Exemplo n.º 1
0
def test_output_sets_alpha(labels, hybridize):
    binned_output = BinnedOutput(bin_centers=COMMON_KWARGS["bin_centers"][0],
                                 label_smoothing=0.35)

    arg_proj = binned_output.get_args_proj()
    if hybridize:
        arg_proj.hybridize()
    arg_proj.initialize()

    assert (binned_output.distribution(arg_proj(mx.nd.random.uniform(
        2, 10))).label_smoothing == 0.35)
Exemplo n.º 2
0
def test_binned_likelihood(num_bins: float, bin_probabilites: np.ndarray,
                           hybridize: bool):
    '''
    Test to check that maximizing the likelihood recovers the parameters
    '''

    bin_prob = mx.nd.array(bin_probabilites)
    bin_center = mx.nd.array(np.logspace(-1, 1, num_bins))

    # generate samples
    bin_probs = mx.nd.zeros((NUM_SAMPLES, num_bins)) + bin_prob
    bin_centers = mx.nd.zeros((NUM_SAMPLES, num_bins)) + bin_center

    distr = Binned(bin_probs, bin_centers)
    samples = distr.sample()

    # add some jitter to the uniform initialization and normalize
    bin_prob_init = mx.nd.random_uniform(1 - TOL, 1 + TOL, num_bins) * bin_prob
    bin_prob_init = bin_prob_init / bin_prob_init.sum()

    init_biases = [bin_prob_init]

    bin_prob_hat, = maximum_likelihood_estimate_sgd(
        BinnedOutput(list(bin_center.asnumpy())),
        samples,
        init_biases=init_biases,
        hybridize=hybridize,
        learning_rate=PositiveFloat(0.05),
        num_epochs=PositiveInt(25),
    )

    assert all(
        mx.nd.abs(mx.nd.array(bin_prob_hat) - bin_prob) < TOL * bin_prob
    ), f"bin_prob did not match: bin_prob = {bin_prob}, bin_prob_hat = {bin_prob_hat}"