Exemplo n.º 1
0
    def fit(self, data_x, data_y, validation_data=None, dataset_split=None,
            verbose=None):
        """Fit self-organizing deep learning polynomial neural network

        :param data_x : numpy array or sparse matrix of shape [n_samples,n_features]
                 training data
        :param data_y : numpy array of shape [n_samples]
                 target values

        :return an instance of self.

        Example of using
        ----------------
        from gmdh import Regressor
        model = Regressor()
        model.fit(data_x, data_y)

        """
        if verbose is not None:
            self.verbose = verbose

        data_x, data_y = train_preprocessing(data_x, data_y, self.feature_names)

        if validation_data is None:
            input_train_x, train_y, input_validate_x, validate_y = split_dataset(
                data_x, data_y, self.param.seq_type)
            input_data_x = data_x
        else:
            input_validate_x, validate_y = train_preprocessing(
                validation_data[0], validation_data[1], self.feature_names)
            input_train_x = data_x
            train_y = data_y
            input_data_x = np.vstack((input_train_x, input_validate_x))
            data_x = input_data_x
            data_y = np.hstack((train_y, validate_y))

        self.n_features = data_x.shape[1]
        self.l_count = self.n_features
        self.n_train = input_train_x.shape[0]
        self.n_validate = input_validate_x.shape[0]

        if self.param.normalize:
            self.scaler = StandardScaler()
            input_train_x = self.scaler.fit_transform(input_train_x)
            input_validate_x = self.scaler.transform(input_validate_x)
            input_data_x = self.scaler.transform(input_data_x)

        train_y, validate_y, data_y = self._preprocess_y(train_y, validate_y, data_y)
        fit_data = FitData(input_train_x, train_y,
                           input_validate_x, validate_y,
                           data_x, data_y,
                           input_train_x, input_validate_x, input_data_x)

        self._pre_fit_check(train_y, validate_y)
        self._fit(fit_data)
        return self
Exemplo n.º 2
0
    def fit(self, data_x, data_y):
        """
        Fit multilayered group method of data handling algorithm (model)

        Parameters
        ----------

        data_x : numpy array or sparse matrix of shape [n_samples,n_features]
                 training data
        data_y : numpy array of shape [n_samples]
                 target values

        Returns
        -------
        self : returns an instance of self.

        Example of using
        ----------------
        from gmdh import MultilayerGMDH
        gmdh = MultilayerGMDH()
        gmdh.fit(data_x, data_y)

        """

        data_x, data_y, self.data_len = train_preprocessing(
            data_x, data_y, self.feature_names)
        self.data_y = data_y
        if self.param.normalize:
            self.scaler = StandardScaler()
            self.data_x = self.scaler.fit_transform(data_x)
        else:
            self.data_x = data_x
        self._set_data(self.data_x, self.data_y)
        self._pre_fit_check()
        self._train_gmdh()
        return self