    result_np = optimize(scheme_np)
    print(result_np)

    # %% Optimizing model with penalty fixed inputs (wp_ifix)
    scheme_wp = Scheme(
        model=model_wp,
        parameters=param_wp,
        data=dataset,
        nnls=optim_spec.nnls,
        nfev=optim_spec.max_nfev,
    )
    result_wp = optimize(scheme_wp)
    print(result_wp)

    if debug:
        # %% Plot results
        plt_spec = importlib.util.find_spec("matplotlib")
        if plt_spec is not None:
            import matplotlib.pyplot as plt

            plot_overview(result_np.data["dataset1"], "no penalties")
            plot_overview(result_wp.data["dataset1"], "with penalties")
            plt.show()

    # %% Test calculation
    print(result_wp.data["dataset1"])
    area1_np = np.sum(
        result_np.data["dataset1"].species_associated_spectra.sel(
            species="s1"))
    area2_np = np.sum(
        result_np.data["dataset1"].species_associated_spectra.sel(
            species="s2"))
    assert not np.isclose(area1_np, area2_np)

    area1_wp = np.sum(
        result_wp.data["dataset1"].species_associated_spectra.sel(
            species="s1"))
    area2_wp = np.sum(
        result_wp.data["dataset1"].species_associated_spectra.sel(
            species="s2"))
    assert np.isclose(area1_wp, area2_wp)

    input_ratio = result_wp.optimized_parameters.get(
        "i.1") / result_wp.optimized_parameters.get("i.2")
    assert np.isclose(input_ratio, 1.5038858115)
def test_spectral_relation():
    model = KineticSpectrumModel.from_dict({
        'initial_concentration': {
            'j1': {
                'compartments': ['s1', 's2', 's3', 's4'],
                'parameters': ['i.1', 'i.2', 'i.3', 'i.4']
            },
        },
        'megacomplex': {
            'mc1': {
                'k_matrix': ['k1']
            },
        },
        'k_matrix': {
            "k1": {
                'matrix': {
                    ("s1", "s1"): 'kinetic.1',
                    ("s2", "s2"): 'kinetic.1',
                    ("s3", "s3"): 'kinetic.1',
                    ("s4", "s4"): 'kinetic.1',
                }
            }
        },
        'spectral_relations': [
            {
                'compartment': 's1',
                'target': 's2',
                'parameter': 'rel.1',
                'interval': [(0, 2)],
            },
            {
                'compartment': 's1',
                'target': 's3',
                'parameter': 'rel.2',
                'interval': [(0, 2)],
            },
        ],
        'dataset': {
            'dataset1': {
                'initial_concentration': 'j1',
                'megacomplex': ['mc1'],
            },
        },
    })
    print(model)

    rel1, rel2 = 10, 20
    parameter = ParameterGroup.from_dict({
        'kinetic': [1e-4],
        'i': [1, 2, 3, 4],
        'rel': [rel1, rel2],
    })

    time = np.asarray(np.arange(0, 50, 1.5))
    dataset = model.dataset['dataset1'].fill(model, parameter)
    compartments, matrix = kinetic_image_matrix(dataset, time, 0)

    assert len(compartments) == 4
    assert matrix.shape == (time.size, 4)

    reduced_compartments, relation_matrix = \
        create_spectral_relation_matrix(model, parameter, compartments, matrix, 1)

    print(relation_matrix)
    assert len(reduced_compartments) == 2
    assert relation_matrix.shape == (4, 2)
    assert np.array_equal(relation_matrix, [
        [1., 0.],
        [10., 0.],
        [20., 0.],
        [0., 1.],
    ])

    reduced_compartments, reduced_matrix = \
        model.constrain_matrix_function(parameter, compartments, matrix, 1)

    assert reduced_matrix.shape == (time.size, 2)

    print(reduced_matrix[0, 0], matrix[0, 0], matrix[0, 1], matrix[0, 2])
    assert np.allclose(
        reduced_matrix[:, 0],
        matrix[:, 0] + rel1 * matrix[:, 1] + rel2 * matrix[:, 2])

    clp = xr.DataArray([[1., 10., 20., 1]],
                       coords=(('spectral', [1]), ('clp_label',
                                                   ['s1', 's2', 's3', 's4'])))

    data = model.simulate('dataset1',
                          parameter,
                          clp=clp,
                          axes={
                              'time': time,
                              'spectral': np.array([1])
                          })

    result = model.optimize(parameter, {'dataset1': data}, max_nfev=1)

    result_data = result.data['dataset1']
    print(result_data.species_associated_spectra)
    assert result_data.species_associated_spectra.shape == (1, 4)
    assert result_data.species_associated_spectra[0, 1] == \
        rel1 * result_data.species_associated_spectra[0, 0]
    assert result_data.species_associated_spectra[0, 2] == \
        rel2 * result_data.species_associated_spectra[0, 0]
Exemplo n.º 3
0
def test_spectral_penalties():

    model_without_penalty = KineticSpectrumModel.from_dict({
        "initial_concentration": {
            "j1": {
                "compartments": ["s1", "s2", "s3"],
                "parameters": ["i.1", "i.2", "i.3"]
            },
        },
        "megacomplex": {
            "mc1": {
                "k_matrix": ["k1"]
            },
        },
        "k_matrix": {
            "k1": {
                "matrix": {
                    ("s1", "s1"): "kinetic.1",
                    ("s2", "s2"): "kinetic.1",
                    ("s3", "s3"): "kinetic.1",
                }
            }
        },
        "spectral_relations": [
            {
                "compartment": "s1",
                "target": "s2",
                "parameter": "rel.1",
                "interval": [(0, 2)],
            },
        ],
        "dataset": {
            "dataset1": {
                "initial_concentration": "j1",
                "megacomplex": ["mc1"],
            },
        },
    })

    weight = 0.1
    model_with_penalty = KineticSpectrumModel.from_dict({
        "initial_concentration": {
            "j1": {
                "compartments": ["s1", "s2", "s3"],
                "parameters": ["i.1", "i.2", "i.3"]
            },
        },
        "megacomplex": {
            "mc1": {
                "k_matrix": ["k1"]
            },
        },
        "k_matrix": {
            "k1": {
                "matrix": {
                    ("s1", "s1"): "kinetic.1",
                    ("s2", "s2"): "kinetic.1",
                    ("s3", "s3"): "kinetic.1",
                }
            }
        },
        "equal_area_penalties": [
            {
                "compartment": "s2",
                "target": "s3",
                "parameter": "pen.1",
                "interval": [(0, 2)],
                "weight": weight,
            },
        ],
        "spectral_relations": [
            {
                "compartment": "s1",
                "target": "s2",
                "parameter": "rel.1",
                "interval": [(0, 2)],
            },
        ],
        "dataset": {
            "dataset1": {
                "initial_concentration": "j1",
                "megacomplex": ["mc1"],
            },
        },
    })
    print(model_with_penalty)

    rel1 = 2
    pen = 0.5
    parameter = ParameterGroup.from_dict({
        "kinetic": [1e-4],
        "i": [1, 1, 1],
        "rel": [rel1],
        "pen": [pen],
    })

    time = np.asarray(np.arange(0, 50, 1.5))
    clp = xr.DataArray([[1.0, 2.0, 4]],
                       coords=(("spectral", [1]), ("clp_label",
                                                   ["s1", "s2", "s3"])))

    data = model_without_penalty.simulate("dataset1",
                                          parameter,
                                          clp=clp,
                                          axes={
                                              "time": time,
                                              "spectral": np.array([1])
                                          })

    result_with_penalty = model_with_penalty.optimize(parameter,
                                                      {"dataset1": data},
                                                      max_nfev=1)

    parameter_no_penalty = deepcopy(parameter)
    del parameter_no_penalty["pen"]

    result_without_penalty = model_without_penalty.optimize(
        parameter_no_penalty, {"dataset1": data}, max_nfev=1)

    result_data = result_with_penalty.data["dataset1"]
    wanted_penalty = (
        result_data.species_associated_spectra.sel(species="s2") -
        result_data.species_associated_spectra.sel(species="s3") * pen)
    wanted_penalty *= weight
    wanted_penalty **= 2
    wanted_penalty = np.sum(wanted_penalty.values)

    additional_penalty = result_with_penalty.chisqr - result_without_penalty.chisqr
    assert np.isclose(additional_penalty, wanted_penalty)
Exemplo n.º 4
0
def test_coherent_artifact():
    model_dict = {
        "initial_concentration": {
            "j1": {
                "compartments": ["s1"],
                "parameters": ["2"]
            },
        },
        "megacomplex": {
            "mc1": {
                "k_matrix": ["k1"]
            },
        },
        "k_matrix": {
            "k1": {
                "matrix": {
                    ("s1", "s1"): "1",
                }
            }
        },
        "irf": {
            "irf1": {
                "type": "gaussian-coherent-artifact",
                "center": "2",
                "width": "3",
                "coherent_artifact_order": 3,
            },
        },
        "dataset": {
            "dataset1": {
                "initial_concentration": "j1",
                "megacomplex": ["mc1"],
                "irf": "irf1",
            },
        },
    }
    model = KineticSpectrumModel.from_dict(model_dict.copy())

    parameters = ParameterGroup.from_list([
        101e-4,
        [10, {
            "vary": False,
            "non-negative": False
        }],
        [20, {
            "vary": False,
            "non-negative": False
        }],
        [30, {
            "vary": False,
            "non-negative": False
        }],
    ])

    time = np.asarray(np.arange(0, 50, 1.5))

    irf = model.irf["irf1"].fill(model, parameters)
    irf_same_width = irf.calculate_coherent_artifact(time)

    model_dict["irf"]["irf1"]["coherent_artifact_width"] = "4"
    model = KineticSpectrumModel.from_dict(model_dict)

    irf = model.irf["irf1"].fill(model, parameters)
    irf_diff_width = irf.calculate_coherent_artifact(time)

    assert np.array_equal(irf_same_width[0],
                          irf_diff_width[0])  # labels the same
    assert not np.array_equal(irf_same_width[1],
                              irf_diff_width[1])  # but content is not

    data = model.dataset["dataset1"].fill(model, parameters)
    compartments, matrix = kinetic_spectrum_matrix(data, time, 0)

    assert len(compartments) == 4
    for i in range(1, 4):
        assert compartments[i] == f"coherent_artifact_{i}"

    assert matrix.shape == (time.size, 4)

    clp = xr.DataArray(
        [[1, 1, 1, 1]],
        coords=[
            ("spectral", [0]),
            (
                "clp_label",
                [
                    "s1",
                    "coherent_artifact_1",
                    "coherent_artifact_2",
                    "coherent_artifact_3",
                ],
            ),
        ],
    )
    axis = {"time": time, "spectral": clp.spectral}
    data = model.simulate("dataset1", parameters, axis, clp)

    dataset = {"dataset1": data}
    scheme = Scheme(model=model,
                    parameters=parameters,
                    data=dataset,
                    maximum_number_function_evaluations=20)
    result = optimize(scheme)
    print(result.optimized_parameters)

    for label, param in result.optimized_parameters.all():
        assert np.allclose(param.value, parameters.get(label).value, rtol=1e-1)

    resultdata = result.data["dataset1"]
    assert np.array_equal(data.time, resultdata.time)
    assert np.array_equal(data.spectral, resultdata.spectral)
    assert data.data.shape == resultdata.data.shape
    assert data.data.shape == resultdata.fitted_data.shape
    assert np.allclose(data.data, resultdata.fitted_data, rtol=1e-2)

    assert "coherent_artifact_concentration" in resultdata
    assert resultdata["coherent_artifact_concentration"].shape == (time.size,
                                                                   3)

    assert "coherent_artifact_associated_spectra" in resultdata
    assert resultdata["coherent_artifact_associated_spectra"].shape == (1, 3)
Exemplo n.º 5
0
class OneComponentOneChannel:
    model = KineticSpectrumModel.from_dict({
        "initial_concentration": {
            "j1": {
                "compartments": ["s1"],
                "parameters": ["2"]
            },
        },
        "megacomplex": {
            "mc1": {
                "k_matrix": ["k1"]
            },
        },
        "k_matrix": {
            "k1": {
                "matrix": {
                    ("s1", "s1"): "1",
                }
            }
        },
        "dataset": {
            "dataset1": {
                "initial_concentration": "j1",
                "megacomplex": ["mc1"],
            },
        },
    })
    sim_model = KineticSpectrumModel.from_dict({
        "initial_concentration": {
            "j1": {
                "compartments": ["s1"],
                "parameters": ["2"]
            },
        },
        "shape": {
            "sh1": ["one"]
        },
        "megacomplex": {
            "mc1": {
                "k_matrix": ["k1"]
            },
        },
        "k_matrix": {
            "k1": {
                "matrix": {
                    ("s1", "s1"): "1",
                }
            }
        },
        "dataset": {
            "dataset1": {
                "initial_concentration": "j1",
                "megacomplex": ["mc1"],
                "shape": {
                    "s1": "sh1"
                },
            },
        },
    })

    initial_parameters = ParameterGroup.from_list(
        [101e-4, [1, {
            "vary": False,
            "non-negative": False
        }]])
    wanted_parameters = ParameterGroup.from_list(
        [101e-3, [1, {
            "vary": False,
            "non-negative": False
        }]])

    time = np.asarray(np.arange(0, 50, 1.5))
    spectral = np.asarray([0])
    axis = {"time": time, "spectral": spectral}
Exemplo n.º 6
0
def test_spectral_relation():
    model = KineticSpectrumModel.from_dict({
        "initial_concentration": {
            "j1": {
                "compartments": ["s1", "s2", "s3", "s4"],
                "parameters": ["i.1", "i.2", "i.3", "i.4"],
            },
        },
        "megacomplex": {
            "mc1": {
                "k_matrix": ["k1"]
            },
        },
        "k_matrix": {
            "k1": {
                "matrix": {
                    ("s1", "s1"): "kinetic.1",
                    ("s2", "s2"): "kinetic.1",
                    ("s3", "s3"): "kinetic.1",
                    ("s4", "s4"): "kinetic.1",
                }
            }
        },
        "spectral_relations": [
            {
                "compartment": "s1",
                "target": "s2",
                "parameter": "rel.1",
                "interval": [(0, 2)],
            },
            {
                "compartment": "s1",
                "target": "s3",
                "parameter": "rel.2",
                "interval": [(0, 2)],
            },
        ],
        "dataset": {
            "dataset1": {
                "initial_concentration": "j1",
                "megacomplex": ["mc1"],
            },
        },
    })
    print(model)

    rel1, rel2 = 10, 20
    parameter = ParameterGroup.from_dict({
        "kinetic": [1e-4],
        "i": [1, 2, 3, 4],
        "rel": [rel1, rel2],
    })

    time = np.asarray(np.arange(0, 50, 1.5))
    dataset = model.dataset["dataset1"].fill(model, parameter)
    compartments, matrix = kinetic_image_matrix(dataset, time, 0)

    assert len(compartments) == 4
    assert matrix.shape == (time.size, 4)

    reduced_compartments, relation_matrix = create_spectral_relation_matrix(
        model, parameter, compartments, matrix, 1)

    print(relation_matrix)
    assert len(reduced_compartments) == 2
    assert relation_matrix.shape == (4, 2)
    assert np.array_equal(
        relation_matrix,
        [
            [1.0, 0.0],
            [10.0, 0.0],
            [20.0, 0.0],
            [0.0, 1.0],
        ],
    )

    reduced_compartments, reduced_matrix = model.constrain_matrix_function(
        parameter, compartments, matrix, 1)

    assert reduced_matrix.shape == (time.size, 2)

    print(reduced_matrix[0, 0], matrix[0, 0], matrix[0, 1], matrix[0, 2])
    assert np.allclose(
        reduced_matrix[:, 0],
        matrix[:, 0] + rel1 * matrix[:, 1] + rel2 * matrix[:, 2])

    clp = xr.DataArray([[1.0, 10.0, 20.0, 1]],
                       coords=(("spectral", [1]), ("clp_label",
                                                   ["s1", "s2", "s3", "s4"])))

    data = model.simulate("dataset1",
                          parameter,
                          clp=clp,
                          axes={
                              "time": time,
                              "spectral": np.array([1])
                          })

    result = model.optimize(parameter, {"dataset1": data}, max_nfev=1)

    result_data = result.data["dataset1"]
    print(result_data.species_associated_spectra)
    assert result_data.species_associated_spectra.shape == (1, 4)
    assert (result_data.species_associated_spectra[0, 1] == rel1 *
            result_data.species_associated_spectra[0, 0])
    assert (result_data.species_associated_spectra[0, 2] == rel2 *
            result_data.species_associated_spectra[0, 0])
Exemplo n.º 7
0
def test_spectral_constraint():
    model = KineticSpectrumModel.from_dict({
        "initial_concentration": {
            "j1": {
                "compartments": ["s1", "s2"],
                "parameters": ["i.1", "i.2"],
            },
        },
        "megacomplex": {
            "mc1": {
                "k_matrix": ["k1"]
            },
        },
        "k_matrix": {
            "k1": {
                "matrix": {
                    ("s2", "s1"): "kinetic.1",
                    ("s2", "s2"): "kinetic.2",
                }
            }
        },
        "spectral_constraints": [
            {
                "type": "zero",
                "compartment": "s2",
                "interval": (float("-inf"), float("inf"))
            },
        ],
        "dataset": {
            "dataset1": {
                "initial_concentration": "j1",
                "megacomplex": ["mc1"],
            },
        },
    })
    print(model)

    wanted_parameters = ParameterGroup.from_dict({
        "kinetic": [1e-4, 1e-5],
        "i": [1, 2],
    })
    initial_parameters = ParameterGroup.from_dict({
        "kinetic": [2e-4, 2e-5],
        "i": [1, 2, {
            "vary": False
        }],
    })

    time = np.asarray(np.arange(0, 50, 1.5))
    dataset = model.dataset["dataset1"].fill(model, wanted_parameters)
    compartments, matrix = kinetic_image_matrix(dataset, time, 0)

    assert len(compartments) == 2
    assert matrix.shape == (time.size, 2)

    reduced_compartments, reduced_matrix = apply_spectral_constraints(
        model, compartments, matrix, 1)

    print(reduced_matrix)
    assert len(reduced_compartments) == 1
    assert reduced_matrix.shape == (time.size, 1)

    reduced_compartments, reduced_matrix = model.constrain_matrix_function(
        "dataset1", wanted_parameters, compartments, matrix, 1)

    assert reduced_matrix.shape == (time.size, 1)

    clp = xr.DataArray([[1.0, 10.0, 20.0, 1]],
                       coords=(("spectral", [1]), ("clp_label",
                                                   ["s1", "s2", "s3", "s4"])))

    data = model.simulate("dataset1",
                          wanted_parameters,
                          clp=clp,
                          axes={
                              "time": time,
                              "spectral": np.array([1])
                          })

    dataset = {"dataset1": data}
    scheme = Scheme(model=model,
                    parameters=initial_parameters,
                    data=dataset,
                    nfev=20)

    # the resulting jacobian is singular
    with pytest.warns(UserWarning):
        result = optimize(scheme)

    result_data = result.data["dataset1"]
    print(result_data.clp_label)
    print(result_data.clp)
    #  TODO: save reduced clp
    #  assert result_data.clp.shape == (1, 1)

    print(result_data.species_associated_spectra)
    assert result_data.species_associated_spectra.shape == (1, 2)
    assert result_data.species_associated_spectra[0, 1] == 0
Exemplo n.º 8
0
sim_model = KineticSpectrumModel.from_dict({
    "initial_concentration": {
        "j1": {
            "compartments": ["s1", "s2", "s3"],
            "parameters": ["j.1", "j.0", "j.0"],
        },
    },
    "k_matrix": {
        "k1": {
            "matrix": {
                ("s2", "s1"): "kinetic.1",
                ("s3", "s2"): "kinetic.2",
                ("s3", "s3"): "kinetic.3",
            }
        }
    },
    "megacomplex": {
        "m1": {
            "k_matrix": ["k1"],
        }
    },
    "shape": {
        "sh1": {
            "type": "gaussian",
            "amplitude": "shapes.amps.1",
            "location": "shapes.locs.1",
            "width": "shapes.width.1",
        },
        "sh2": {
            "type": "gaussian",
            "amplitude": "shapes.amps.2",
            "location": "shapes.locs.2",
            "width": "shapes.width.2",
        },
        "sh3": {
            "type": "gaussian",
            "amplitude": "shapes.amps.3",
            "location": "shapes.locs.3",
            "width": "shapes.width.3",
        },
    },
    "irf": {
        "irf1": {
            "type": "gaussian",
            "center": "irf.center",
            "width": "irf.width"
        },
    },
    "dataset": {
        "dataset1": {
            "initial_concentration": "j1",
            "megacomplex": ["m1"],
            "shape": {
                "s1": "sh1",
                "s2": "sh2",
                "s3": "sh3",
            },
            "irf": "irf1",
        }
    },
})
Exemplo n.º 9
0
class MultiIrfDispersion:
    model = KineticSpectrumModel.from_dict({
        'initial_concentration': {
            'j1': {
                'compartments': ['s1'],
                'parameters': ['j.1']
            },
        },
        'megacomplex': {
            'mc1': {
                'k_matrix': ['k1']
            },
        },
        'k_matrix': {
            "k1": {
                'matrix': {
                    ("s1", "s1"): 'kinetic.1',
                }
            }
        },
        'irf': {
            'irf1': {
                'type': 'spectral-multi-gaussian',
                'center': ['irf.center'],
                'width': ['irf.width'],
                'dispersion_center': 'irf.dispcenter',
                'center_dispersion': ['irf.centerdisp1', 'irf.centerdisp2'],
                'width_dispersion': ['irf.widthdisp'],
            },
        },
        'dataset': {
            'dataset1': {
                'initial_concentration': 'j1',
                'irf': 'irf1',
                'megacomplex': ['mc1'],
            },
        },
    })
    sim_model = KineticSpectrumModel.from_dict({
        'initial_concentration': {
            'j1': {
                'compartments': ['s1'],
                'parameters': ['j.1']
            },
        },
        'megacomplex': {
            'mc1': {
                'k_matrix': ['k1']
            },
        },
        'k_matrix': {
            "k1": {
                'matrix': {
                    ("s1", "s1"): 'kinetic.1',
                }
            }
        },
        'irf': {
            'irf1': {
                'type': 'spectral-multi-gaussian',
                'center': ['irf.center'],
                'width': ['irf.width'],
                'dispersion_center': 'irf.dispcenter',
                'center_dispersion': ['irf.centerdisp1', 'irf.centerdisp2'],
                'width_dispersion': ['irf.widthdisp'],
            },
        },
        'shape': {
            'sh1': {
                'type': "one",
            },
        },
        'dataset': {
            'dataset1': {
                'initial_concentration': 'j1',
                'irf': 'irf1',
                'megacomplex': ['mc1'],
                'shape': {
                    's1': 'sh1'
                }
            },
        },
    })

    initial = ParameterGroup.from_dict({
        'j': [
            ['1', 1, {
                'vary': False,
                'non-negative': False
            }],
        ],
        'kinetic': [["1", 0.5], {
            'non-negative': False
        }],
        'irf': [['center', 0.3], ['width', 0.1],
                ['dispcenter', 400, {
                    'vary': False
                }], ['centerdisp1', 0.01], ['centerdisp2', 0.001],
                ['widthdisp', 0.025]],
    })
    wanted = ParameterGroup.from_dict({
        'j': [
            ['1', 1, {
                'vary': False,
                'non-negative': False
            }],
        ],
        'kinetic': [
            ["1", 0.5],
        ],
        'irf': [['center', 0.3], ['width', 0.1],
                ['dispcenter', 400, {
                    'vary': False
                }], ['centerdisp1', 0.01], ['centerdisp2', 0.001],
                ['widthdisp', 0.025]],
    })

    time = np.arange(-1, 5, 0.2)
    spectral = np.arange(300, 500, 25)
    axis = {"time": time, "spectral": spectral}
Exemplo n.º 10
0
class SimpleIrfDispersion:
    model = KineticSpectrumModel.from_dict({
        'initial_concentration': {
            'j1': {
                'compartments': ['s1'],
                'parameters': ['j.1']
            },
        },
        'megacomplex': {
            'mc1': {
                'k_matrix': ['k1']
            },
        },
        'k_matrix': {
            "k1": {
                'matrix': {
                    ("s1", "s1"): 'kinetic.1',
                }
            }
        },
        'irf': {
            'irf1': {
                'type': 'spectral-gaussian',
                'center': 'irf.center',
                'width': 'irf.width',
                'dispersion_center': 'irf.dispcenter',
                'center_dispersion': ['irf.centerdisp'],
            },
        },
        'dataset': {
            'dataset1': {
                'initial_concentration': 'j1',
                'irf': 'irf1',
                'megacomplex': ['mc1'],
            },
        },
    })
    sim_model = KineticSpectrumModel.from_dict({
        'initial_concentration': {
            'j1': {
                'compartments': ['s1'],
                'parameters': ['j.1']
            },
        },
        'megacomplex': {
            'mc1': {
                'k_matrix': ['k1']
            },
        },
        'k_matrix': {
            "k1": {
                'matrix': {
                    ("s1", "s1"): 'kinetic.1',
                }
            }
        },
        'irf': {
            'irf1': {
                'type': 'spectral-gaussian',
                'center': 'irf.center',
                'width': 'irf.width',
                'dispersion_center': 'irf.dispcenter',
                'center_dispersion': ['irf.centerdisp'],
            },
        },
        'shape': {
            'sh1': {
                'type': "one",
            },
        },
        'dataset': {
            'dataset1': {
                'initial_concentration': 'j1',
                'irf': 'irf1',
                'megacomplex': ['mc1'],
                'shape': {
                    's1': 'sh1'
                }
            },
        },
    })

    initial = ParameterGroup.from_dict({
        'j': [
            ['1', 1, {
                'vary': False,
                'non-negative': False
            }],
        ],
        'kinetic': [["1", 0.5], {
            'non-negative': False
        }],
        'irf': [['center', 0.3], ['width', 0.1],
                ['dispcenter', 400, {
                    'vary': False
                }], ['centerdisp', 0.5]],
    })
    wanted = ParameterGroup.from_dict({
        'j': [
            ['1', 1, {
                'vary': False,
                'non-negative': False
            }],
        ],
        'kinetic': [
            ["1", 0.5],
        ],
        'irf': [['center', 0.3], ['width', 0.1], ['dispcenter', 400],
                ['centerdisp', 0.5]],
    })

    time_p1 = np.linspace(-1, 2, 50, endpoint=False)
    time_p2 = np.linspace(2, 5, 30, endpoint=False)
    time_p3 = np.geomspace(5, 10, num=20)
    time = np.concatenate([time_p1, time_p2, time_p3])
    spectral = np.arange(300, 500, 5)
    axis = {"time": time, "spectral": spectral}
Exemplo n.º 11
0
def test_coherent_artifact():
    model_dict = {
        'initial_concentration': {
            'j1': {
                'compartments': ['s1'],
                'parameters': ['2']
            },
        },
        'megacomplex': {
            'mc1': {
                'k_matrix': ['k1']
            },
        },
        'k_matrix': {
            "k1": {
                'matrix': {
                    ("s1", "s1"): '1',
                }
            }
        },
        'irf': {
            'irf1': {
                'type': 'gaussian-coherent-artifact',
                'center': '2',
                'width': '3',
                'coherent_artifact_order': 3,
            },
        },
        'dataset': {
            'dataset1': {
                'initial_concentration': 'j1',
                'megacomplex': ['mc1'],
                'irf': 'irf1',
            },
        },
    }
    model = KineticSpectrumModel.from_dict(model_dict.copy())

    parameter = ParameterGroup.from_list([
        101e-4,
        [10, {
            'vary': False,
            'non-negative': False
        }],
        [20, {
            'vary': False,
            'non-negative': False
        }],
        [30, {
            'vary': False,
            'non-negative': False
        }],
    ])

    time = np.asarray(np.arange(0, 50, 1.5))

    irf = model.irf['irf1'].fill(model, parameter)
    irf_same_width = irf.calculate_coherent_artifact(time)

    model_dict['irf']['irf1']['coherent_artifact_width'] = '4'
    model = KineticSpectrumModel.from_dict(model_dict)

    irf = model.irf['irf1'].fill(model, parameter)
    irf_diff_width = irf.calculate_coherent_artifact(time)

    assert not np.array_equal(irf_same_width, irf_diff_width)

    dataset = model.dataset['dataset1'].fill(model, parameter)
    compartments, matrix = kinetic_spectrum_matrix(dataset, time, 0)

    assert len(compartments) == 4
    for i in range(1, 4):
        assert compartments[i] == f'coherent_artifact_{i}'

    assert matrix.shape == (time.size, 4)

    clp = xr.DataArray([[1, 1, 1, 1]],
                       coords=[('spectral', [0]),
                               ('clp_label', [
                                   's1',
                                   'coherent_artifact_1',
                                   'coherent_artifact_2',
                                   'coherent_artifact_3',
                               ])])
    axis = {"time": time, "spectral": clp.spectral}
    dataset = model.simulate('dataset1', parameter, axis, clp)

    data = {'dataset1': dataset}
    result = model.optimize(parameter, data, max_nfev=20)
    print(result.optimized_parameter)

    for label, param in result.optimized_parameter.all():
        assert np.allclose(param.value, parameter.get(label).value, rtol=1e-1)

    resultdata = result.data["dataset1"]
    assert np.array_equal(dataset['time'], resultdata['time'])
    assert np.array_equal(dataset['spectral'], resultdata['spectral'])
    assert dataset.data.shape == resultdata.data.shape
    assert dataset.data.shape == resultdata.fitted_data.shape
    assert np.allclose(dataset.data, resultdata.fitted_data, rtol=1e-2)

    assert 'coherent_artifact_concentration' in resultdata
    assert resultdata['coherent_artifact_concentration'].shape == (time.size,
                                                                   3)

    assert 'coherent_artifact_associated_spectra' in resultdata
    assert resultdata['coherent_artifact_associated_spectra'].shape == (1, 3)
Exemplo n.º 12
0
class OneComponentOneChannelGaussianIrf:
    model = KineticSpectrumModel.from_dict({
        'initial_concentration': {
            'j1': {
                'compartments': ['s1'],
                'parameters': ['2']
            },
        },
        'megacomplex': {
            'mc1': {
                'k_matrix': ['k1']
            },
        },
        'k_matrix': {
            "k1": {
                'matrix': {
                    ("s1", "s1"): '1',
                }
            }
        },
        'irf': {
            'irf1': {
                'type': 'spectral-gaussian',
                'center': '2',
                'width': '3'
            },
        },
        'dataset': {
            'dataset1': {
                'initial_concentration': 'j1',
                'irf': 'irf1',
                'megacomplex': ['mc1'],
            },
        },
    })
    sim_model = KineticSpectrumModel.from_dict({
        'initial_concentration': {
            'j1': {
                'compartments': ['s1'],
                'parameters': ['4']
            },
        },
        'shape': {
            'sh1': ['one']
        },
        'megacomplex': {
            'mc1': {
                'k_matrix': ['k1']
            },
        },
        'k_matrix': {
            "k1": {
                'matrix': {
                    ("s1", "s1"): '1',
                }
            }
        },
        'irf': {
            'irf1': {
                'type': 'spectral-gaussian',
                'center': '2',
                'width': '3'
            },
        },
        'dataset': {
            'dataset1': {
                'initial_concentration': 'j1',
                'irf': 'irf1',
                'megacomplex': ['mc1'],
                'shape': {
                    's1': 'sh1'
                }
            },
        },
    })

    initial = ParameterGroup.from_list(
        [101e-4, 0.1, 5, [1, {
            'vary': False,
            'non-negative': False
        }]])
    wanted = ParameterGroup.from_list(
        [101e-3, 0.3, 10, [1, {
            'vary': False,
            'non-negative': False
        }]])

    time = np.asarray(np.arange(-10, 50, 1.5))
    spectral = np.asarray([0])
    axis = {"time": time, "spectral": spectral}
Exemplo n.º 13
0
class ThreeComponentSequential:
    model = KineticSpectrumModel.from_dict({
        'initial_concentration': {
            'j1': {
                'compartments': ['s1', 's2', 's3'],
                'parameters': ['j.1', 'j.0', 'j.0']
            },
        },
        'megacomplex': {
            'mc1': {
                'k_matrix': ['k1']
            },
        },
        'k_matrix': {
            "k1": {
                'matrix': {
                    ("s2", "s1"): 'kinetic.1',
                    ("s3", "s2"): 'kinetic.2',
                    ("s3", "s3"): 'kinetic.3',
                }
            }
        },
        'irf': {
            'irf1': {
                'type': 'spectral-multi-gaussian',
                'center': ['irf.center'],
                'width': ['irf.width']
            },
        },
        'dataset': {
            'dataset1': {
                'initial_concentration': 'j1',
                'irf': 'irf1',
                'megacomplex': ['mc1'],
            },
        },
    })
    sim_model = KineticSpectrumModel.from_dict({
        'initial_concentration': {
            'j1': {
                'compartments': ['s1', 's2', 's3'],
                'parameters': ['j.1', 'j.0', 'j.0']
            },
        },
        'megacomplex': {
            'mc1': {
                'k_matrix': ['k1']
            },
        },
        'k_matrix': {
            "k1": {
                'matrix': {
                    ("s2", "s1"): 'kinetic.1',
                    ("s3", "s2"): 'kinetic.2',
                    ("s3", "s3"): 'kinetic.3',
                }
            }
        },
        'shape': {
            'sh1': {
                'type': "gaussian",
                'amplitude': "shape.amps.1",
                'location': "shape.locs.1",
                'width': "shape.width.1",
            },
            'sh2': {
                'type': "gaussian",
                'amplitude': "shape.amps.2",
                'location': "shape.locs.2",
                'width': "shape.width.2",
            },
            'sh3': {
                'type': "gaussian",
                'amplitude': "shape.amps.3",
                'location': "shape.locs.3",
                'width': "shape.width.3",
            },
        },
        'irf': {
            'irf1': {
                'type': 'spectral-multi-gaussian',
                'center': ['irf.center'],
                'width': ['irf.width']
            },
        },
        'dataset': {
            'dataset1': {
                'initial_concentration': 'j1',
                'irf': 'irf1',
                'megacomplex': ['mc1'],
                'shape': {
                    's1': 'sh1',
                    's2': 'sh2',
                    's3': 'sh3'
                }
            },
        },
    })

    initial = ParameterGroup.from_dict({
        'kinetic': [
            ["1", 501e-3],
            ["2", 202e-4],
            ["3", 105e-5],
            {
                'non-negative': True
            },
        ],
        'irf': [['center', 1.3], ['width', 7.8]],
        'j': [['1', 1, {
            'vary': False,
            'non-negative': False
        }], ['0', 0, {
            'vary': False,
            'non-negative': False
        }]],
    })
    wanted = ParameterGroup.from_dict({
        'kinetic': [
            ["1", 501e-3],
            ["2", 202e-4],
            ["3", 105e-5],
        ],
        'shape': {
            'amps': [3, 1, 5],
            'locs': [620, 670, 720],
            'width': [10, 30, 50]
        },
        'irf': [['center', 1.3], ['width', 7.8]],
        'j': [['1', 1, {
            'vary': False,
            'non-negative': False
        }], ['0', 0, {
            'vary': False,
            'non-negative': False
        }]],
    })

    time = np.asarray(np.arange(-10, 50, 1.0))
    spectral = np.arange(600, 750, 5.0)
    axis = {"time": time, "spectral": spectral}
Exemplo n.º 14
0
class MultiIrfDispersion:
    model = KineticSpectrumModel.from_dict({
        "initial_concentration": {
            "j1": {
                "compartments": ["s1"],
                "parameters": ["j.1"]
            },
        },
        "megacomplex": {
            "mc1": {
                "k_matrix": ["k1"]
            },
        },
        "k_matrix": {
            "k1": {
                "matrix": {
                    ("s1", "s1"): "kinetic.1",
                }
            }
        },
        "irf": {
            "irf1": {
                "type": "spectral-multi-gaussian",
                "center": ["irf.center"],
                "width": ["irf.width"],
                "dispersion_center": "irf.dispcenter",
                "center_dispersion": ["irf.centerdisp1", "irf.centerdisp2"],
                "width_dispersion": ["irf.widthdisp"],
            },
        },
        "dataset": {
            "dataset1": {
                "initial_concentration": "j1",
                "irf": "irf1",
                "megacomplex": ["mc1"],
            },
        },
    })
    sim_model = KineticSpectrumModel.from_dict({
        "initial_concentration": {
            "j1": {
                "compartments": ["s1"],
                "parameters": ["j.1"]
            },
        },
        "megacomplex": {
            "mc1": {
                "k_matrix": ["k1"]
            },
        },
        "k_matrix": {
            "k1": {
                "matrix": {
                    ("s1", "s1"): "kinetic.1",
                }
            }
        },
        "irf": {
            "irf1": {
                "type": "spectral-multi-gaussian",
                "center": ["irf.center"],
                "width": ["irf.width"],
                "dispersion_center": "irf.dispcenter",
                "center_dispersion": ["irf.centerdisp1", "irf.centerdisp2"],
                "width_dispersion": ["irf.widthdisp"],
            },
        },
        "shape": {
            "sh1": {
                "type": "one",
            },
        },
        "dataset": {
            "dataset1": {
                "initial_concentration": "j1",
                "irf": "irf1",
                "megacomplex": ["mc1"],
                "shape": {
                    "s1": "sh1"
                },
            },
        },
    })

    initial = ParameterGroup.from_dict({
        "j": [
            ["1", 1, {
                "vary": False,
                "non-negative": False
            }],
        ],
        "kinetic": [["1", 0.5], {
            "non-negative": False
        }],
        "irf": [
            ["center", 0.3],
            ["width", 0.1],
            ["dispcenter", 400, {
                "vary": False
            }],
            ["centerdisp1", 0.01],
            ["centerdisp2", 0.001],
            ["widthdisp", 0.025],
        ],
    })
    wanted = ParameterGroup.from_dict({
        "j": [
            ["1", 1, {
                "vary": False,
                "non-negative": False
            }],
        ],
        "kinetic": [
            ["1", 0.5],
        ],
        "irf": [
            ["center", 0.3],
            ["width", 0.1],
            ["dispcenter", 400, {
                "vary": False
            }],
            ["centerdisp1", 0.01],
            ["centerdisp2", 0.001],
            ["widthdisp", 0.025],
        ],
    })

    time = np.arange(-1, 5, 0.2)
    spectral = np.arange(300, 500, 100)
    axis = {"time": time, "spectral": spectral}
Exemplo n.º 15
0
class ThreeComponentSequential:
    model = KineticSpectrumModel.from_dict({
        "initial_concentration": {
            "j1": {
                "compartments": ["s1", "s2", "s3"],
                "parameters": ["j.1", "j.0", "j.0"]
            },
        },
        "megacomplex": {
            "mc1": {
                "k_matrix": ["k1"]
            },
        },
        "k_matrix": {
            "k1": {
                "matrix": {
                    ("s2", "s1"): "kinetic.1",
                    ("s3", "s2"): "kinetic.2",
                    ("s3", "s3"): "kinetic.3",
                }
            }
        },
        "irf": {
            "irf1": {
                "type": "spectral-multi-gaussian",
                "center": ["irf.center"],
                "width": ["irf.width"],
            },
        },
        "dataset": {
            "dataset1": {
                "initial_concentration": "j1",
                "irf": "irf1",
                "megacomplex": ["mc1"],
            },
        },
    })
    sim_model = KineticSpectrumModel.from_dict({
        "initial_concentration": {
            "j1": {
                "compartments": ["s1", "s2", "s3"],
                "parameters": ["j.1", "j.0", "j.0"]
            },
        },
        "megacomplex": {
            "mc1": {
                "k_matrix": ["k1"]
            },
        },
        "k_matrix": {
            "k1": {
                "matrix": {
                    ("s2", "s1"): "kinetic.1",
                    ("s3", "s2"): "kinetic.2",
                    ("s3", "s3"): "kinetic.3",
                }
            }
        },
        "shape": {
            "sh1": {
                "type": "gaussian",
                "amplitude": "shapes.amps.1",
                "location": "shapes.locs.1",
                "width": "shapes.width.1",
            },
            "sh2": {
                "type": "gaussian",
                "amplitude": "shapes.amps.2",
                "location": "shapes.locs.2",
                "width": "shapes.width.2",
            },
            "sh3": {
                "type": "gaussian",
                "amplitude": "shapes.amps.3",
                "location": "shapes.locs.3",
                "width": "shapes.width.3",
            },
        },
        "irf": {
            "irf1": {
                "type": "spectral-multi-gaussian",
                "center": ["irf.center"],
                "width": ["irf.width"],
            },
        },
        "dataset": {
            "dataset1": {
                "initial_concentration": "j1",
                "irf": "irf1",
                "megacomplex": ["mc1"],
                "shape": {
                    "s1": "sh1",
                    "s2": "sh2",
                    "s3": "sh3"
                },
            },
        },
    })

    initial_parameters = ParameterGroup.from_dict({
        "kinetic": [
            ["1", 501e-3],
            ["2", 202e-4],
            ["3", 105e-5],
            {
                "non-negative": True
            },
        ],
        "irf": [["center", 1.3], ["width", 7.8]],
        "j": [
            ["1", 1, {
                "vary": False,
                "non-negative": False
            }],
            ["0", 0, {
                "vary": False,
                "non-negative": False
            }],
        ],
    })
    wanted_parameters = ParameterGroup.from_dict({
        "kinetic": [
            ["1", 501e-3],
            ["2", 202e-4],
            ["3", 105e-5],
        ],
        "shapes": {
            "amps": [3, 1, 5],
            "locs": [620, 670, 720],
            "width": [10, 30, 50]
        },
        "irf": [["center", 1.3], ["width", 7.8]],
        "j": [
            ["1", 1, {
                "vary": False,
                "non-negative": False
            }],
            ["0", 0, {
                "vary": False,
                "non-negative": False
            }],
        ],
    })

    time = np.asarray(np.arange(-10, 50, 1.0))
    spectral = np.arange(600, 750, 5.0)
    axis = {"time": time, "spectral": spectral}
Exemplo n.º 16
0
class SimpleIrfDispersion:
    model = KineticSpectrumModel.from_dict({
        "initial_concentration": {
            "j1": {
                "compartments": ["s1"],
                "parameters": ["j.1"]
            },
        },
        "megacomplex": {
            "mc1": {
                "k_matrix": ["k1"]
            },
        },
        "k_matrix": {
            "k1": {
                "matrix": {
                    ("s1", "s1"): "kinetic.1",
                }
            }
        },
        "irf": {
            "irf1": {
                "type": "spectral-gaussian",
                "center": "irf.center",
                "width": "irf.width",
                "dispersion_center": "irf.dispcenter",
                "center_dispersion": ["irf.centerdisp"],
            },
        },
        "dataset": {
            "dataset1": {
                "initial_concentration": "j1",
                "irf": "irf1",
                "megacomplex": ["mc1"],
            },
        },
    })
    sim_model = KineticSpectrumModel.from_dict({
        "initial_concentration": {
            "j1": {
                "compartments": ["s1"],
                "parameters": ["j.1"]
            },
        },
        "megacomplex": {
            "mc1": {
                "k_matrix": ["k1"]
            },
        },
        "k_matrix": {
            "k1": {
                "matrix": {
                    ("s1", "s1"): "kinetic.1",
                }
            }
        },
        "irf": {
            "irf1": {
                "type": "spectral-gaussian",
                "center": "irf.center",
                "width": "irf.width",
                "dispersion_center": "irf.dispcenter",
                "center_dispersion": ["irf.centerdisp"],
            },
        },
        "shape": {
            "sh1": {
                "type": "one",
            },
        },
        "dataset": {
            "dataset1": {
                "initial_concentration": "j1",
                "irf": "irf1",
                "megacomplex": ["mc1"],
                "shape": {
                    "s1": "sh1"
                },
            },
        },
    })

    initial = ParameterGroup.from_dict({
        "j": [
            ["1", 1, {
                "vary": False,
                "non-negative": False
            }],
        ],
        "kinetic": [["1", 0.5], {
            "non-negative": False
        }],
        "irf": [
            ["center", 0.3],
            ["width", 0.1],
            ["dispcenter", 400, {
                "vary": False
            }],
            ["centerdisp", 0.5],
        ],
    })
    wanted = ParameterGroup.from_dict({
        "j": [
            ["1", 1, {
                "vary": False,
                "non-negative": False
            }],
        ],
        "kinetic": [
            ["1", 0.5],
        ],
        "irf": [["center", 0.3], ["width", 0.1], ["dispcenter", 400],
                ["centerdisp", 0.5]],
    })

    time_p1 = np.linspace(-1, 2, 50, endpoint=False)
    time_p2 = np.linspace(2, 5, 30, endpoint=False)
    time_p3 = np.geomspace(5, 10, num=20)
    time = np.concatenate([time_p1, time_p2, time_p3])
    spectral = np.arange(300, 500, 100)
    axis = {"time": time, "spectral": spectral}
def test_spectral_penalties():

    model_without_penalty = KineticSpectrumModel.from_dict({
        'initial_concentration': {
            'j1': {
                'compartments': ['s1', 's2', 's3'],
                'parameters': ['i.1', 'i.2', 'i.3']
            },

        },
        'megacomplex': {
            'mc1': {'k_matrix': ['k1']},
        },
        'k_matrix': {
            "k1": {'matrix': {
                ("s1", "s1"): 'kinetic.1',
                ("s2", "s2"): 'kinetic.1',
                ("s3", "s3"): 'kinetic.1',
            }}
        },
        'spectral_relations': [
            {
                'compartment': 's1',
                'target': 's2',
                'parameter': 'rel.1',
                'interval': [(0, 2)],
            },
        ],
        'dataset': {
            'dataset1': {
                'initial_concentration': 'j1',
                'megacomplex': ['mc1'],
            },
        },
    })

    weight = 0.1
    model_with_penalty = KineticSpectrumModel.from_dict({
        'initial_concentration': {
            'j1': {
                'compartments': ['s1', 's2', 's3'],
                'parameters': ['i.1', 'i.2', 'i.3']
            },

        },
        'megacomplex': {
            'mc1': {'k_matrix': ['k1']},
        },
        'k_matrix': {
            "k1": {'matrix': {
                ("s1", "s1"): 'kinetic.1',
                ("s2", "s2"): 'kinetic.1',
                ("s3", "s3"): 'kinetic.1',
            }}
        },
        'equal_area_penalties': [
            {
                'compartment': 's2',
                'target': 's3',
                'parameter': 'pen.1',
                'interval': [(0, 2)],
                'weight': weight
            },
        ],
        'spectral_relations': [
            {
                'compartment': 's1',
                'target': 's2',
                'parameter': 'rel.1',
                'interval': [(0, 2)],
            },
        ],
        'dataset': {
            'dataset1': {
                'initial_concentration': 'j1',
                'megacomplex': ['mc1'],
            },
        },
    })
    print(model_with_penalty)

    rel1 = 2
    pen = 0.5
    parameter = ParameterGroup.from_dict({
        'kinetic': [1e-4],
        'i': [1, 1, 1],
        'rel': [rel1],
        'pen': [pen],
    })

    time = np.asarray(np.arange(0, 50, 1.5))
    clp = xr.DataArray([[1., 2., 4]],
                       coords=(('spectral', [1]), ('clp_label', ['s1', 's2', 's3'])))

    data = model_without_penalty.simulate('dataset1', parameter, clp=clp,
                                          axes={'time': time, 'spectral': np.array([1])})

    result_with_penalty = \
        model_with_penalty.optimize(parameter, {'dataset1': data}, max_nfev=1)

    result_without_penalty = \
        model_without_penalty.optimize(parameter, {'dataset1': data}, max_nfev=1)

    result_data = result_with_penalty.data['dataset1']
    wanted_penalty = result_data.species_associated_spectra.sel(species='s2') - \
        result_data.species_associated_spectra.sel(species='s3') * pen
    wanted_penalty *= weight
    wanted_penalty **= 2
    wanted_penalty = np.sum(wanted_penalty.values)

    additional_penalty = result_with_penalty.chisqr - result_without_penalty.chisqr
    assert np.isclose(additional_penalty, wanted_penalty)