def deep_state(seed=42, data="m4_quarterly", epochs=100, batches=50):

    mx.random.seed(seed)
    np.random.seed(seed)

    dataset = get_dataset(data)

    trainer = Trainer(
        ctx=mx.cpu(0),
        #         ctx=mx.gpu(0),
        epochs=epochs,
        num_batches_per_epoch=batches,
        learning_rate=1e-3,
    )

    cardinality = int(dataset.metadata.feat_static_cat[0].cardinality)
    estimator = DeepStateEstimator(
        trainer=trainer,
        cardinality=[cardinality],
        prediction_length=dataset.metadata.prediction_length,
        freq=dataset.metadata.freq,
        use_feat_static_cat=True,
    )

    predictor = estimator.train(dataset.train)

    #     predictor = estimator.train(training_data=dataset.train,
    #                                 validation_data=dataset.test)

    forecast_it, ts_it = make_evaluation_predictions(dataset.test,
                                                     predictor=predictor,
                                                     num_samples=100)

    agg_metrics, item_metrics = Evaluator()(ts_it,
                                            forecast_it,
                                            num_series=len(dataset.test))
    metrics = [
        "MASE", "sMAPE", "MSIS", "wQuantileLoss[0.5]", "wQuantileLoss[0.9]"
    ]
    output = {
        key: round(value, 8)
        for key, value in agg_metrics.items() if key in metrics
    }
    output["epochs"] = epochs
    output["seed"] = seed

    df = pd.DataFrame([output])

    return df
    def get_estimator(self, metadata):

        self.estimator = DeepStateEstimator(
            freq=self.configs.freq,
            prediction_length=self.configs.pred_len,
            cardinality=[
                3 if self.configs.six_ramps else 1
            ],  ##one per sequence type 1)demand ramp 2) solar ramp 3) wind ramp
            issm=OurSeasonality.get_seasonality(self.configs),
            use_feat_static_cat=True if self.configs.six_ramps else False,
            add_trend=True,
            past_length=self.configs.context_len,
            num_layers=self.configs.num_layers,
            num_cells=self.configs.num_hidden,
            trainer=Trainer(ctx=self.ctx,
                            epochs=self.configs.num_epochs,
                            learning_rate=self.configs.learning_rate,
                            hybridize=False,
                            patience=5,
                            num_batches_per_epoch=self.configs.train_len //
                            self.configs.batch_size,
                            batch_size=self.configs.batch_size))

        return self.estimator
Exemplo n.º 3
0
def train(args):
    freq = args.freq.replace('"', '')
    prediction_length = args.prediction_length
    context_length = args.context_length
    use_feat_dynamic_real = args.use_feat_dynamic_real
    use_past_feat_dynamic_real = args.use_past_feat_dynamic_real
    use_feat_static_cat = args.use_feat_static_cat
    use_log1p = args.use_log1p
    
    print('freq:', freq)
    print('prediction_length:', prediction_length)
    print('context_length:', context_length)
    print('use_feat_dynamic_real:', use_feat_dynamic_real)
    print('use_past_feat_dynamic_real:', use_past_feat_dynamic_real)
    print('use_feat_static_cat:', use_feat_static_cat)
    print('use_log1p:', use_log1p)
    
    batch_size = args.batch_size
    print('batch_size:', batch_size)

    train = load_json(os.path.join(args.train, 'train_'+freq+'.json'))
    test = load_json(os.path.join(args.test, 'test_'+freq+'.json'))
    
    num_timeseries = len(train)
    print('num_timeseries:', num_timeseries)

    train_ds = ListDataset(parse_data(train, use_log1p=use_log1p), freq=freq)
    test_ds = ListDataset(parse_data(test, use_log1p=use_log1p), freq=freq)
    
    predictor = None
    
    trainer= Trainer(ctx="cpu", 
                    epochs=args.epochs, 
                    num_batches_per_epoch=args.num_batches_per_epoch,
                    learning_rate=args.learning_rate, 
                    learning_rate_decay_factor=args.learning_rate_decay_factor,
                    patience=args.patience,
                    minimum_learning_rate=args.minimum_learning_rate,
                    clip_gradient=args.clip_gradient,
                    weight_decay=args.weight_decay,
                    init=args.init.replace('"', ''),
                    hybridize=args.hybridize)
    print('trainer:', trainer)
    
    cardinality = None
    if args.cardinality != '':
        cardinality = args.cardinality.replace('"', '').replace(' ', '').replace('[', '').replace(']', '').split(',')
        for i in range(len(cardinality)):
            cardinality[i] = int(cardinality[i])
    print('cardinality:', cardinality)
    
    embedding_dimension = [min(50, (cat+1)//2) for cat in cardinality] if cardinality is not None else None
    print('embedding_dimension:', embedding_dimension)
    
    algo_name = args.algo_name.replace('"', '')
    print('algo_name:', algo_name)
    
    if algo_name == 'CanonicalRNN':
        estimator = CanonicalRNNEstimator(
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            trainer=trainer,
            batch_size=batch_size,
            num_layers=5, 
            num_cells=50, 
            cell_type='lstm', 
            num_parallel_samples=100,
            cardinality=cardinality,
            embedding_dimension=10,
        )
    elif algo_name == 'DeepFactor':
        estimator = DeepFactorEstimator(
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            trainer=trainer,
            batch_size=batch_size,
            cardinality=cardinality,
            embedding_dimension=10,
        )
    elif algo_name == 'DeepAR':
        estimator = DeepAREstimator(
            freq = freq,  # – Frequency of the data to train on and predict
            prediction_length = prediction_length,  # – Length of the prediction horizon
            trainer = trainer,  # – Trainer object to be used (default: Trainer())
            context_length = context_length,  # – Number of steps to unroll the RNN for before computing predictions (default: None, in which case context_length = prediction_length)
            num_layers = 2,  # – Number of RNN layers (default: 2)
            num_cells = 40,  # – Number of RNN cells for each layer (default: 40)
            cell_type = 'lstm',  # – Type of recurrent cells to use (available: ‘lstm’ or ‘gru’; default: ‘lstm’)
            dropoutcell_type = 'ZoneoutCell',  # – Type of dropout cells to use (available: ‘ZoneoutCell’, ‘RNNZoneoutCell’, ‘VariationalDropoutCell’ or ‘VariationalZoneoutCell’; default: ‘ZoneoutCell’)
            dropout_rate = 0.1,  # – Dropout regularization parameter (default: 0.1)
            use_feat_dynamic_real = use_feat_dynamic_real,  # – Whether to use the feat_dynamic_real field from the data (default: False)
            use_feat_static_cat = use_feat_static_cat,  # – Whether to use the feat_static_cat field from the data (default: False)
            use_feat_static_real = False,  # – Whether to use the feat_static_real field from the data (default: False)
            cardinality = cardinality,  # – Number of values of each categorical feature. This must be set if use_feat_static_cat == True (default: None)
            embedding_dimension = embedding_dimension,  # – Dimension of the embeddings for categorical features (default: [min(50, (cat+1)//2) for cat in cardinality])
        #     distr_output = StudentTOutput(),  # – Distribution to use to evaluate observations and sample predictions (default: StudentTOutput())
        #     scaling = True,  # – Whether to automatically scale the target values (default: true)
        #     lags_seq = None,  # – Indices of the lagged target values to use as inputs of the RNN (default: None, in which case these are automatically determined based on freq)
        #     time_features = None,  # – Time features to use as inputs of the RNN (default: None, in which case these are automatically determined based on freq)
        #     num_parallel_samples = 100,  # – Number of evaluation samples per time series to increase parallelism during inference. This is a model optimization that does not affect the accuracy (default: 100)
        #     imputation_method = None,  # – One of the methods from ImputationStrategy
        #     train_sampler = None,  # – Controls the sampling of windows during training.
        #     validation_sampler = None,  # – Controls the sampling of windows during validation.
        #     alpha = None,  # – The scaling coefficient of the activation regularization
        #     beta = None,  # – The scaling coefficient of the temporal activation regularization
            batch_size = batch_size,  # – The size of the batches to be used training and prediction.
        #     minimum_scale = None,  # – The minimum scale that is returned by the MeanScaler
        #     default_scale = None,  # – Default scale that is applied if the context length window is completely unobserved. If not set, the scale in this case will be the mean scale in the batch.
        #     impute_missing_values = None,  # – Whether to impute the missing values during training by using the current model parameters. Recommended if the dataset contains many missing values. However, this is a lot slower than the default mode.
        #     num_imputation_samples = None,  # – How many samples to use to impute values when impute_missing_values=True
        )
    elif algo_name == 'DeepState':
        estimator = DeepStateEstimator(
            freq=freq,
            prediction_length=prediction_length,
            trainer=trainer,
            batch_size=batch_size,
            use_feat_dynamic_real=use_feat_dynamic_real,
            use_feat_static_cat=use_feat_static_cat,
            cardinality=cardinality,
        )
    elif algo_name == 'DeepVAR':
        estimator = DeepVAREstimator(  # use multi
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            trainer=trainer,
            batch_size=batch_size,
            target_dim=96,
        )
    elif algo_name == 'GaussianProcess':
#         # TODO
#         estimator = GaussianProcessEstimator(
#             freq=freq,
#             prediction_length=prediction_length,
#             context_length=context_length,
#             trainer=trainer,
#             batch_size=batch_size,
#             cardinality=num_timeseries,
#         )
        pass
    elif algo_name == 'GPVAR':
        estimator = GPVAREstimator(  # use multi
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            trainer=trainer,
            batch_size=batch_size,
            target_dim=96,
        )
    elif algo_name == 'LSTNet':
        estimator = LSTNetEstimator(  # use multi
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            num_series=96,
            skip_size=4,
            ar_window=4,
            channels=72,
            trainer=trainer,
            batch_size=batch_size,
        )
    elif algo_name == 'NBEATS':
        estimator = NBEATSEstimator(
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            trainer=trainer,
            batch_size=batch_size,
        )
    elif algo_name == 'DeepRenewalProcess':
        estimator = DeepRenewalProcessEstimator(
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            trainer=trainer,
            batch_size=batch_size,
            num_cells=40,
            num_layers=2,
        )
    elif algo_name == 'Tree':
        estimator = TreePredictor(
            freq = freq,
            prediction_length = prediction_length,
            context_length = context_length,
            n_ignore_last = 0,
            lead_time = 0,
            max_n_datapts = 1000000,
            min_bin_size = 100,  # Used only for "QRX" method.
            use_feat_static_real = False,
            use_feat_dynamic_cat = False,
            use_feat_dynamic_real = use_feat_dynamic_real,
            cardinality = cardinality,
            one_hot_encode = False,
            model_params = {'eta': 0.1, 'max_depth': 6, 'silent': 0, 'nthread': -1, 'n_jobs': -1, 'gamma': 1, 'subsample': 0.9, 'min_child_weight': 1, 'colsample_bytree': 0.9, 'lambda': 1, 'booster': 'gbtree'},
            max_workers = 4,  # default: None
            method = "QRX",  # "QRX",  "QuantileRegression", "QRF"
            quantiles=None,  # Used only for "QuantileRegression" method.
            model=None,
            seed=None,
        )
    elif algo_name == 'SelfAttention':
#         # TODO
#         estimator = SelfAttentionEstimator(
#             freq=freq,
#             prediction_length=prediction_length,
#             context_length=context_length,
#             trainer=trainer,
#             batch_size=batch_size,
#         )
        pass
    elif algo_name == 'MQCNN':
        estimator = MQCNNEstimator(
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            trainer=trainer,
            batch_size=batch_size,
            use_past_feat_dynamic_real=use_past_feat_dynamic_real,
            use_feat_dynamic_real=use_feat_dynamic_real,
            use_feat_static_cat=use_feat_static_cat,
            cardinality=cardinality,
            embedding_dimension=embedding_dimension,
            add_time_feature=True,
            add_age_feature=False,
            enable_encoder_dynamic_feature=True,
            enable_decoder_dynamic_feature=True,
            seed=None,
            decoder_mlp_dim_seq=None,
            channels_seq=None,
            dilation_seq=None,
            kernel_size_seq=None,
            use_residual=True,
            quantiles=None,
            distr_output=None,
            scaling=None,
            scaling_decoder_dynamic_feature=False,
            num_forking=None,
            max_ts_len=None,
        )
    elif algo_name == 'MQRNN':
        estimator = MQRNNEstimator(
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            trainer=trainer,
            batch_size=batch_size,
        )
    elif algo_name == 'Seq2Seq':
        # # TODO
        # estimator = Seq2SeqEstimator(
        #     freq=freq,
        #     prediction_length=prediction_length,
        #     context_length=context_length,
        #     trainer=trainer,
        #     cardinality=cardinality,
        #     embedding_dimension=4,
        #     encoder=Seq2SeqEncoder(),
        #     decoder_mlp_layer=[4],
        #     decoder_mlp_static_dim=4
        # )
        pass
    elif algo_name == 'SimpleFeedForward':
        estimator = SimpleFeedForwardEstimator(
            num_hidden_dimensions=[40, 40],
            prediction_length=prediction_length,
            context_length=context_length,
            freq=freq,
            trainer=trainer,
            batch_size=batch_size,
        )
    elif algo_name == 'TemporalFusionTransformer':
        estimator = TemporalFusionTransformerEstimator(
            prediction_length=prediction_length,
            context_length=context_length,
            freq=freq,
            trainer=trainer,
            batch_size=batch_size,
            hidden_dim = 32, 
            variable_dim = None, 
            num_heads = 4, 
            num_outputs = 3, 
            num_instance_per_series = 100, 
            dropout_rate = 0.1, 
        #     time_features = [], 
        #     static_cardinalities = {}, 
        #     dynamic_cardinalities = {}, 
        #     static_feature_dims = {}, 
        #     dynamic_feature_dims = {}, 
        #     past_dynamic_features = []
        )
    elif algo_name == 'DeepTPP':
#         # TODO
#         estimator = DeepTPPEstimator(
#             prediction_interval_length=prediction_length,
#             context_interval_length=context_length,
#             freq=freq,
#             trainer=trainer,
#             batch_size=batch_size,
#             num_marks=len(cardinality) if cardinality is not None else 0,
#         )
        pass
    elif algo_name == 'Transformer':
        estimator = TransformerEstimator(
            freq=freq,
            prediction_length=prediction_length,
            trainer=trainer,
            batch_size=batch_size,
            cardinality=cardinality,
        )
    elif algo_name == 'WaveNet':
        estimator = WaveNetEstimator(
            freq=freq,
            prediction_length=prediction_length,
            trainer=trainer,
            batch_size=batch_size,
            cardinality=cardinality,
        )
    elif algo_name == 'Naive2':
        # TODO Multiplicative seasonality is not appropriate for zero and negative values
        predictor = Naive2Predictor(freq=freq, prediction_length=prediction_length, season_length=context_length)
    elif algo_name == 'NPTS':
        predictor = NPTSPredictor(freq=freq, prediction_length=prediction_length, context_length=context_length)
    elif algo_name == 'Prophet':
        def configure_model(model):
            model.add_seasonality(
                name='weekly', period=7, fourier_order=3, prior_scale=0.1
            )
            return model
        predictor = ProphetPredictor(freq=freq, prediction_length=prediction_length, init_model=configure_model)
    elif algo_name == 'ARIMA':
        predictor = RForecastPredictor(freq=freq,
                                      prediction_length=prediction_length,
                                      method_name='arima',
                                      period=context_length,
                                      trunc_length=len(train[0]['target']))
    elif algo_name == 'ETS':
        predictor = RForecastPredictor(freq=freq,
                                      prediction_length=prediction_length,
                                      method_name='ets',
                                      period=context_length,
                                      trunc_length=len(train[0]['target']))
    elif algo_name == 'TBATS':
        predictor = RForecastPredictor(freq=freq,
                                      prediction_length=prediction_length,
                                      method_name='tbats',
                                      period=context_length,
                                      trunc_length=len(train[0]['target']))
    elif algo_name == 'CROSTON':
        predictor = RForecastPredictor(freq=freq,
                                      prediction_length=prediction_length,
                                      method_name='croston',
                                      period=context_length,
                                      trunc_length=len(train[0]['target']))
    elif algo_name == 'MLP':
        predictor = RForecastPredictor(freq=freq,
                                      prediction_length=prediction_length,
                                      method_name='mlp',
                                      period=context_length,
                                      trunc_length=len(train[0]['target']))
    elif algo_name == 'SeasonalNaive':
        predictor = SeasonalNaivePredictor(freq=freq, prediction_length=prediction_length)
    else:
        print('[ERROR]:', algo_name, 'not supported')
        return
    
    if predictor is None:
        try:
            predictor = estimator.train(train_ds, test_ds)
        except Exception as e:
            print(e)
            try:
                grouper_train = MultivariateGrouper(max_target_dim=num_timeseries)
                train_ds_multi = grouper_train(train_ds)
                test_ds_multi = grouper_train(test_ds)
                predictor = estimator.train(train_ds_multi, test_ds_multi)
            except Exception as e:
                print(e)

    forecast_it, ts_it = make_evaluation_predictions(
        dataset=test_ds,  # test dataset
        predictor=predictor,  # predictor
        num_samples=100,  # number of sample paths we want for evaluation
    )

    forecasts = list(forecast_it)
    tss = list(ts_it)
#     print(len(forecasts), len(tss))
    
    evaluator = Evaluator(quantiles=[0.1, 0.5, 0.9])
    agg_metrics, item_metrics = evaluator(iter(tss), iter(forecasts), num_series=len(test_ds))

    print(json.dumps(agg_metrics, indent=4))
    
    model_dir = os.path.join(args.model_dir, algo_name)
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    predictor.serialize(Path(model_dir))
Exemplo n.º 4
0
    def fit(self, df, future_regressor=[]):
        """Train algorithm given data supplied.

        Args:
            df (pandas.DataFrame): Datetime Indexed
        """
        df = self.basic_profile(df)

        try:
            from mxnet.random import seed as mxnet_seed

            mxnet_seed(self.random_seed)
        except Exception:
            pass

        gluon_train = df.transpose()
        self.train_index = gluon_train.index

        gluon_freq = str(self.frequency).split('-')[0]
        if gluon_freq in ["MS", "1MS"]:
            gluon_freq = "M"

        if int(self.verbose) > 1:
            print(f"Gluon Frequency is {gluon_freq}")

        if str(self.context_length).replace('.', '').isdigit():
            self.gluon_context_length = int(float(self.context_length))
        elif 'forecastlength' in str(self.context_length).lower():
            len_int = int([x for x in str(self.context_length)
                           if x.isdigit()][0])
            self.gluon_context_length = int(len_int * self.forecast_length)
        else:
            self.gluon_context_length = 2 * self.forecast_length
            self.context_length = '2ForecastLength'
        ts_metadata = {
            'num_series':
            len(gluon_train.index),
            'freq':
            gluon_freq,
            'gluon_start':
            [gluon_train.columns[0] for _ in range(len(gluon_train.index))],
            'context_length':
            self.gluon_context_length,
            'forecast_length':
            self.forecast_length,
        }
        self.test_ds = ListDataset(
            [{
                FieldName.TARGET: target,
                FieldName.START: start
            }
             for (target,
                  start) in zip(gluon_train.values, ts_metadata['gluon_start'])
             ],
            freq=ts_metadata['freq'],
        )
        if self.gluon_model == 'DeepAR':
            from gluonts.model.deepar import DeepAREstimator

            estimator = DeepAREstimator(
                freq=ts_metadata['freq'],
                context_length=ts_metadata['context_length'],
                prediction_length=ts_metadata['forecast_length'],
                trainer=Trainer(epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )
        elif self.gluon_model == 'NPTS':
            from gluonts.model.npts import NPTSEstimator

            estimator = NPTSEstimator(
                freq=ts_metadata['freq'],
                context_length=ts_metadata['context_length'],
                prediction_length=ts_metadata['forecast_length'],
            )

        elif self.gluon_model == 'MQCNN':
            from gluonts.model.seq2seq import MQCNNEstimator

            estimator = MQCNNEstimator(
                freq=ts_metadata['freq'],
                context_length=ts_metadata['context_length'],
                prediction_length=ts_metadata['forecast_length'],
                trainer=Trainer(epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )

        elif self.gluon_model == 'SFF':
            from gluonts.model.simple_feedforward import SimpleFeedForwardEstimator

            estimator = SimpleFeedForwardEstimator(
                prediction_length=ts_metadata['forecast_length'],
                context_length=ts_metadata['context_length'],
                freq=ts_metadata['freq'],
                trainer=Trainer(
                    epochs=self.epochs,
                    learning_rate=self.learning_rate,
                    hybridize=False,
                    num_batches_per_epoch=100,
                ),
            )

        elif self.gluon_model == 'Transformer':
            from gluonts.model.transformer import TransformerEstimator

            estimator = TransformerEstimator(
                prediction_length=ts_metadata['forecast_length'],
                context_length=ts_metadata['context_length'],
                freq=ts_metadata['freq'],
                trainer=Trainer(epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )

        elif self.gluon_model == 'DeepState':
            from gluonts.model.deepstate import DeepStateEstimator

            estimator = DeepStateEstimator(
                prediction_length=ts_metadata['forecast_length'],
                past_length=ts_metadata['context_length'],
                freq=ts_metadata['freq'],
                use_feat_static_cat=False,
                cardinality=[1],
                trainer=Trainer(ctx='cpu',
                                epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )

        elif self.gluon_model == 'DeepFactor':
            from gluonts.model.deep_factor import DeepFactorEstimator

            estimator = DeepFactorEstimator(
                freq=ts_metadata['freq'],
                context_length=ts_metadata['context_length'],
                prediction_length=ts_metadata['forecast_length'],
                trainer=Trainer(epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )

        elif self.gluon_model == 'WaveNet':
            # Usually needs more epochs/training iterations than other models do
            from gluonts.model.wavenet import WaveNetEstimator

            estimator = WaveNetEstimator(
                freq=ts_metadata['freq'],
                prediction_length=ts_metadata['forecast_length'],
                trainer=Trainer(epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )
        else:
            raise ValueError("'gluon_model' not recognized.")

        self.GluonPredictor = estimator.train(self.test_ds)
        self.ts_metadata = ts_metadata
        self.fit_runtime = datetime.datetime.now() - self.startTime
        return self
Exemplo n.º 5
0
    def fit(self, df, future_regressor=None):
        """Train algorithm given data supplied.

        Args:
            df (pandas.DataFrame): Datetime Indexed
        """
        if not _has_gluonts:
            raise ImportError(
                "GluonTS installation not found or installed version is incompatible with AutoTS."
            )

        df = self.basic_profile(df)

        try:
            from mxnet.random import seed as mxnet_seed

            mxnet_seed(self.random_seed)
        except Exception:
            pass

        gluon_train = df.to_numpy().T
        self.train_index = df.columns
        self.train_columns = df.index

        gluon_freq = str(self.frequency).split('-')[0]
        if self.regression_type == "User":
            if future_regressor is None:
                raise ValueError(
                    "regression_type='User' but no future_regressor supplied")
        if gluon_freq in ["MS", "1MS"]:
            gluon_freq = "M"

        if int(self.verbose) > 1:
            print(f"Gluon Frequency is {gluon_freq}")
        if int(self.verbose) < 1:
            try:
                logging.getLogger().disabled = True
                logging.getLogger("mxnet").addFilter(lambda record: False)
            except Exception:
                pass

        if str(self.context_length).replace('.', '').isdigit():
            self.gluon_context_length = int(float(self.context_length))
        elif 'forecastlength' in str(self.context_length).lower():
            len_int = int([x for x in str(self.context_length)
                           if x.isdigit()][0])
            self.gluon_context_length = int(len_int * self.forecast_length)
        else:
            self.gluon_context_length = 20
            self.context_length = '20'
        ts_metadata = {
            'num_series':
            len(self.train_index),
            'freq':
            gluon_freq,
            'start_ts':
            df.index[0],
            'gluon_start':
            [self.train_columns[0] for _ in range(len(self.train_index))],
            'context_length':
            self.gluon_context_length,
            'forecast_length':
            self.forecast_length,
        }
        if self.gluon_model in self.multivariate_mods:
            if self.regression_type == "User":
                regr = future_regressor.to_numpy().T
                self.regr_train = regr
                self.test_ds = ListDataset(
                    [{
                        "start": df.index[0],
                        "target": gluon_train,
                        "feat_dynamic_real": regr,
                    }],
                    freq=ts_metadata['freq'],
                    one_dim_target=False,
                )
            else:
                self.test_ds = ListDataset(
                    [{
                        "start": df.index[0],
                        "target": gluon_train
                    }],
                    freq=ts_metadata['freq'],
                    one_dim_target=False,
                )
        else:
            if self.regression_type == "User":
                self.gluon_train = gluon_train
                regr = future_regressor.to_numpy().T
                self.regr_train = regr
                self.test_ds = ListDataset(
                    [{
                        FieldName.TARGET: target,
                        FieldName.START: ts_metadata['start_ts'],
                        FieldName.FEAT_DYNAMIC_REAL: regr,
                    } for target in gluon_train],
                    freq=ts_metadata['freq'],
                )
            else:
                # use the actual start date, if NaN given (semi-hidden)
                # ts_metadata['gluon_start'] = df.notna().idxmax().tolist()
                self.test_ds = ListDataset(
                    [{
                        FieldName.TARGET: target,
                        FieldName.START: start
                    } for (target, start
                           ) in zip(gluon_train, ts_metadata['gluon_start'])],
                    freq=ts_metadata['freq'],
                )
        if self.gluon_model == 'DeepAR':
            from gluonts.model.deepar import DeepAREstimator

            estimator = DeepAREstimator(
                freq=ts_metadata['freq'],
                context_length=ts_metadata['context_length'],
                prediction_length=ts_metadata['forecast_length'],
                trainer=Trainer(epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )
        elif self.gluon_model == 'NPTS':
            from gluonts.model.npts import NPTSEstimator

            estimator = NPTSEstimator(
                freq=ts_metadata['freq'],
                context_length=ts_metadata['context_length'],
                prediction_length=ts_metadata['forecast_length'],
            )

        elif self.gluon_model == 'MQCNN':
            from gluonts.model.seq2seq import MQCNNEstimator

            estimator = MQCNNEstimator(
                freq=ts_metadata['freq'],
                context_length=ts_metadata['context_length'],
                prediction_length=ts_metadata['forecast_length'],
                trainer=Trainer(epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )

        elif self.gluon_model == 'SFF':
            from gluonts.model.simple_feedforward import SimpleFeedForwardEstimator

            estimator = SimpleFeedForwardEstimator(
                prediction_length=ts_metadata['forecast_length'],
                context_length=ts_metadata['context_length'],
                freq=ts_metadata['freq'],
                trainer=Trainer(
                    epochs=self.epochs,
                    learning_rate=self.learning_rate,
                    hybridize=False,
                    num_batches_per_epoch=100,
                ),
            )

        elif self.gluon_model == 'Transformer':
            from gluonts.model.transformer import TransformerEstimator

            estimator = TransformerEstimator(
                prediction_length=ts_metadata['forecast_length'],
                context_length=ts_metadata['context_length'],
                freq=ts_metadata['freq'],
                trainer=Trainer(epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )

        elif self.gluon_model == 'DeepState':
            from gluonts.model.deepstate import DeepStateEstimator

            estimator = DeepStateEstimator(
                prediction_length=ts_metadata['forecast_length'],
                past_length=ts_metadata['context_length'],
                freq=ts_metadata['freq'],
                use_feat_static_cat=False,
                cardinality=[1],
                trainer=Trainer(ctx='cpu',
                                epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )

        elif self.gluon_model == 'DeepFactor':
            from gluonts.model.deep_factor import DeepFactorEstimator

            estimator = DeepFactorEstimator(
                freq=ts_metadata['freq'],
                context_length=ts_metadata['context_length'],
                prediction_length=ts_metadata['forecast_length'],
                trainer=Trainer(epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )

        elif self.gluon_model == 'WaveNet':
            # Usually needs more epochs/training iterations than other models do
            from gluonts.model.wavenet import WaveNetEstimator

            estimator = WaveNetEstimator(
                freq=ts_metadata['freq'],
                prediction_length=ts_metadata['forecast_length'],
                trainer=Trainer(epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )
        elif self.gluon_model == 'DeepVAR':
            from gluonts.model.deepvar import DeepVAREstimator

            estimator = DeepVAREstimator(
                target_dim=gluon_train.shape[0],
                freq=ts_metadata['freq'],
                context_length=ts_metadata['context_length'],
                prediction_length=ts_metadata['forecast_length'],
                trainer=Trainer(epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )
        elif self.gluon_model == 'GPVAR':
            from gluonts.model.gpvar import GPVAREstimator

            estimator = GPVAREstimator(
                target_dim=gluon_train.shape[0],
                freq=ts_metadata['freq'],
                context_length=ts_metadata['context_length'],
                prediction_length=ts_metadata['forecast_length'],
                trainer=Trainer(epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )
        elif self.gluon_model == 'LSTNet':
            from gluonts.model.lstnet import LSTNetEstimator

            estimator = LSTNetEstimator(
                freq=ts_metadata['freq'],
                num_series=len(self.train_index),
                skip_size=0,
                ar_window=1,
                channels=2,
                context_length=ts_metadata['context_length'],
                prediction_length=ts_metadata['forecast_length'],
                trainer=Trainer(epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )
        elif self.gluon_model == 'NBEATS':
            from gluonts.model.n_beats import NBEATSEstimator

            estimator = NBEATSEstimator(
                freq=ts_metadata['freq'],
                context_length=ts_metadata['context_length'],
                prediction_length=ts_metadata['forecast_length'],
                trainer=Trainer(epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )
        elif self.gluon_model == 'Rotbaum':
            from gluonts.model.rotbaum import TreeEstimator

            estimator = TreeEstimator(
                freq=ts_metadata['freq'],
                context_length=ts_metadata['context_length'],
                prediction_length=ts_metadata['forecast_length'],
                # trainer=Trainer(epochs=self.epochs, learning_rate=self.learning_rate),
            )
        elif self.gluon_model == 'DeepRenewalProcess':
            from gluonts.model.renewal import DeepRenewalProcessEstimator

            estimator = DeepRenewalProcessEstimator(
                prediction_length=ts_metadata['forecast_length'],
                context_length=ts_metadata['context_length'],
                num_layers=1,  # original paper used 1 layer, 10 cells
                num_cells=10,
                freq=ts_metadata['freq'],
                trainer=Trainer(epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )
        elif self.gluon_model == 'SelfAttention':
            from gluonts.model.san import SelfAttentionEstimator

            estimator = SelfAttentionEstimator(
                prediction_length=ts_metadata['forecast_length'],
                context_length=ts_metadata['context_length'],
                freq=ts_metadata['freq'],
                trainer=Trainer(
                    epochs=self.epochs,
                    learning_rate=self.learning_rate,
                    use_feature_dynamic_real=False,
                ),
            )
        elif self.gluon_model == 'TemporalFusionTransformer':
            from gluonts.model.tft import TemporalFusionTransformerEstimator

            estimator = TemporalFusionTransformerEstimator(
                prediction_length=ts_metadata['forecast_length'],
                context_length=ts_metadata['context_length'],
                freq=ts_metadata['freq'],
                trainer=Trainer(epochs=self.epochs,
                                learning_rate=self.learning_rate),
            )
        elif self.gluon_model == 'DeepTPP':
            from gluonts.model.tpp.deeptpp import DeepTPPEstimator

            estimator = DeepTPPEstimator(
                prediction_interval_length=ts_metadata['forecast_length'],
                context_interval_length=ts_metadata['context_length'],
                num_marks=1,  # cardinality
                freq=ts_metadata['freq'],
                trainer=Trainer(
                    epochs=self.epochs,
                    learning_rate=self.learning_rate,
                    hybridize=False,
                ),
            )
        else:
            raise ValueError("'gluon_model' not recognized.")

        self.GluonPredictor = estimator.train(self.test_ds)
        self.ts_metadata = ts_metadata
        self.fit_runtime = datetime.datetime.now() - self.startTime
        return self