Exemplo n.º 1
0
    def test_get_move(self):
        """
        Test the get_move(...) results in WindMover match the expected delta
        """
        for ix in range(2):
            curr_time = sec_to_date(date_to_sec(self.model_time) +
                                    self.time_step * ix)
            self.wm.prepare_for_model_step(self.sc, self.time_step, curr_time)

            delta = self.wm.get_move(self.sc, self.time_step, curr_time)
            actual = self._expected_move()

            # the results should be independent of model time
            tol = 1e-8

            msg = ('{0} is not within a tolerance of '
                   '{1}'.format('WindMover.get_move()', tol))
            np.testing.assert_allclose(delta, actual, tol, tol, msg, 0)

            assert self.wm.active

            ts = date_to_sec(curr_time) - date_to_sec(self.model_time)
            print ('Time step [sec]:\t{0}'
                   'C++ delta-move:\n{1}'
                   'Expected delta-move:\n{2}'
                   ''.format(ts, delta, actual))

        self.wm.model_step_is_done()
Exemplo n.º 2
0
    def test_variable_wind_after_model_time(self):
        '''
            test to make sure the wind mover is behaving properly with
            out-of-bounds winds.
            A variable wind should not extrapolate if it is out of bounds,
            so prepare_for_model_step() should fail with an exception
            in this case.
        '''
        wind_time = datetime(2012, 8, 21, 13)  # one day after model time

        time_series = (np.zeros((3, ), dtype=datetime_value_2d)
                       .view(dtype=np.recarray))
        time_series.time = [sec_to_date(date_to_sec(wind_time) +
                                        self.time_step * i)
                            for i in range(3)]
        time_series.value = np.array(((2., 25.), (2., 25.), (2., 25.)))

        wind = Wind(timeseries=time_series.reshape(3),
                    units='meter per second')

        wm = WindMover(wind)
        wm.prepare_for_model_run()

        for ix in range(2):
            curr_time = sec_to_date(date_to_sec(self.model_time) +
                                    self.time_step * ix)

            with raises(RuntimeError):
                wm.prepare_for_model_step(self.sc, self.time_step, curr_time)
Exemplo n.º 3
0
    def test_get_move(self):
        """
        Test the get_move(...) results in WindMover match the expected delta
        """
        for ix in range(2):
            curr_time = sec_to_date(date_to_sec(self.model_time) +
                                    self.time_step * ix)
            self.wm.prepare_for_model_step(self.sc, self.time_step, curr_time)

            delta = self.wm.get_move(self.sc, self.time_step, curr_time)
            actual = self._expected_move()

            # the results should be independent of model time
            tol = 1e-8

            msg = ('{0} is not within a tolerance of '
                   '{1}'.format('WindMover.get_move()', tol))
            np.testing.assert_allclose(delta, actual, tol, tol, msg, 0)

            assert self.wm.active

            ts = date_to_sec(curr_time) - date_to_sec(self.model_time)
            print ('Time step [sec]:\t{0}'
                   'C++ delta-move:\n{1}'
                   'Expected delta-move:\n{2}'
                   ''.format(ts, delta, actual))

        self.wm.model_step_is_done()
Exemplo n.º 4
0
    def test_variable_wind_after_model_time(self):
        '''
            test to make sure the wind mover is behaving properly with
            out-of-bounds winds.
            A variable wind should not extrapolate if it is out of bounds,
            so prepare_for_model_step() should fail with an exception
            in this case.
        '''
        wind_time = datetime(2012, 8, 21, 13)  # one day after model time

        time_series = (np.zeros((3, ), dtype=datetime_value_2d)
                       .view(dtype=np.recarray))
        time_series.time = [sec_to_date(date_to_sec(wind_time) +
                                        self.time_step * i)
                            for i in range(3)]
        time_series.value = np.array(((2., 25.), (2., 25.), (2., 25.)))

        wind = Wind(timeseries=time_series.reshape(3),
                    units='meter per second')

        wm = WindMover(wind)
        wm.prepare_for_model_run()

        for ix in range(2):
            curr_time = sec_to_date(date_to_sec(self.model_time) +
                                    self.time_step * ix)

            with raises(RuntimeError):
                wm.prepare_for_model_step(self.sc, self.time_step, curr_time)
Exemplo n.º 5
0
    def write_output(self, step_num, islast_step=False):
        """
            Generate image from data
        """
        # I don't think we need this for this outputter:
        #   - it does stuff with cache initialization
        super(IceImageOutput, self).write_output(step_num, islast_step)

        if (self.on is False or
                not self._write_step or
                len(self.ice_movers) == 0):
            return None

        # fixme -- doing all this cache stuff just to get the timestep..
        # maybe timestep should be passed in.
        for sc in self.cache.load_timestep(step_num).items():
            model_time = date_to_sec(sc.current_time_stamp)
            iso_time = sc.current_time_stamp.isoformat()

        thick_image, conc_image, bb = self.render_images(model_time)

        # info to return to the caller
        web_mercator = 'EPSG:3857'
        equirectangular = 'EPSG:32662'
        output_dict = {'step_num': step_num,
                       'time_stamp': iso_time,
                       'thickness_image': thick_image,
                       'concentration_image': conc_image,
                       'bounding_box': bb,
                       'projection': equirectangular,
                       }

        return output_dict
Exemplo n.º 6
0
    def write_output(self, step_num, islast_step=False):
        """
        Generate image from data
        """
        # I don't think we need this for this outputter:
        #   - it does stuff with cache initialization
        super(IceImageOutput, self).write_output(step_num, islast_step)

        if self.on is False or not self._write_step or self.ice_mover is None:
            return None

        ## fixme -- doing all this cache stuff just to get the timestep..
        ## maybe timestep should be passed in.
        for sc in self.cache.load_timestep(step_num).items():
            pass

        model_time = date_to_sec(sc.current_time_stamp)

        thick_image, conc_image = self.render_images(model_time)
        ## fixme: Can we really loop through the movers?
        ##        or should there be one IceImage outputter for each Ice Mover.
            ## here is where we render....
            # do something with self.get_coverage_fc(ice_coverage, mover_triangles))
            # do somethign with self.get_thickness_fc(ice_thickness, mover_triangles))

        # info to return to the caller
        output_dict = {'step_num': step_num,
                       'time_stamp': sc.current_time_stamp.isoformat(),
                       'thickness_image': thick_image,
                       'concentration_image': conc_image,
                       'bounding_box': ((-85.0, 20.0),(-55.0, 45.0)),
                       'projection': ("EPSG:3857"),
                       }
        return output_dict
Exemplo n.º 7
0
    def check_time(self, wind, model_time):
        '''
            Should have an option to extrapolate but for now we do by default

            TODO, FIXME: This function does not appear to be used by anything.
                         Removing it does not break any of the unit tests.
                         If it is not used, it should probably go away.
        '''
        new_model_time = model_time

        if wind is not None:
            if model_time is not None:
                timeval = date_to_sec(model_time)
                start_time = wind.get_start_time()
                end_time = wind.get_end_time()

                if end_time == start_time:
                    return model_time

                if timeval < start_time:
                    new_model_time = sec_to_datetime(start_time)

                if timeval > end_time:
                    new_model_time = sec_to_datetime(end_time)
            else:
                return model_time

        return new_model_time
    def test_move_gridcur_series(self):
        """
        test move for a gridCur file series (first time in first file)
        """

        time = datetime.datetime(2002, 1, 30, 1)
        self.cm.model_time = time_utils.date_to_sec(time)

        time_grid_file = testdata['GridCurrentMover']['series_gridCur']
        topology_file = r""

        self.gcm.text_read(time_grid_file, topology_file)
        self.cm.ref[:]['long'] = -119.933264  # for gridCur test
        self.cm.ref[:]['lat'] = 34.138736
        self.check_move()

        actual = np.empty((self.cm.num_le, ), dtype=world_point)
        actual[:]['lat'] = -0.0034527536849574456
        actual[:]['long'] = 0.005182449331779978
        actual[:]['z'] = 0.
        tol = 1e-5

        msg = r"{0} move is not within a tolerance of {1}"
        np.testing.assert_allclose(self.cm.delta['lat'], actual['lat'], tol,
                                   tol, msg.format('gridcur series', tol), 0)

        np.testing.assert_allclose(self.cm.delta['long'], actual['long'], tol,
                                   tol, msg.format('gridcur series', tol), 0)

        # np.testing.assert_equal(self.cm.delta, actual,
        #                        "test_move_gridcur_series() failed", 0)

        np.all(self.cm.delta['z'] == 0)
    def test_move_ptcur_extrapolate(self):
        """
        test move for a ptCur grid (first time in file)
        """

        # time before first time in file
        time = datetime.datetime(2000, 2, 14, 8)
        self.cm.model_time = time_utils.date_to_sec(time)

        time_grid_file = testdata['GridCurrentMover']['ptCur']

        self.gcm.text_read(time_grid_file)

        # result of move should be same as first step for ptCur test
        self.gcm.extrapolate_in_time(True)
        self.cm.ref[:]['long'] = -124.686928
        self.cm.ref[:]['lat'] = 48.401124
        self.check_move()

        actual = np.empty((self.cm.num_le, ), dtype=world_point)
        actual[:]['lat'] = .0161987
        actual[:]['long'] = -.02439887
        tol = 1e-5

        msg = r"{0} move is not within a tolerance of {1}"
        np.testing.assert_allclose(self.cm.delta['lat'], actual['lat'], tol,
                                   tol, msg.format('ptcur', tol), 0)

        np.testing.assert_allclose(self.cm.delta['long'], actual['long'], tol,
                                   tol, msg.format('ptcur', tol), 0)
Exemplo n.º 10
0
    def test_move_curv_series(self):
        """
        Test a curvilinear file series
        - time in first file
        - time in second file
        """

        # time = datetime.datetime(2009, 8, 2, 0)  # first file

        time = datetime.datetime(2009, 8, 9, 0)  # second file
        self.cm.model_time = time_utils.date_to_sec(time)

        time_grid_file = testdata['GridCurrentMover']['series_curv']
        topology_file = testdata['GridCurrentMover']['series_top']

        self.gcm.text_read(time_grid_file, topology_file)
        self.cm.ref[:]['long'] = -157.795728  # for HiROMS
        self.cm.ref[:]['lat'] = 21.069288
        self.check_move()

        actual = np.empty((self.cm.num_le, ), dtype=world_point)
        # actual[:]['lat'] = -.003850193  # file 2
        # actual[:]['long'] = .000152012

        # updated to new curvilinear algorithm
        actual[:]['lat'] = .00292  # file 2
        actual[:]['long'] = .00051458
        tol = 1e-5

        msg = r"{0} move is not within a tolerance of {1}"
        np.testing.assert_allclose(self.cm.delta['lat'], actual['lat'], tol,
                                   tol, msg.format('HiROMS', tol), 0)

        np.testing.assert_allclose(self.cm.delta['long'], actual['long'], tol,
                                   tol, msg.format('HiROMS', tol), 0)
Exemplo n.º 11
0
    def test_move_curv_no_top(self):
        """
        test move for a curvilinear grid (first time in file)
        """

        time = datetime.datetime(2008, 1, 29, 17)
        self.cm.model_time = time_utils.date_to_sec(time)

        time_grid_file = testdata['GridCurrentMover']['curr_curv']
        self.gcm.text_read(time_grid_file, topology_file=None)

        topology_file2 = os.path.join(
            os.path.split(time_grid_file)[0], 'NYTopologyNew.dat')

        self.gcm.export_topology(topology_file2)
        self.cm.ref[:]['long'] = -74.03988  # for NY
        self.cm.ref[:]['lat'] = 40.536092
        self.check_move()

        actual = np.empty((self.cm.num_le, ), dtype=world_point)
        actual[:]['lat'] = .000911
        actual[:]['long'] = -.001288
        tol = 1e-5

        msg = r"{0} move is not within a tolerance of {1}"
        np.testing.assert_allclose(self.cm.delta['lat'], actual['lat'], tol,
                                   tol, msg.format('ny_cg.nc', tol), 0)

        np.testing.assert_allclose(self.cm.delta['long'], actual['long'], tol,
                                   tol, msg.format('ny_cg.nc', tol), 0)
Exemplo n.º 12
0
    def test_move_reg(self):
        """
        test move for a regular grid (first time in file)
        """

        time = datetime.datetime(1999, 11, 29, 21)
        self.cm.model_time = time_utils.date_to_sec(time)

        time_grid_file = testdata['GridCurrentMover']['curr_reg']

        self.gcm.text_read(time_grid_file)
        self.cm.ref[:]['long'] = 3.104588  # for simple example
        self.cm.ref[:]['lat'] = 52.016468
        self.check_move()

        actual = np.empty((self.cm.num_le, ), dtype=world_point)
        actual[:]['lat'] = .003354610952486354
        actual[:]['long'] = .0010056182923228838
        actual[:]['z'] = 0.
        tol = 1e-5

        msg = r"{0} move is not within a tolerance of {1}"
        np.testing.assert_allclose(self.cm.delta['lat'], actual['lat'], tol,
                                   tol, msg.format('test.cdf', tol), 0)

        np.testing.assert_allclose(self.cm.delta['long'], actual['long'], tol,
                                   tol, msg.format('test.cdf', tol), 0)

        # np.testing.assert_equal(self.cm.delta['z'], actual['z'],
        #                        "test_move_reg() failed", 0)

        np.all(self.cm.delta['z'] == 0)
Exemplo n.º 13
0
    def write_output(self, step_num, islast_step=False):
        'dump data in geojson format'
        super(CurrentJsonOutput, self).write_output(step_num, islast_step)

        if self.on is False or not self._write_step:
            return None

        for sc in self.cache.load_timestep(step_num).items():
            model_time = date_to_sec(sc.current_time_stamp)
            iso_time = sc.current_time_stamp.isoformat()

        json_ = {}
        for cm in self.current_movers:

            velocities = cm.get_scaled_velocities(model_time)
            velocities = self.get_rounded_velocities(velocities)
            x = velocities[:, 0]
            y = velocities[:, 1]
            direction = np.arctan2(y, x) - np.pi / 2
            magnitude = np.sqrt(x**2 + y**2)
            direction = np.round(direction, 2)
            magnitude = np.round(magnitude, 2)

            json_[cm.id] = {
                'magnitude': magnitude.tolist(),
                'direction': direction.tolist()
            }
        return json_
Exemplo n.º 14
0
    def test_constant_wind_after_model_time(self):
        '''
            test to make sure the wind mover is behaving properly with
            out-of-bounds winds.
            A constant wind should extrapolate if it is out of bounds,
            so prepare_for_model_step() should not fail.

            We are testing that the wind extrapolates properly, so the
            windages should be updated in the same way as the in-bounds test
        '''
        wind_time = datetime(2012, 8, 21, 13)  # one day after model time

        wind = Wind(timeseries=np.array((wind_time, (2., 25.)),
                                        dtype=datetime_value_2d).reshape(1),
                    units='meter per second')

        wm = WindMover(wind)
        wm.prepare_for_model_run()

        for ix in range(2):
            curr_time = sec_to_date(date_to_sec(self.model_time) +
                                    self.time_step * ix)
            print 'curr_time = ', curr_time

            old_windages = np.copy(self.sc['windages'])
            wm.prepare_for_model_step(self.sc, self.time_step, curr_time)

            mask = self.sc['windage_persist'] == -1
            assert np.all(self.sc['windages'][mask] == old_windages[mask])

            mask = self.sc['windage_persist'] > 0
            assert np.all(self.sc['windages'][mask] != old_windages[mask])
Exemplo n.º 15
0
    def write_output(self, step_num, islast_step=False):
        'dump data in geojson format'
        super(IceGeoJsonOutput, self).write_output(step_num, islast_step)

        if self.on is False or not self._write_step:
            return None

        for sc in self.cache.load_timestep(step_num).items():
            pass

        model_time = date_to_sec(sc.current_time_stamp)

        geojson = {}

        for mover in self.ice_movers:
            grid_data = mover.get_grid_data()
            ice_coverage, ice_thickness = mover.get_ice_fields(model_time)

            geojson[mover.id] = []
            geojson[mover.id].append(
                self.get_coverage_fc(ice_coverage, grid_data))
            geojson[mover.id].append(
                self.get_thickness_fc(ice_thickness, grid_data))

        # default geojson should not output data to file
        output_info = {
            'time_stamp': sc.current_time_stamp.isoformat(),
            'feature_collections': geojson
        }

        return output_info
Exemplo n.º 16
0
def _convert(x):
    """
    helper method for the next 4 tests
    """
    y = time_utils.date_to_sec(x)

    return time_utils.sec_to_date(y)
    def test_move_curv_no_top(self):
        """
        test move for a curvilinear grid (first time in file)
        """

        time = datetime.datetime(2008, 1, 29, 17)
        self.cm.model_time = time_utils.date_to_sec(time)

        time_grid_file = testdata['GridCurrentMover']['curr_curv']
        self.gcm.text_read(time_grid_file, topology_file=None)

        topology_file2 = os.path.join(os.path.split(time_grid_file)[0],
                                      'NYTopologyNew.dat')

        self.gcm.export_topology(topology_file2)
        self.cm.ref[:]['long'] = -74.03988  # for NY
        self.cm.ref[:]['lat'] = 40.536092
        self.check_move()

        actual = np.empty((self.cm.num_le, ), dtype=world_point)
        actual[:]['lat'] = .000911
        actual[:]['long'] = -.001288
        tol = 1e-5

        msg = r"{0} move is not within a tolerance of {1}"
        np.testing.assert_allclose(self.cm.delta['lat'], actual['lat'],
                                   tol, tol,
                                   msg.format('ny_cg.nc', tol),
                                   0)

        np.testing.assert_allclose(self.cm.delta['long'], actual['long'],
                                   tol, tol,
                                   msg.format('ny_cg.nc', tol),
                                   0)
Exemplo n.º 18
0
    def check_time(self, wind, model_time):
        '''
            Should have an option to extrapolate but for now we do by default

            TODO, FIXME: This function does not appear to be used by anything.
                         Removing it does not break any of the unit tests.
                         If it is not used, it should probably go away.
        '''
        new_model_time = model_time

        if wind is not None:
            if model_time is not None:
                timeval = date_to_sec(model_time)
                start_time = wind.get_start_time()
                end_time = wind.get_end_time()

                if end_time == start_time:
                    return model_time

                if timeval < start_time:
                    new_model_time = sec_to_datetime(start_time)

                if timeval > end_time:
                    new_model_time = sec_to_datetime(end_time)
            else:
                return model_time

        return new_model_time
    def test_move_ptcur_extrapolate(self):
        """
        test move for a ptCur grid (first time in file)
        """

        # time before first time in file
        time = datetime.datetime(2000, 2, 14, 8)
        self.cm.model_time = time_utils.date_to_sec(time)

        time_grid_file = testdata['GridCurrentMover']['ptCur']

        self.gcm.text_read(time_grid_file)

        # result of move should be same as first step for ptCur test
        self.gcm.extrapolate_in_time(True)
        self.cm.ref[:]['long'] = -124.686928
        self.cm.ref[:]['lat'] = 48.401124
        self.check_move()

        actual = np.empty((self.cm.num_le, ), dtype=world_point)
        actual[:]['lat'] = .0161987
        actual[:]['long'] = -.02439887
        tol = 1e-5

        msg = r"{0} move is not within a tolerance of {1}"
        np.testing.assert_allclose(self.cm.delta['lat'], actual['lat'],
                                   tol, tol,
                                   msg.format('ptcur', tol),
                                   0)

        np.testing.assert_allclose(self.cm.delta['long'], actual['long'],
                                   tol, tol,
                                   msg.format('ptcur', tol),
                                   0)
Exemplo n.º 20
0
def test_grid_wind_curv():
    # curvlinear grid
    curv = Grid(wind_file, topology_file, grid_type=2)
    time = date_to_sec(datetime(2006, 3, 31, 21))
    vel = curv.get_value(time, (-122.934656, 38.27594))
    print "Curv grid - vel: {0}\n".format(vel)
    assert vel.item() != 0
Exemplo n.º 21
0
def _convert(x):
    """
    helper method for the next 4 tests
    """
    y = time_utils.date_to_sec(x)

    return time_utils.sec_to_date(y)
Exemplo n.º 22
0
 def test_get_move_exceptions(self):
     curr_time = sec_to_date(date_to_sec(self.model_time) + self.time_step)
     tmp_windages = self.sc._data_arrays['windages']
     del self.sc._data_arrays['windages']
     with pytest.raises(KeyError):
         self.wm.get_move(self.sc, self.time_step, curr_time)
     self.sc._data_arrays['windages'] = tmp_windages
Exemplo n.º 23
0
def test_prepare_for_model_step():
    """
    explicitly test to make sure windages are being updated for persistence
    != 0 and windages are not being changed for persistance == -1
    """
    time_step = 15 * 60  # seconds
    model_time = datetime(2012, 8, 20, 13)  # yyyy/month/day/hr/min/sec
    sc = sample_sc_release(5, (3., 6., 0.), model_time)
    sc['windage_persist'][:2] = -1
    wind = Wind(timeseries=np.array((model_time, (2., 25.)),
                                    dtype=datetime_value_2d).reshape(1),
                units='meter per second')

    wm = WindMover(wind)
    wm.prepare_for_model_run()

    for ix in range(2):
        curr_time = sec_to_date(date_to_sec(model_time) + time_step * ix)
        old_windages = np.copy(sc['windages'])
        wm.prepare_for_model_step(sc, time_step, curr_time)

        mask = [sc['windage_persist'] == -1]
        assert np.all(sc['windages'][mask] == old_windages[mask])

        mask = [sc['windage_persist'] > 0]
        assert np.all(sc['windages'][mask] != old_windages[mask])
Exemplo n.º 24
0
def _convert(x):
    """
    helper method for the next 4 tests
    """
    y = date_to_sec(x)

    return sec_to_date(y)
Exemplo n.º 25
0
    def write_output(self, step_num, islast_step=False):
        'dump data in geojson format'
        super(IceGeoJsonOutput, self).write_output(step_num, islast_step)

        if self.on is False or not self._write_step:
            return None

        for sc in self.cache.load_timestep(step_num).items():
            pass

        model_time = date_to_sec(sc.current_time_stamp)

        geojson = {}
        for mover in self.ice_movers:
            mover_triangles = self.get_triangles(mover)
            ice_coverage, ice_thickness = mover.get_ice_fields(model_time)

            geojson[mover.id] = []
            geojson[mover.id].append(self.get_coverage_fc(ice_coverage,
                                                          mover_triangles))
            geojson[mover.id].append(self.get_thickness_fc(ice_thickness,
                                                           mover_triangles))

        # default geojson should not output data to file
        output_info = {'time_stamp': sc.current_time_stamp.isoformat(),
                       'feature_collections': geojson
                       }

        return output_info
Exemplo n.º 26
0
    def write_output(self, step_num, islast_step=False):
        'dump data in geojson format'
        super(IceJsonOutput, self).write_output(step_num, islast_step)

        if self.on is False or not self._write_step:
            return None

        for sc in self.cache.load_timestep(step_num).items():
            pass

        model_time = date_to_sec(sc.current_time_stamp)

        raw_json = {}

        for mover in self.ice_movers:
            ice_coverage, ice_thickness = mover.get_ice_fields(model_time)

            raw_json[mover.id] = {"thickness": [],
                                  "concentration": []}

            raw_json[mover.id]["thickness"] = ice_thickness.tolist()
            raw_json[mover.id]["concentration"] = ice_coverage.tolist()

        output_info = {'time_stamp': sc.current_time_stamp.isoformat(),
                       'data': raw_json}

        return output_info
Exemplo n.º 27
0
    def write_output(self, step_num, islast_step=False):
        'dump data in geojson format'
        super(CurrentJsonOutput, self).write_output(step_num, islast_step)

        if self.on is False or not self._write_step:
            return None

        for sc in self.cache.load_timestep(step_num).items():
            model_time = date_to_sec(sc.current_time_stamp)
            iso_time = sc.current_time_stamp.isoformat()

        json_ = {}
        for cm in self.current_movers:

            velocities = cm.get_scaled_velocities(model_time)
            velocities = self.get_rounded_velocities(velocities)
            x = velocities[:,0]
            y = velocities[:,1]
            direction = np.arctan2(y,x) - np.pi/2
            magnitude = np.sqrt(x**2 + y**2)
            direction = np.round(direction,2)
            magnitude = np.round(magnitude,2)

            json_[cm.id]={'magnitude':magnitude.tolist(),
                         'direction':direction.tolist()
                         }
        return json_
Exemplo n.º 28
0
def test_prepare_for_model_step():
    """
    explicitly test to make sure windages are being updated for persistence
    != 0 and windages are not being changed for persistance == -1
    """
    time_step = 15 * 60  # seconds
    model_time = datetime(2012, 8, 20, 13)  # yyyy/month/day/hr/min/sec
    sc = sample_sc_release(5, (3., 6., 0.), model_time)
    sc['windage_persist'][:2] = -1
    wind = Wind(timeseries=np.array((model_time, (2., 25.)),
                                    dtype=datetime_value_2d).reshape(1),
                units='meter per second')

    wm = WindMover(wind)
    wm.prepare_for_model_run()

    for ix in range(2):
        curr_time = sec_to_date(date_to_sec(model_time) + time_step * ix)
        old_windages = np.copy(sc['windages'])
        wm.prepare_for_model_step(sc, time_step, curr_time)

        mask = [sc['windage_persist'] == -1]
        assert np.all(sc['windages'][mask] == old_windages[mask])

        mask = [sc['windage_persist'] > 0]
        assert np.all(sc['windages'][mask] != old_windages[mask])
Exemplo n.º 29
0
    def datetime_to_seconds(self, model_time):
        """
        Put the time conversion call here - in case we decide to change it, it
        only updates here
        """

        return time_utils.date_to_sec(model_time)
Exemplo n.º 30
0
    def get_timeseries(self, datetime=None, format='uv'):
        """
        Returns the timeseries in requested format. If datetime=None,
        then the original timeseries that was entered is returned.
        If datetime is a list containing datetime objects, then the value
        for each of those date times is determined by the underlying
        C++ object and the timeseries is returned.

        The output format is defined by the strings 'r-theta', 'uv'

        :param datetime: [optional] datetime object or list of datetime
                         objects for which the value is desired
        :type datetime: datetime object
        :param format: output format for the times series:
                       either 'r-theta' or 'uv'
        :type format: either string or integer value defined by
                      basic_types.ts_format.* (see cy_basic_types.pyx)

        :returns: numpy array containing dtype=basic_types.datetime_value_2d.
                  Contains user specified datetime and the corresponding
                  values in user specified ts_format
        """
        if datetime is None:
            datetimeval = to_datetime_value_2d(self.ossm.timeseries, format)
        else:
            datetime = np.asarray(datetime, dtype='datetime64[s]').reshape(-1)
            timeval = np.zeros((len(datetime), ),
                               dtype=basic_types.time_value_pair)
            timeval['time'] = date_to_sec(datetime)
            timeval['value'] = self.ossm.get_time_value(timeval['time'])
            datetimeval = to_datetime_value_2d(timeval, format)

        return datetimeval
Exemplo n.º 31
0
    def get_timeseries(self, datetime=None, format='uv'):
        """
        Returns the timeseries in requested format. If datetime=None,
        then the original timeseries that was entered is returned.
        If datetime is a list containing datetime objects, then the value
        for each of those date times is determined by the underlying
        C++ object and the timeseries is returned.

        The output format is defined by the strings 'r-theta', 'uv'

        :param datetime: [optional] datetime object or list of datetime
                         objects for which the value is desired
        :type datetime: datetime object
        :param format: output format for the times series:
                       either 'r-theta' or 'uv'
        :type format: either string or integer value defined by
                      basic_types.ts_format.* (see cy_basic_types.pyx)

        :returns: numpy array containing dtype=basic_types.datetime_value_2d.
                  Contains user specified datetime and the corresponding
                  values in user specified ts_format
        """
        if datetime is None:
            datetimeval = to_datetime_value_2d(self.ossm.timeseries, format)
        else:
            datetime = np.asarray(datetime, dtype='datetime64[s]').reshape(-1)
            timeval = np.zeros((len(datetime), ),
                               dtype=basic_types.time_value_pair)
            timeval['time'] = date_to_sec(datetime)
            timeval['value'] = self.ossm.get_time_value(timeval['time'])
            datetimeval = to_datetime_value_2d(timeval, format)

        return datetimeval
Exemplo n.º 32
0
    def write_output(self, step_num, islast_step=False):
        """
            Generate image from data
        """
        # I don't think we need this for this outputter:
        #   - it does stuff with cache initialization
        super(IceImageOutput, self).write_output(step_num, islast_step)

        if (self.on is False or not self._write_step
                or len(self.ice_movers) == 0):
            return None

        # fixme -- doing all this cache stuff just to get the timestep..
        # maybe timestep should be passed in.
        for sc in self.cache.load_timestep(step_num).items():
            model_time = date_to_sec(sc.current_time_stamp)
            iso_time = sc.current_time_stamp.isoformat()

        thick_image, conc_image, bb = self.render_images(model_time)

        # web_mercator = 'EPSG:3857'
        equirectangular = 'EPSG:32662'

        # info to return to the caller
        output_dict = {
            'step_num': step_num,
            'time_stamp': iso_time,
            'thickness_image': thick_image,
            'concentration_image': conc_image,
            'bounding_box': bb,
            'projection': equirectangular,
        }

        return output_dict
Exemplo n.º 33
0
    def write_output(self, step_num, islast_step=False):
        'dump data in geojson format'
        super(IceJsonOutput, self).write_output(step_num, islast_step)

        if self.on is False or not self._write_step:
            return None

        for sc in self.cache.load_timestep(step_num).items():
            pass

        model_time = date_to_sec(sc.current_time_stamp)

        raw_json = {}

        for mover in self.ice_movers:
            ice_coverage, ice_thickness = mover.get_ice_fields(model_time)

            raw_json[mover.id] = {"thickness": [], "concentration": []}

            raw_json[mover.id]["thickness"] = ice_thickness.tolist()
            raw_json[mover.id]["concentration"] = ice_coverage.tolist()

        output_info = {
            'time_stamp': sc.current_time_stamp.isoformat(),
            'data': raw_json
        }

        return output_info
Exemplo n.º 34
0
    def test_constant_wind_after_model_time(self):
        '''
            test to make sure the wind mover is behaving properly with
            out-of-bounds winds.
            A constant wind should extrapolate if it is out of bounds,
            so prepare_for_model_step() should not fail.

            We are testing that the wind extrapolates properly, so the
            windages should be updated in the same way as the in-bounds test
        '''
        wind_time = datetime(2012, 8, 21, 13)  # one day after model time

        wind = Wind(timeseries=np.array((wind_time, (2., 25.)),
                                        dtype=datetime_value_2d).reshape(1),
                    units='meter per second')

        wm = WindMover(wind)
        wm.prepare_for_model_run()

        for ix in range(2):
            curr_time = sec_to_date(date_to_sec(self.model_time) +
                                    self.time_step * ix)
            print 'curr_time = ', curr_time

            old_windages = np.copy(self.sc['windages'])
            wm.prepare_for_model_step(self.sc, self.time_step, curr_time)

            mask = self.sc['windage_persist'] == -1
            assert np.all(self.sc['windages'][mask] == old_windages[mask])

            mask = self.sc['windage_persist'] > 0
            assert np.all(self.sc['windages'][mask] != old_windages[mask])
Exemplo n.º 35
0
def test_grid_wind_curv():
    # curvlinear grid
    curv = Grid(wind_file, topology_file, grid_type=2)
    time = date_to_sec(datetime(2006, 3, 31, 21))
    vel = curv.get_value(time, (-122.934656, 38.27594))
    print "Curv grid - vel: {0}\n".format(vel)
    assert vel.item() != 0
Exemplo n.º 36
0
    def write_output(self, step_num, islast_step=False):
        'dump data in geojson format'
        super(TrajectoryGeoJsonOutput,
              self).write_output(step_num, islast_step)

        if not self._write_step:
            return None

        # one feature per element client; replaced with multipoint
        # because client performance is much more stable with one
        # feature per step rather than (n) features per step.features = []
        features = []
        for sc in self.cache.load_timestep(step_num).items():
            time = date_to_sec(sc.current_time_stamp)
            position = self._dataarray_p_types(sc['positions'])
            status = self._dataarray_p_types(sc['status_codes'])
            sc_type = 'uncertain' if sc.uncertain else 'forecast'

            # break elements into multipoint features based on their status code
            # evaporated : 10
            # in_water : 2
            # not_released : 0
            # off_maps : 7
            # on_land : 3
            # to_be_removed : 12
            points = {}
            for ix, pos in enumerate(position):
                st_code = status[ix]

                if st_code not in points:
                    points[st_code] = []

                points[st_code].append(pos[:2])

            for k in points:
                feature = Feature(geometry=MultiPoint(points[k]),
                                  id="1",
                                  properties={
                                      'sc_type': sc_type,
                                      'status_code': k,
                                  })
                if sc.uncertain:
                    features.insert(0, feature)
                else:
                    features.append(feature)

        geojson = FeatureCollection(features)
        # default geojson should not output data to file
        # read data from file and send it to web client
        output_info = {
            'time_stamp': sc.current_time_stamp.isoformat(),
            'feature_collection': geojson
        }

        if self.output_dir:
            output_filename = self.output_to_file(geojson, step_num)
            output_info.update({'output_filename': output_filename})

        return output_info
Exemplo n.º 37
0
def test_get_time_value():
    'make sure get_time_value goes to correct C++ derived class function'
    shio = CyShioTime(shio_file)
    t = time_utils.date_to_sec(datetime(2012, 8, 20, 13))
    time = [t + 3600.*dt for dt in range(10)]
    vel_rec = shio.get_time_value(time)
    assert all(vel_rec['u'] != 0)
    assert all(vel_rec['v'] == 0)
Exemplo n.º 38
0
def test_grid_wind_curv():
    # curvlinear grid
    curv = CyTimeGridWindCurv(testdata['GridWindMover']['wind_curv'],
                              testdata['GridWindMover']['top_curv'])
    time = date_to_sec(datetime(2006, 3, 31, 21))
    vel = curv.get_value(time, (-122.934656, 38.27594))
    print "Curv grid - vel: {0}\n".format(vel)
    assert vel.item() != 0
Exemplo n.º 39
0
def test_grid_wind_curv():
    # curvlinear grid
    curv = CyTimeGridWindCurv(testdata['GridWindMover']['wind_curv'],
                              testdata['GridWindMover']['top_curv'])
    time = date_to_sec(datetime(2006, 3, 31, 21))
    vel = curv.get_value(time, (-122.934656, 38.27594))
    print "Curv grid - vel: {0}\n".format(vel)
    assert vel.item() != 0
Exemplo n.º 40
0
class TestRandomMover:

    """
    gnome.RandomMover() test

    """

    num_le = 5

    # start_pos = np.zeros((num_le,3), dtype=basic_types.world_point_type)

    start_pos = (0., 0., 0.)
    rel_time = datetime.datetime(2012, 8, 20, 13)  # yyyy/month/day/hr/min/sec
    model_time = sec_to_date(date_to_sec(rel_time) + 1)
    time_step = 15 * 60  # seconds

    mover = RandomMover()

    def reset_pos(self):
        self.pSpill['positions'] = (0., 0., 0.)
        print self.pSpill['positions']

    def test_string_representation_matches_repr_method(self):
        """
        Just print repr and str
        """

        print
        print repr(self.mover)
        print str(self.mover)
        assert True

    def test_id_matches_builtin_id(self):

        # It is not a good assumption that the obj.id property
        # will always contain the id(obj) value.  For example it could
        # have been overloaded with, say, a uuid1() generator.
        # assert id(self.mover) == self.mover.id

        pass

    def test_change_diffusion_coef(self):
        self.mover.diffusion_coef = 200000
        assert self.mover.diffusion_coef == 200000

    def test_change_uncertain_factor(self):
        self.mover.uncertain_factor = 3
        assert self.mover.uncertain_factor == 3

    def test_prepare_for_model_step(self):
        """
        Simply tests the method executes without exceptions
        """

        pSpill = sample_sc_release(self.num_le, self.start_pos)
        self.mover.prepare_for_model_step(pSpill, self.time_step,
                                          self.model_time)
        assert True
Exemplo n.º 41
0
    def write_output(self, step_num, islast_step=False):
        'dump data in geojson format'
        super(TrajectoryGeoJsonOutput, self).write_output(step_num,
                                                          islast_step)

        if not self._write_step:
            return None

        # one feature per element client; replaced with multipoint
        # because client performance is much more stable with one
        # feature per step rather than (n) features per step.features = []
        features = []
        for sc in self.cache.load_timestep(step_num).items():
            time = date_to_sec(sc.current_time_stamp)
            position = self._dataarray_p_types(sc['positions'])
            status = self._dataarray_p_types(sc['status_codes'])
            sc_type = 'uncertain' if sc.uncertain else 'forecast'

            # break elements into multipoint features based on their
            # status code
            #   evaporated : 10
            #   in_water : 2
            #   not_released : 0
            #   off_maps : 7
            #   on_land : 3
            #   to_be_removed : 12
            points = {}
            for ix, pos in enumerate(position):
                st_code = status[ix]

                if st_code not in points:
                    points[st_code] = []

                points[st_code].append(pos[:2])

            for k in points:
                feature = Feature(geometry=MultiPoint(points[k]), id="1",
                                  properties={
                                    'sc_type': sc_type,
                                    'status_code': k,
                                  })
                if sc.uncertain:
                    features.insert(0, feature)
                else:
                    features.append(feature)

        geojson = FeatureCollection(features)
        # default geojson should not output data to file
        # read data from file and send it to web client
        output_info = {'time_stamp': sc.current_time_stamp.isoformat(),
                       'feature_collection': geojson
                       }

        if self.output_dir:
            output_filename = self.output_to_file(geojson, step_num)
            output_info.update({'output_filename': output_filename})

        return output_info
Exemplo n.º 42
0
    def test_get_move_exceptions(self):
        curr_time = sec_to_date(date_to_sec(self.model_time) + self.time_step)
        tmp_windages = self.sc._data_arrays['windages']
        del self.sc._data_arrays['windages']

        with raises(KeyError):
            self.wm.get_move(self.sc, self.time_step, curr_time)

        self.sc._data_arrays['windages'] = tmp_windages
    def test_move_tri_tide(self):
        """
        test move for a triangular grid (first time in file)
        """

        time = datetime.datetime(2014, 6, 9, 0)
        self.cm.model_time = time_utils.date_to_sec(time)
        self.cm.uncertain = True

        time_grid_file = get_datafile(os.path.join(cur_dir, 'PQBayCur.nc4'
                ))
        topology_file = get_datafile(os.path.join(cur_dir, 'PassamaquoddyTOP.dat'
                ))

        tide_file = get_datafile(os.path.join(tide_dir, 'EstesHead.txt'
                ))

        yeardata_path = os.path.join(os.path.dirname(gnome.__file__),
                'data/yeardata/')

        self.shio = cy_shio_time.CyShioTime(tide_file)
        self.ccm.set_shio(self.shio)
        self.ccm.text_read(time_grid_file, topology_file)
        self.shio.set_shio_yeardata_path(yeardata_path)
        self.cm.ref[:]['long'] = -66.991344  # for Passamaquoddy
        self.cm.ref[:]['lat'] = 45.059316
        #self.check_move()
        self.check_move_certain_uncertain(self.ccm.uncertain_time_delay)

        actual = np.empty((self.cm.num_le, ), dtype=world_point)
        actual[:]['lat'] = -.000440779
        actual[:]['long'] = .00016611
        tol = 1e-5

        msg = r"{0} move is not within a tolerance of {1}"
        np.testing.assert_allclose(
            self.cm.delta['lat'],
            actual['lat'],
            tol,
            tol,
            msg.format('ches_bay', tol),
            0,
            )
        np.testing.assert_allclose(
            self.cm.delta['long'],
            actual['long'],
            tol,
            tol,
            msg.format('ches_bay', tol),
            0,
            )
        #check that certain and uncertain are the same if uncertainty is time delayed
        #self.ccm.uncertain_time_delay = 3
        self.ccm.uncertain_time_delay = 10800 # cython expects time_delay in seconds
        self.check_move_certain_uncertain(self.ccm.uncertain_time_delay)
Exemplo n.º 44
0
    def get_timeseries(
        self,
        datetime=None,
        units=None,
        format='r-theta',
        ):
        """
        Returns the timeseries in the requested format. If datetime=None,
        then the original timeseries that was entered is returned.
        If datetime is a list containing datetime objects, then the wind value
        for each of those date times is determined by the underlying
        CyOSSMTime object and the timeseries is returned.

        The output format is defined by the strings 'r-theta', 'uv'

        :param datetime: [optional] datetime object or list of datetime
                         objects for which the value is desired
        :type datetime: datetime object
        :param units: [optional] outputs data in these units. Default is to
                      output data in units
        :type units: string. Uses the hazpy.unit_conversion module.
                     hazpy.unit_conversion throws error for invalid units
        :param format: output format for the times series:
                       either 'r-theta' or 'uv'
        :type format: either string or integer value defined by
                      basic_types.ts_format.* (see cy_basic_types.pyx)

        :returns: numpy array containing dtype=basic_types.datetime_value_2d.
                  Contains user specified datetime and the corresponding
                  values in user specified ts_format
        """

        if datetime is None:
            datetimeval = \
                convert.to_datetime_value_2d(self.ossm.timeseries,
                    format)
        else:
            datetime = np.asarray(datetime, dtype='datetime64[s]'
                                  ).reshape(-1)
            timeval = np.zeros((len(datetime), ),
                               dtype=basic_types.time_value_pair)
            timeval['time'] = time_utils.date_to_sec(datetime)
            timeval['value'] = self.ossm.get_time_value(timeval['time'])
            datetimeval = convert.to_datetime_value_2d(timeval, format)

        if units is not None:
            datetimeval['value'] = \
                self._convert_units(datetimeval['value'], format,
                                    'meter per second', units)
        else:
            datetimeval['value'] = \
                self._convert_units(datetimeval['value'], format,
                                    'meter per second', self.units)

        return datetimeval
Exemplo n.º 45
0
    def prepare_for_model_step(self, model_time):
        """
        Make sure we are up to date with the referenced time series
        """
        model_time = date_to_sec(model_time)

        if self.ossm.check_time_in_range(model_time):
            return

        self.create_running_average_timeseries(self._past_hours_to_average,
                                               model_time)
Exemplo n.º 46
0
    def __init__(self):
        time = datetime.datetime(2012, 8, 20, 13)
        self.model_time = time_utils.date_to_sec(time)

        # ###############
        # init. arrays #
        # ###############

        self.ref[:] = 1.
        self.ref[:]['z'] = 0  # on surface by default
        self.status[:] = oil_status.in_water
Exemplo n.º 47
0
    def prepare_for_model_step(self, model_time):
        """
        Make sure we are up to date with the referenced time series
        """
        model_time = date_to_sec(model_time)

        if self.ossm.check_time_in_range(model_time):
            return

        self.create_running_average_timeseries(self._past_hours_to_average,
                                               model_time)
    def __init__(self):
        time = datetime.datetime(2012, 8, 20, 13)
        self.model_time = time_utils.date_to_sec(time)

        # ###############
        # init. arrays #
        # ###############

        self.ref[:] = 1.
        self.ref[:]['z'] = 0  # on surface by default
        self.status[:] = oil_status.in_water
Exemplo n.º 49
0
    def prepare_for_model_run(self, model_time):
        """
        Make sure we are up to date with the referenced time series
        """
        if self.wind is None:
            msg = "wind object not defined for WindMover"
            raise ReferencedObjectNotSet(msg)

        model_time = date_to_sec(model_time)

        self.create_running_average_timeseries(self._past_hours_to_average,
                                               model_time)
Exemplo n.º 50
0
def to_time_value_pair(datetime_value, in_ts_format=None):
    """
    converts a numpy array containing basic_types.datetime_value_2d in
    user specified basic_types.ts_format into a time_value_pair array
    or it takes a basic_types.datetime_value_1d array and converts it to
    a time_value_pair array -- for 1d data, assume the ['value'] contains
    the 'u' component and set the 'v' component to 0.0

    :param datetime_value: numpy array of type basic_types.datetime_value_2d or
        basic_types.datetime_value_1d
    :param in_ts_format=None: format of the datetime_value_2d array - not
        required when converting from datetime_value_1d. Can be defined by a
        string 'r-theta', 'uv' or by an integer defined by one of the options
        given in basic_types.ts_format.
    """

    if(datetime_value.dtype != basic_types.datetime_value_2d and
        datetime_value.dtype != basic_types.datetime_value_1d):
        raise ValueError('Method expects a numpy array containing '
            'basic_types.datetime_value_2d or basic_types.datetime_value_1d')

    # convert datetime_value_2d to time_value_pair

    time_value_pair = np.zeros((len(datetime_value), ),
                               dtype=basic_types.time_value_pair)

    time_value_pair['time'] = \
            time_utils.date_to_sec(datetime_value['time'])
    if datetime_value.dtype == basic_types.datetime_value_1d:
        time_value_pair['value']['u'] = datetime_value['value'][:, 0]

    else:
        if in_ts_format is None:
            raise ValueError("for datetime_value_2d data conversion, the "
                "format defined by 'in_ts_format', cannot be None ")
        if isinstance(in_ts_format, basestring):
            in_ts_format = tsformat(in_ts_format)

        if in_ts_format == basic_types.ts_format.magnitude_direction:
            uv = transforms.r_theta_to_uv_wind(datetime_value['value'])
            time_value_pair['value']['u'] = uv[:, 0]
            time_value_pair['value']['v'] = uv[:, 1]

        elif in_ts_format == basic_types.ts_format.uv:
            time_value_pair['value']['u'] = datetime_value['value'][:, 0]
            time_value_pair['value']['v'] = datetime_value['value'][:, 1]
        else:

            raise ValueError('in_ts_format is not one of the two supported '
                'types: basic_types.ts_format.magnitude_direction, '
                'basic_types.ts_format.uv')

    return time_value_pair
Exemplo n.º 51
0
    def prepare_for_model_run(self, model_time):
        """
        Make sure we are up to date with the referenced time series
        """
        if self.wind is None:
            msg = "wind object not defined for WindMover"
            raise ReferencedObjectNotSet(msg)

        model_time = date_to_sec(model_time)

        self.create_running_average_timeseries(self._past_hours_to_average,
                                               model_time)
Exemplo n.º 52
0
def to_time_value_pair(datetime_value, in_ts_format=None):
    """
    converts a numpy array containing basic_types.datetime_value_2d in
    user specified basic_types.ts_format into a time_value_pair array
    or it takes a basic_types.datetime_value_1d array and converts it to
    a time_value_pair array -- for 1d data, assume the ['value'] contains
    the 'u' component and set the 'v' component to 0.0

    :param datetime_value: numpy array of type basic_types.datetime_value_2d or
        basic_types.datetime_value_1d
    :param in_ts_format=None: format of the datetime_value_2d array - not
        required when converting from datetime_value_1d. Can be defined by a
        string 'r-theta', 'uv' or by an integer defined by one of the options
        given in basic_types.ts_format.
    """
    if (datetime_value.dtype not in (basic_types.datetime_value_2d,
                                     basic_types.datetime_value_1d)):
        raise ValueError('Method expects a numpy array containing '
                         'basic_types.datetime_value_2d or '
                         'basic_types.datetime_value_1d')

    # convert datetime_value_2d to time_value_pair
    time_value_pair = np.zeros((len(datetime_value), ),
                               dtype=basic_types.time_value_pair)
    time_value_pair['time'] = time_utils.date_to_sec(datetime_value['time'])

    if datetime_value.dtype == basic_types.datetime_value_1d:
        time_value_pair['value']['u'] = datetime_value['value'][:]
    else:
        if in_ts_format is None:
            raise ValueError("for datetime_value_2d data conversion, "
                             "the format defined by 'in_ts_format' "
                             "cannot be None ")

        if isinstance(in_ts_format, basestring):
            in_ts_format = tsformat(in_ts_format)

        if in_ts_format == basic_types.ts_format.magnitude_direction:
            uv = transforms.r_theta_to_uv_wind(datetime_value['value'])
            time_value_pair['value']['u'] = uv[:, 0]
            time_value_pair['value']['v'] = uv[:, 1]

        elif in_ts_format == basic_types.ts_format.uv:
            time_value_pair['value']['u'] = datetime_value['value'][:, 0]
            time_value_pair['value']['v'] = datetime_value['value'][:, 1]
        else:
            raise ValueError('in_ts_format is not one of the two supported '
                             'types: '
                             'basic_types.ts_format.magnitude_direction, '
                             'basic_types.ts_format.uv')

    return time_value_pair
    def test_move_curv(self):
        """
        test move for a curvilinear grid (first time in file)
        """

        time = datetime.datetime(2006, 3, 31, 21)
        self.cm.model_time = date_to_sec(time)
        self.cm.uncertain = True

        time_grid_file = get_datafile(os.path.join(winds_dir,
                'WindSpeedDirSubset.nc'))
        topology_file = get_datafile(os.path.join(winds_dir,
                'WindSpeedDirSubsetTop.dat'))

        self.gcm.text_read(time_grid_file, topology_file)
        self.cm.ref[:]['long'] = -122.934656  # for NWS off CA
        self.cm.ref[:]['lat'] = 38.27594
        #self.check_move()
        self.check_move_certain_uncertain(self.gcm.uncertain_time_delay)

        actual = np.empty((self.cm.num_le, ), dtype=world_point)
        actual[:]['lat'] = 0.0009890068148185598
        actual[:]['long'] = 0.0012165959734995123
        actual[:]['z'] = 0.
        tol = 1e-5

        msg = '{0} move is not within a tolerance of {1}'
        np.testing.assert_allclose(
            self.cm.delta['lat'],
            actual['lat'],
            tol,
            tol,
            msg.format('WindSpeedDirSubset.nc', tol),
            0,
            )
        np.testing.assert_allclose(
            self.cm.delta['long'],
            actual['long'],
            tol,
            tol,
            msg.format('WindSpeedDirSubset.nc', tol),
            0,
            )

        #check that certain and uncertain are the same if uncertainty is time delayed
        #self.gcm.uncertain_time_delay = 3
        self.gcm.uncertain_time_delay = 10800 # cython expects time_delay in seconds
        self.check_move_certain_uncertain(self.gcm.uncertain_time_delay)
        # np.testing.assert_equal(self.cm.delta, actual,
        #                        "test_move_curv() failed", 0)

        np.all(self.cm.delta['z'] == 0)
Exemplo n.º 54
0
def to_time_value_pair(datetime_value_2d, in_ts_format):
    """
    converts a numpy array containing basic_types.datetime_value_2d in
    user specified basic_types.ts_format into a time_value_pair array

    :param datetime_value_2d: numpy array of type basic_types.datetime_value_2d
    :param in_ts_format: format of the array. Can be defined by a string
                         'r-theta', 'uv' or by an integer defined by one of the
                         options given in basic_types.ts_format
    """

    # print (datetime_value_2d.dtype, basic_types.datetime_value_2d)
    if datetime_value_2d.dtype != basic_types.datetime_value_2d:
        raise ValueError("Method expects a numpy array containing basic_types.datetime_value_2d")

    # convert datetime_value_2d to time_value_pair

    time_value_pair = np.zeros((len(datetime_value_2d),), dtype=basic_types.time_value_pair)

    if type(in_ts_format) is str:
        in_ts_format = tsformat(in_ts_format)

    if in_ts_format == basic_types.ts_format.magnitude_direction:
        time_value_pair["time"] = time_utils.date_to_sec(datetime_value_2d["time"])
        uv = transforms.r_theta_to_uv_wind(datetime_value_2d["value"])
        time_value_pair["value"]["u"] = uv[:, 0]
        time_value_pair["value"]["v"] = uv[:, 1]
    elif in_ts_format == basic_types.ts_format.uv:

        time_value_pair["time"] = time_utils.date_to_sec(datetime_value_2d["time"])
        time_value_pair["value"]["u"] = datetime_value_2d["value"][:, 0]
        time_value_pair["value"]["v"] = datetime_value_2d["value"][:, 1]
    else:

        raise ValueError(
            "in_ts_format is not one of the two supported types: basic_types.ts_format.magnitude_direction, basic_types.ts_format.uv"
        )

    return time_value_pair
Exemplo n.º 55
0
    def test_variable_wind_after_model_time_with_extrapolation(self):
        '''
            test to make sure the wind mover is behaving properly with
            out-of-bounds winds.
            A variable wind can extrapolate if it is configured to do so,
            so prepare_for_model_step() should succeed in this case.

            We are testing that the wind extrapolates properly, so the
            windages should be updated in the same way as the in-bounds test
        '''
        wind_time = datetime(2012, 8, 21, 13)  # one day after model time

        time_series = (np.zeros((3, ), dtype=datetime_value_2d)
                       .view(dtype=np.recarray))
        time_series.time = [sec_to_date(date_to_sec(wind_time) +
                                        self.time_step * i)
                            for i in range(3)]
        time_series.value = np.array(((2., 25.), (2., 25.), (2., 25.)))

        wind = Wind(timeseries=time_series.reshape(3),
                    extrapolation_is_allowed=True,
                    units='meter per second')

        wm = WindMover(wind)
        wm.prepare_for_model_run()

        for ix in range(2):
            curr_time = sec_to_date(date_to_sec(self.model_time) +
                                    self.time_step * ix)

            old_windages = np.copy(self.sc['windages'])
            wm.prepare_for_model_step(self.sc, self.time_step, curr_time)

            mask = self.sc['windage_persist'] == -1
            assert np.all(self.sc['windages'][mask] == old_windages[mask])

            mask = self.sc['windage_persist'] > 0
            assert np.all(self.sc['windages'][mask] != old_windages[mask])
Exemplo n.º 56
0
    def test_variable_wind_after_model_time_with_extrapolation(self):
        '''
            test to make sure the wind mover is behaving properly with
            out-of-bounds winds.
            A variable wind can extrapolate if it is configured to do so,
            so prepare_for_model_step() should succeed in this case.

            We are testing that the wind extrapolates properly, so the
            windages should be updated in the same way as the in-bounds test
        '''
        wind_time = datetime(2012, 8, 21, 13)  # one day after model time

        time_series = (np.zeros((3, ), dtype=datetime_value_2d)
                       .view(dtype=np.recarray))
        time_series.time = [sec_to_date(date_to_sec(wind_time) +
                                        self.time_step * i)
                            for i in range(3)]
        time_series.value = np.array(((2., 25.), (2., 25.), (2., 25.)))

        wind = Wind(timeseries=time_series.reshape(3),
                    extrapolation_is_allowed=True,
                    units='meter per second')

        wm = WindMover(wind)
        wm.prepare_for_model_run()

        for ix in range(2):
            curr_time = sec_to_date(date_to_sec(self.model_time) +
                                    self.time_step * ix)

            old_windages = np.copy(self.sc['windages'])
            wm.prepare_for_model_step(self.sc, self.time_step, curr_time)

            mask = self.sc['windage_persist'] == -1
            assert np.all(self.sc['windages'][mask] == old_windages[mask])

            mask = self.sc['windage_persist'] > 0
            assert np.all(self.sc['windages'][mask] != old_windages[mask])
Exemplo n.º 57
0
    def prepare_for_model_step(self, model_time):
        """
        Make sure we are up to date with the referenced time series
        """
        model_time = date_to_sec(model_time)
        if self.ossm.check_time_in_range(model_time):
            return
        else:
            if self.wind.ossm.check_time_in_range(model_time):
                # there is wind data for this time so create
                # a new running average
                self.create_running_average_timeseries(self._past_hours_to_average, model_time)

        self.create_running_average_timeseries(self._past_hours_to_average,
                                               model_time)
Exemplo n.º 58
0
    def test_move_curv(self):
        """
        test move for a curvilinear grid (first time in file)
        """

        time = datetime.datetime(2006, 3, 31, 21)
        self.cm.model_time = date_to_sec(time)
        self.cm.uncertain = True

        self.gcm.text_read(testdata['GridWindMover']['wind_curv'],
                           testdata['GridWindMover']['top_curv'])
        self.cm.ref[:]['long'] = -122.934656  # for NWS off CA
        self.cm.ref[:]['lat'] = 38.27594
        #self.check_move()
        self.check_move_certain_uncertain(self.gcm.uncertain_time_delay)

        actual = np.empty((self.cm.num_le, ), dtype=world_point)
        actual[:]['lat'] = 0.0009890068148185598
        actual[:]['long'] = 0.0012165959734995123
        actual[:]['z'] = 0.
        tol = 1e-5

        msg = '{0} move is not within a tolerance of {1}'
        np.testing.assert_allclose(
            self.cm.delta['lat'],
            actual['lat'],
            tol,
            tol,
            msg.format('WindSpeedDirSubset.nc', tol),
            0,
        )
        np.testing.assert_allclose(
            self.cm.delta['long'],
            actual['long'],
            tol,
            tol,
            msg.format('WindSpeedDirSubset.nc', tol),
            0,
        )

        #check that certain and uncertain are the same if uncertainty is time delayed
        #self.gcm.uncertain_time_delay = 3
        self.gcm.uncertain_time_delay = 10800  # cython expects time_delay in seconds
        self.check_move_certain_uncertain(self.gcm.uncertain_time_delay)
        # np.testing.assert_equal(self.cm.delta, actual,
        #                        "test_move_curv() failed", 0)

        np.all(self.cm.delta['z'] == 0)