Exemplo n.º 1
0
def random_bipartite_graph_generation_and_dump_in_json():
    nb_sommets = 10
    seed = 29

    n1 = random.randint(1, nb_sommets - 1)
    n2 = nb_sommets - n1
    p = 0.85

    print("n1 = ", n1)
    print("n2 = ", n2)

    g = bipartite.random_graph(n1, n2, p, seed, directed=False)
    V1, V2 = nx.bipartite.sets(g)

    graph_for_json = dict()
    graph_for_json = {
        "seed": seed,
        "graph_type": "bipartite",
        "total_node_count": len(g.nodes),
        "V1_node_count": len(V1),
        "V2_node_count": len(V2),
        "edge_count": len(list(g.edges)),
        "nodes": sorted(g.nodes),
        "edges": list(g.edges)
    }

    with open('test_dumps/random_bipartite_1.json', 'w',
              encoding='utf8') as json_file:
        json_file.write(data_to_json(graph_for_json))
Exemplo n.º 2
0
def complete_bipartite_graph_generation_and_dump_in_json():
    nb_sommets = 15
    seed = 29

    n1 = random.randint(1, nb_sommets - 1)
    n2 = nb_sommets - n1
    p = 0.5

    g = bipartite.complete_bipartite_graph(n1, n2)
    V1, V2 = bipartite.sets(g)
    graph_for_json = dict()
    graph_for_json = {
        "seed": seed,
        "graph_type": "bipartite",
        "total_node_count": len(g.nodes),
        "V1_node_count": len(V1),
        "V2_node_count": len(V2),
        "edge_count": len(list(g.edges)),
        "nodes": sorted(g.nodes),
        "edges": list(g.edges)
    }

    with open('test_dumps/complete_bipartite_1.json', 'w',
              encoding='utf8') as json_file:
        json.dump(graph_for_json, json_file, indent=4)  # Ugly indents

    with open('test_dumps/complete_bipartite_2.json', 'w',
              encoding='utf8') as json_file:
        json_file.write(data_to_json(graph_for_json))  # Nice indents
Exemplo n.º 3
0
def test_data_to_json():
    data = {
        "height": 4,
        "symbol_weight_bound": 5,
        "symbol_count": 5,
        "symbol_weights": [4, 5, 3, 4, 1],
        "tiles": [[0, 1, 2, 4], [0, 1, 3]],
    }
    assert raw_dump == json.dumps(data, indent=2)
    assert improved_dump == data_to_json(data)
Exemplo n.º 4
0
def complete_generation(tailles, nb_instances, chemin_pour_stockage):
    for nb_sommets in tailles:
        for i in range(1, nb_instances + 1):
            g = nx.complete_graph(nb_sommets)
            graph_for_json = dict()
            graph_for_json = {
                "seed": "None",
                "graph_type": graph_type,
                "total_node_count": len(g.nodes),
                "edge_count": len(list(g.edges)),
                "nodes": sorted(g.nodes),
                "edges": list(g.edges)
            }

            name = chemin_pour_stockage + graph_type + "__n=" + str(
                nb_sommets) + "__" + '{:03}'.format(i) + ".json"
            with open(name, 'w', encoding='utf8') as json_file:
                json_file.write(data_to_json(graph_for_json))
Exemplo n.º 5
0
def bipartite_generation(tailles, nb_instances, chemin_pour_stockage):
    #We need to create a dict to count the number of bipartite graphs for each density
    print("!!! WORK IN PROGRESS !!!")

    for nb_sommets in tailles:
        for i in range(1, nb_instances + 1):
            n1 = random.randint(1, nb_sommets - 1)
            n2 = nb_sommets - n1
            p = 0.5  ################################################## WE HAVE TO DEFINE THIS VALUE
            g = bipartite.random_graph(n1, n2, p, i, directed=False)

            if (
                    nx.is_connected(g) == False
            ):  #the bipartite graph is not connected, we will have to add edges
                print("YOU STILL HAVE WORK TO DO")

            V1, V2 = bipartite.sets(g)
            graph_for_json = dict()
            graph_for_json = {
                "seed": i,
                "graph_type": graph_type,
                "total_node_count": len(g.nodes),
                "V1_node_count": len(V1),
                "V2_node_count": len(V2),
                "edge_count": len(list(g.edges)),
                "nodes": sorted(g.nodes),
                "edges": list(g.edges)
            }

            #Computes the density
            d = 0

            #arrondi de la densité

            #Update the a counter linked to the density

            name = chemin_pour_stockage + graph_type + "__n=" + str(
                nb_sommets) + "__d=" + str(d) + "__" + '{:03}'.format(
                    i) + ".json"
            with open(name, 'w', encoding='utf8') as json_file:
                json_file.write(data_to_json(graph_for_json))
def dump_instances(config_path):
    cfg = json.loads(Path(config_path).read_text())
    directory = Path(cfg["output_directory"])
    directory.mkdir(parents=True, exist_ok=True)
    seed(cfg["seed"])
    i = 1
    column = 1
    while i <= cfg["instance_count"]:
        height = randint(cfg["min_height"], cfg["max_height"])
        maker = InstanceMaker(
            height,
            cfg["arity"],
            cfg["tile_min_size"],
            cfg["common_symbol_min_count"],
            cfg["common_symbol_max_count"],
        )
        leaf_rate = randint(cfg["min_tile_percentage"],
                            cfg["max_tile_percentage"]) / 100.0
        kill_rate = randint(cfg["min_kill_percentage"],
                            cfg["max_kill_percentage"]) / 100.0
        symbol_weight_bound = randint(cfg["min_symbol_weight_bound"],
                                      cfg["max_symbol_weight_bound"])
        try:
            instance = maker(leaf_rate, kill_rate, symbol_weight_bound)
        except DuplicateTiles:
            outcome = "D"
        except TileTooSmall:
            outcome = "S"
        except TooFewCommonSymbols:
            outcome = "F"
        except TooManyCommonSymbols:
            outcome = "M"
        else:
            (directory / instance["name"]).write_text(data_to_json(instance))
            outcome = "."
            i += 1
        print(outcome, end="" if column % 80 else "\n", flush=True)
        column += 1
Exemplo n.º 7
0
def arbitrary_generation(tailles, densites, nb_instances,
                         chemin_pour_stockage):
    graph_type = "arbitrary"
    for nb_sommets in tailles:
        for d in densites:
            m = (d * nb_sommets * (nb_sommets - 1)) / 2
            for i in range(1, nb_instances + 1):
                g = nx.gnm_random_graph(nb_sommets, m, seed=i)

                graph_for_json = dict()
                graph_for_json = {
                    "seed": i,
                    "graph_type": graph_type,
                    "total_node_count": len(g.nodes),
                    "edge_count": len(list(g.edges)),
                    "nodes": sorted(g.nodes),
                    "edges": list(g.edges)
                }
                name = chemin_pour_stockage + graph_type + "__n=" + str(
                    nb_sommets) + "__d=" + str(d) + "__" + '{:03}'.format(
                        i) + ".json"
                with open(name, 'w', encoding='utf8') as json_file:
                    json_file.write(data_to_json(graph_for_json))
Exemplo n.º 8
0
def random_graph_generation_and_dump_in_json():
    nb_sommets = 15
    d = 0.5
    m = (d * nb_sommets * (nb_sommets - 1)) / 2
    seed = 29
    graph_type = "normal"

    g = nx.gnm_random_graph(nb_sommets, m, seed)

    graph_in_data = dict()
    graph_in_data = {
        "seed": seed,
        "graph_type": graph_type,
        "total_node_count": len(g.nodes),
        "edge_count": len(list(g.edges)),
        "nodes": sorted(g.nodes),
        "edges": list(g.edges)
    }

    name = "test_dumps/random_graph_" + str(nb_sommets) + "_vertices.json"

    with open(name, 'w', encoding='utf8') as json_file:
        json_file.write(data_to_json(graph_in_data))
Exemplo n.º 9
0
    def run_one_config(self):
        print(f"Input:  {self.input_dir}")
        print(f"Output: {self.output_dir}")
        print()

        table = Table(self)
        table.add_column("#", attribute="i", width=3)
        table.add_column("time", attribute="now", width=8)
        table.add_column("name",
                         attribute="instance_name",
                         width=27,
                         align="left")
        table.add_column("step count", attribute="step_count", width=10)
        if self.existing_strategy != "nothing":
            table.add_column("ratio", attribute="step_count_delta", width=8)
        table.add_column("best", attribute="c_max", width=5)
        if self.existing_strategy != "nothing":
            table.add_column("ratio", attribute="c_max_delta", width=8)
        table.add_column("duration", align="left", width=21)
        table.print_header()

        files = sorted(self.input_dir.glob("*.json"))
        for (self.i, instance_path) in enumerate(files[self.start:self.stop],
                                                 self.start):

            instance = Instance(instance_path)
            self.now = datetime.now().isoformat(
                timespec="seconds").partition("T")[2]
            self.instance_name = instance.name.replace(".json", "")
            self.step_count = "N/A"
            self.step_count_delta = "N/A"
            self.c_max = "N/A"
            self.c_max_delta = "N/A"
            self.duration = "N/A"

            previous_results = {}
            output_path = self.output_dir / instance.name
            if output_path.exists():
                previous_results.update(json.loads(output_path.read_text()))
                if self.existing_strategy == "nothing":
                    self.step_count = previous_results["step_count"]
                    self.c_max = previous_results["c_max"]
                    magnitude = previous_results["duration_magnitude"]
                    self.duration = f"previously in ~1e{magnitude} s."
                    table.print_row()
                    continue
            elif self.non_existing_strategy == "nothing":
                table.print_row()
                continue

            print_half_row = table.print_half_row("name")
            next(print_half_row)
            results = self.solve_one(instance)
            self.step_count = results["step_count"]
            self.c_max = results["c_max"]
            self.duration = f"solved in {results['elapsed_time']:.2e} s."

            if previous_results:
                self.step_count_delta = self.ratio(
                    previous_results["step_count"], self.step_count)
                self.c_max_delta = self.ratio(previous_results["c_max"],
                                              self.c_max)

            next(print_half_row)

            if previous_results and self.existing_strategy == "dry":
                continue
            if not previous_results and self.non_existing_strategy == "dry":
                continue

            report = {
                "solver_parameters": self.solver_parameters,
                "duration_magnitude": results["duration_magnitude"],
                "c_max": results["c_max"],
                "solution": results["solution"],
                "step_count": results["step_count"],
                "log": results["log"],
            }
            output_path.write_text(data_to_json(report))

        print()
        if self.solved_instance_count:
            print(f"{self.solved_instance_count} instances solved", end=" ")
            print(f"in {round(self.total_elapsed_time, 2)} seconds.")
        else:
            print(f"All {self.i + 1} instances already solved.")
        print()
Exemplo n.º 10
0
 def get_json(self) -> str:
     return data_to_json(self.get_data())