Exemplo n.º 1
0
def create_googlenet(weights_path=None):
    # creates GoogLeNet a.k.a. Inception v1 (Szegedy, 2015)

    input = Input(shape=(3, 224, 224))
    conv1_7x7_s2 = Convolution2D(64,
                                 7,
                                 7,
                                 subsample=(2, 2),
                                 border_mode='same',
                                 activation='relu',
                                 name='conv1/7x7_s2',
                                 W_regularizer=l2(0.0002))(input)
    conv1_zero_pad = ZeroPadding2D(padding=(1, 1))(conv1_7x7_s2)
    pool1_helper = PoolHelper()(conv1_zero_pad)
    pool1_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool1/3x3_s2')(pool1_helper)
    pool1_norm1 = LRN(name='pool1/norm1')(pool1_3x3_s2)
    conv2_3x3_reduce = Convolution2D(64,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='conv2/3x3_reduce',
                                     W_regularizer=l2(0.0002))(pool1_norm1)
    conv2_3x3 = Convolution2D(192,
                              3,
                              3,
                              border_mode='same',
                              activation='relu',
                              name='conv2/3x3',
                              W_regularizer=l2(0.0002))(conv2_3x3_reduce)
    conv2_norm2 = LRN(name='conv2/norm2')(conv2_3x3)
    conv2_zero_pad = ZeroPadding2D(padding=(1, 1))(conv2_norm2)
    pool2_helper = PoolHelper()(conv2_zero_pad)
    pool2_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool2/3x3_s2')(pool2_helper)

    inception_3a_1x1 = Convolution2D(64,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='inception_3a/1x1',
                                     W_regularizer=l2(0.0002))(pool2_3x3_s2)
    inception_3a_3x3_reduce = Convolution2D(
        96,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3a/3x3_reduce',
        W_regularizer=l2(0.0002))(pool2_3x3_s2)
    inception_3a_3x3 = Convolution2D(
        128,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_3a/3x3',
        W_regularizer=l2(0.0002))(inception_3a_3x3_reduce)
    inception_3a_5x5_reduce = Convolution2D(
        16,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3a/5x5_reduce',
        W_regularizer=l2(0.0002))(pool2_3x3_s2)
    inception_3a_5x5 = Convolution2D(
        32,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_3a/5x5',
        W_regularizer=l2(0.0002))(inception_3a_5x5_reduce)
    inception_3a_pool = MaxPooling2D(pool_size=(3, 3),
                                     strides=(1, 1),
                                     border_mode='same',
                                     name='inception_3a/pool')(pool2_3x3_s2)
    inception_3a_pool_proj = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3a/pool_proj',
        W_regularizer=l2(0.0002))(inception_3a_pool)
    inception_3a_output = merge([
        inception_3a_1x1, inception_3a_3x3, inception_3a_5x5,
        inception_3a_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_3a/output')

    inception_3b_1x1 = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/1x1',
        W_regularizer=l2(0.0002))(inception_3a_output)
    inception_3b_3x3_reduce = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_3a_output)
    inception_3b_3x3 = Convolution2D(
        192,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_3b/3x3',
        W_regularizer=l2(0.0002))(inception_3b_3x3_reduce)
    inception_3b_5x5_reduce = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_3a_output)
    inception_3b_5x5 = Convolution2D(
        96,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_3b/5x5',
        W_regularizer=l2(0.0002))(inception_3b_5x5_reduce)
    inception_3b_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_3b/pool')(inception_3a_output)
    inception_3b_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/pool_proj',
        W_regularizer=l2(0.0002))(inception_3b_pool)
    inception_3b_output = merge([
        inception_3b_1x1, inception_3b_3x3, inception_3b_5x5,
        inception_3b_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_3b/output')

    inception_3b_output_zero_pad = ZeroPadding2D(
        padding=(1, 1))(inception_3b_output)
    pool3_helper = PoolHelper()(inception_3b_output_zero_pad)
    pool3_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool3/3x3_s2')(pool3_helper)

    inception_4a_1x1 = Convolution2D(192,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='inception_4a/1x1',
                                     W_regularizer=l2(0.0002))(pool3_3x3_s2)
    inception_4a_3x3_reduce = Convolution2D(
        96,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4a/3x3_reduce',
        W_regularizer=l2(0.0002))(pool3_3x3_s2)
    inception_4a_3x3 = Convolution2D(
        208,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4a/3x3',
        W_regularizer=l2(0.0002))(inception_4a_3x3_reduce)
    inception_4a_5x5_reduce = Convolution2D(
        16,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4a/5x5_reduce',
        W_regularizer=l2(0.0002))(pool3_3x3_s2)
    inception_4a_5x5 = Convolution2D(
        48,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4a/5x5',
        W_regularizer=l2(0.0002))(inception_4a_5x5_reduce)
    inception_4a_pool = MaxPooling2D(pool_size=(3, 3),
                                     strides=(1, 1),
                                     border_mode='same',
                                     name='inception_4a/pool')(pool3_3x3_s2)
    inception_4a_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4a/pool_proj',
        W_regularizer=l2(0.0002))(inception_4a_pool)
    inception_4a_output = merge([
        inception_4a_1x1, inception_4a_3x3, inception_4a_5x5,
        inception_4a_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4a/output')

    loss1_ave_pool = AveragePooling2D(
        pool_size=(5, 5), strides=(3, 3),
        name='loss1/ave_pool')(inception_4a_output)
    loss1_conv = Convolution2D(128,
                               1,
                               1,
                               border_mode='same',
                               activation='relu',
                               name='loss1/conv',
                               W_regularizer=l2(0.0002))(loss1_ave_pool)
    loss1_flat = Flatten()(loss1_conv)
    loss1_fc = Dense(1024,
                     activation='relu',
                     name='loss1/fc',
                     W_regularizer=l2(0.0002))(loss1_flat)
    loss1_drop_fc = Dropout(0.7)(loss1_fc)
    loss1_classifier = Dense(1000,
                             name='loss1/classifier',
                             W_regularizer=l2(0.0002))(loss1_drop_fc)
    loss1_classifier_act = Activation('softmax')(loss1_classifier)

    inception_4b_1x1 = Convolution2D(
        160,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4b/1x1',
        W_regularizer=l2(0.0002))(inception_4a_output)
    inception_4b_3x3_reduce = Convolution2D(
        112,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4b/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_4a_output)
    inception_4b_3x3 = Convolution2D(
        224,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4b/3x3',
        W_regularizer=l2(0.0002))(inception_4b_3x3_reduce)
    inception_4b_5x5_reduce = Convolution2D(
        24,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4b/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_4a_output)
    inception_4b_5x5 = Convolution2D(
        64,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4b/5x5',
        W_regularizer=l2(0.0002))(inception_4b_5x5_reduce)
    inception_4b_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4b/pool')(inception_4a_output)
    inception_4b_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4b/pool_proj',
        W_regularizer=l2(0.0002))(inception_4b_pool)
    inception_4b_output = merge([
        inception_4b_1x1, inception_4b_3x3, inception_4b_5x5,
        inception_4b_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4b_output')

    inception_4c_1x1 = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4c/1x1',
        W_regularizer=l2(0.0002))(inception_4b_output)
    inception_4c_3x3_reduce = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4c/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_4b_output)
    inception_4c_3x3 = Convolution2D(
        256,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4c/3x3',
        W_regularizer=l2(0.0002))(inception_4c_3x3_reduce)
    inception_4c_5x5_reduce = Convolution2D(
        24,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4c/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_4b_output)
    inception_4c_5x5 = Convolution2D(
        64,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4c/5x5',
        W_regularizer=l2(0.0002))(inception_4c_5x5_reduce)
    inception_4c_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4c/pool')(inception_4b_output)
    inception_4c_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4c/pool_proj',
        W_regularizer=l2(0.0002))(inception_4c_pool)
    inception_4c_output = merge([
        inception_4c_1x1, inception_4c_3x3, inception_4c_5x5,
        inception_4c_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4c/output')

    inception_4d_1x1 = Convolution2D(
        112,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4d/1x1',
        W_regularizer=l2(0.0002))(inception_4c_output)
    inception_4d_3x3_reduce = Convolution2D(
        144,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4d/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_4c_output)
    inception_4d_3x3 = Convolution2D(
        288,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4d/3x3',
        W_regularizer=l2(0.0002))(inception_4d_3x3_reduce)
    inception_4d_5x5_reduce = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4d/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_4c_output)
    inception_4d_5x5 = Convolution2D(
        64,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4d/5x5',
        W_regularizer=l2(0.0002))(inception_4d_5x5_reduce)
    inception_4d_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4d/pool')(inception_4c_output)
    inception_4d_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4d/pool_proj',
        W_regularizer=l2(0.0002))(inception_4d_pool)
    inception_4d_output = merge([
        inception_4d_1x1, inception_4d_3x3, inception_4d_5x5,
        inception_4d_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4d/output')

    loss2_ave_pool = AveragePooling2D(
        pool_size=(5, 5), strides=(3, 3),
        name='loss2/ave_pool')(inception_4d_output)
    loss2_conv = Convolution2D(128,
                               1,
                               1,
                               border_mode='same',
                               activation='relu',
                               name='loss2/conv',
                               W_regularizer=l2(0.0002))(loss2_ave_pool)
    loss2_flat = Flatten()(loss2_conv)
    loss2_fc = Dense(1024,
                     activation='relu',
                     name='loss2/fc',
                     W_regularizer=l2(0.0002))(loss2_flat)
    loss2_drop_fc = Dropout(0.7)(loss2_fc)
    loss2_classifier = Dense(1000,
                             name='loss2/classifier',
                             W_regularizer=l2(0.0002))(loss2_drop_fc)
    loss2_classifier_act = Activation('softmax')(loss2_classifier)

    inception_4e_1x1 = Convolution2D(
        256,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/1x1',
        W_regularizer=l2(0.0002))(inception_4d_output)
    inception_4e_3x3_reduce = Convolution2D(
        160,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_4d_output)
    inception_4e_3x3 = Convolution2D(
        320,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4e/3x3',
        W_regularizer=l2(0.0002))(inception_4e_3x3_reduce)
    inception_4e_5x5_reduce = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_4d_output)
    inception_4e_5x5 = Convolution2D(
        128,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4e/5x5',
        W_regularizer=l2(0.0002))(inception_4e_5x5_reduce)
    inception_4e_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4e/pool')(inception_4d_output)
    inception_4e_pool_proj = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/pool_proj',
        W_regularizer=l2(0.0002))(inception_4e_pool)
    inception_4e_output = merge([
        inception_4e_1x1, inception_4e_3x3, inception_4e_5x5,
        inception_4e_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4e/output')

    inception_4e_output_zero_pad = ZeroPadding2D(
        padding=(1, 1))(inception_4e_output)
    pool4_helper = PoolHelper()(inception_4e_output_zero_pad)
    pool4_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool4/3x3_s2')(pool4_helper)

    inception_5a_1x1 = Convolution2D(256,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='inception_5a/1x1',
                                     W_regularizer=l2(0.0002))(pool4_3x3_s2)
    inception_5a_3x3_reduce = Convolution2D(
        160,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5a/3x3_reduce',
        W_regularizer=l2(0.0002))(pool4_3x3_s2)
    inception_5a_3x3 = Convolution2D(
        320,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_5a/3x3',
        W_regularizer=l2(0.0002))(inception_5a_3x3_reduce)
    inception_5a_5x5_reduce = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5a/5x5_reduce',
        W_regularizer=l2(0.0002))(pool4_3x3_s2)
    inception_5a_5x5 = Convolution2D(
        128,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_5a/5x5',
        W_regularizer=l2(0.0002))(inception_5a_5x5_reduce)
    inception_5a_pool = MaxPooling2D(pool_size=(3, 3),
                                     strides=(1, 1),
                                     border_mode='same',
                                     name='inception_5a/pool')(pool4_3x3_s2)
    inception_5a_pool_proj = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5a/pool_proj',
        W_regularizer=l2(0.0002))(inception_5a_pool)
    inception_5a_output = merge([
        inception_5a_1x1, inception_5a_3x3, inception_5a_5x5,
        inception_5a_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_5a/output')

    inception_5b_1x1 = Convolution2D(
        384,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5b/1x1',
        W_regularizer=l2(0.0002))(inception_5a_output)
    inception_5b_3x3_reduce = Convolution2D(
        192,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5b/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_5a_output)
    inception_5b_3x3 = Convolution2D(
        384,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_5b/3x3',
        W_regularizer=l2(0.0002))(inception_5b_3x3_reduce)
    inception_5b_5x5_reduce = Convolution2D(
        48,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5b/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_5a_output)
    inception_5b_5x5 = Convolution2D(
        128,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_5b/5x5',
        W_regularizer=l2(0.0002))(inception_5b_5x5_reduce)
    inception_5b_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_5b/pool')(inception_5a_output)
    inception_5b_pool_proj = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5b/pool_proj',
        W_regularizer=l2(0.0002))(inception_5b_pool)
    inception_5b_output = merge([
        inception_5b_1x1, inception_5b_3x3, inception_5b_5x5,
        inception_5b_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_5b/output')

    pool5_7x7_s1 = AveragePooling2D(pool_size=(7, 7),
                                    strides=(1, 1),
                                    name='pool5/7x7_s2')(inception_5b_output)
    loss3_flat = Flatten()(pool5_7x7_s1)
    pool5_drop_7x7_s1 = Dropout(0.4)(loss3_flat)
    loss3_classifier = Dense(1000,
                             name='loss3/classifier',
                             W_regularizer=l2(0.0002))(pool5_drop_7x7_s1)
    loss3_classifier_act = Activation('softmax', name='prob')(loss3_classifier)

    googlenet = Model(input=input,
                      output=[
                          loss1_classifier_act, loss2_classifier_act,
                          loss3_classifier_act
                      ])

    if weights_path:
        googlenet.load_weights(weights_path)
    return googlenet
Exemplo n.º 2
0
def create_model(weights_path=None, use_distribution=False, use_multigap=False,
    use_semantics=False, rapid_style=False, use_comments=False, embedding_layer=None,
     extra_conv_layer=False,load_weights_by_name=True,textInputMaxLength=100, embedding_dim=300):

    input_image = Input(shape=(3, 224, 224))

    if rapid_style:
        if not use_semantics:
            print("[WARN] Semantics is not enabled, rapid style parameter will be ignored")

    if use_comments:
        if embedding_layer is None:
            print("[ERROR] Embedding layer is required for creating comments model")
            return None

        comment_input = Input(shape=(textInputMaxLength,), dtype='int32')
        embedded_sequences = embedding_layer(comment_input)
        
        x_text_aesthetics = GRU(embedding_dim,dropout_W = 0.3,dropout_U = 0.3,return_sequences=True, name='gru_aesthetics_1')(embedded_sequences)
        x_text_aesthetics = GRU(embedding_dim,dropout_W = 0.3,dropout_U = 0.3,name='gru_aesthetics_2')(x_text_aesthetics)

        if use_semantics and not rapid_style:
            x_text_semantics = GRU(embedding_dim,dropout_W = 0.3,dropout_U = 0.3,return_sequences=True, name='gru_semantics_1')(embedded_sequences)
            x_text_semantics = GRU(embedding_dim,dropout_W = 0.3,dropout_U = 0.3, name='gru_semantics_2')(x_text_semantics)

    
    conv1_7x7_s2 = Convolution2D(64,7,7,subsample=(2,2),border_mode='same',activation='relu',name='conv1/7x7_s2',W_regularizer=l2(0.0002))(input_image)
    conv1_zero_pad = ZeroPadding2D(padding=(1, 1))(conv1_7x7_s2)
    pool1_helper = PoolHelper()(conv1_zero_pad)
    pool1_3x3_s2 = MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='pool1/3x3_s2')(pool1_helper)
    pool1_norm1 = LRN(name='pool1/norm1')(pool1_3x3_s2)
    conv2_3x3_reduce = Convolution2D(64,1,1,border_mode='same',activation='relu',name='conv2/3x3_reduce',W_regularizer=l2(0.0002))(pool1_norm1)
    conv2_3x3 = Convolution2D(192,3,3,border_mode='same',activation='relu',name='conv2/3x3',W_regularizer=l2(0.0002))(conv2_3x3_reduce)
    conv2_norm2 = LRN(name='conv2/norm2')(conv2_3x3)
    conv2_zero_pad = ZeroPadding2D(padding=(1, 1))(conv2_norm2)
    pool2_helper = PoolHelper()(conv2_zero_pad)
    pool2_3x3_s2 = MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='pool2/3x3_s2')(pool2_helper)
    
    
    inception_3a_1x1 = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_3a/1x1',W_regularizer=l2(0.0002))(pool2_3x3_s2)
    inception_3a_3x3_reduce = Convolution2D(96,1,1,border_mode='same',activation='relu',name='inception_3a/3x3_reduce',W_regularizer=l2(0.0002))(pool2_3x3_s2)
    inception_3a_3x3 = Convolution2D(128,3,3,border_mode='same',activation='relu',name='inception_3a/3x3',W_regularizer=l2(0.0002))(inception_3a_3x3_reduce)
    inception_3a_5x5_reduce = Convolution2D(16,1,1,border_mode='same',activation='relu',name='inception_3a/5x5_reduce',W_regularizer=l2(0.0002))(pool2_3x3_s2)
    inception_3a_5x5 = Convolution2D(32,5,5,border_mode='same',activation='relu',name='inception_3a/5x5',W_regularizer=l2(0.0002))(inception_3a_5x5_reduce)
    inception_3a_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_3a/pool')(pool2_3x3_s2)
    inception_3a_pool_proj = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_3a/pool_proj',W_regularizer=l2(0.0002))(inception_3a_pool)
    inception_3a_output = merge([inception_3a_1x1,inception_3a_3x3,inception_3a_5x5,inception_3a_pool_proj],mode='concat',concat_axis=1,name='inception_3a/output')

    inception_3b_1x1 = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_3b/1x1',W_regularizer=l2(0.0002))(inception_3a_output)
    inception_3b_3x3_reduce = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_3b/3x3_reduce',W_regularizer=l2(0.0002))(inception_3a_output)
    inception_3b_3x3 = Convolution2D(192,3,3,border_mode='same',activation='relu',name='inception_3b/3x3',W_regularizer=l2(0.0002))(inception_3b_3x3_reduce)
    inception_3b_5x5_reduce = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_3b/5x5_reduce',W_regularizer=l2(0.0002))(inception_3a_output)
    inception_3b_5x5 = Convolution2D(96,5,5,border_mode='same',activation='relu',name='inception_3b/5x5',W_regularizer=l2(0.0002))(inception_3b_5x5_reduce)
    inception_3b_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_3b/pool')(inception_3a_output)
    inception_3b_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_3b/pool_proj',W_regularizer=l2(0.0002))(inception_3b_pool)
    inception_3b_output = merge([inception_3b_1x1,inception_3b_3x3,inception_3b_5x5,inception_3b_pool_proj],mode='concat',concat_axis=1,name='inception_3b/output')
    
    inception_3b_output_zero_pad = ZeroPadding2D(padding=(1, 1))(inception_3b_output)
    pool3_helper = PoolHelper()(inception_3b_output_zero_pad)
    pool3_3x3_s2 = MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='pool3/3x3_s2')(pool3_helper)
    
    
    inception_4a_1x1 = Convolution2D(192,1,1,border_mode='same',activation='relu',name='inception_4a/1x1',W_regularizer=l2(0.0002))(pool3_3x3_s2)
    inception_4a_3x3_reduce = Convolution2D(96,1,1,border_mode='same',activation='relu',name='inception_4a/3x3_reduce',W_regularizer=l2(0.0002))(pool3_3x3_s2)
    inception_4a_3x3 = Convolution2D(208,3,3,border_mode='same',activation='relu',name='inception_4a/3x3',W_regularizer=l2(0.0002))(inception_4a_3x3_reduce)
    inception_4a_5x5_reduce = Convolution2D(16,1,1,border_mode='same',activation='relu',name='inception_4a/5x5_reduce',W_regularizer=l2(0.0002))(pool3_3x3_s2)
    inception_4a_5x5 = Convolution2D(48,5,5,border_mode='same',activation='relu',name='inception_4a/5x5',W_regularizer=l2(0.0002))(inception_4a_5x5_reduce)
    inception_4a_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4a/pool')(pool3_3x3_s2)
    inception_4a_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_4a/pool_proj',W_regularizer=l2(0.0002))(inception_4a_pool)
    inception_4a_output = merge([inception_4a_1x1,inception_4a_3x3,inception_4a_5x5,inception_4a_pool_proj],mode='concat',concat_axis=1,name='inception_4a/output')

    if extra_conv_layer:
        conv_4a_output = Convolution2D(624, 3, 3, activation='relu',name='conv_4a',border_mode = 'same',W_regularizer=l2(0.0002))(inception_4a_output)
        inception_4a_gap = GlobalAveragePooling2D()(conv_4a_output)


    inception_4b_1x1 = Convolution2D(160,1,1,border_mode='same',activation='relu',name='inception_4b/1x1',W_regularizer=l2(0.0002))(inception_4a_output)
    inception_4b_3x3_reduce = Convolution2D(112,1,1,border_mode='same',activation='relu',name='inception_4b/3x3_reduce',W_regularizer=l2(0.0002))(inception_4a_output)
    inception_4b_3x3 = Convolution2D(224,3,3,border_mode='same',activation='relu',name='inception_4b/3x3',W_regularizer=l2(0.0002))(inception_4b_3x3_reduce)
    inception_4b_5x5_reduce = Convolution2D(24,1,1,border_mode='same',activation='relu',name='inception_4b/5x5_reduce',W_regularizer=l2(0.0002))(inception_4a_output)
    inception_4b_5x5 = Convolution2D(64,5,5,border_mode='same',activation='relu',name='inception_4b/5x5',W_regularizer=l2(0.0002))(inception_4b_5x5_reduce)
    inception_4b_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4b/pool')(inception_4a_output)
    inception_4b_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_4b/pool_proj',W_regularizer=l2(0.0002))(inception_4b_pool)
    inception_4b_output = merge([inception_4b_1x1,inception_4b_3x3,inception_4b_5x5,inception_4b_pool_proj],mode='concat',concat_axis=1,name='inception_4b_output')

    if extra_conv_layer:
        conv_4b_output = Convolution2D(648, 3, 3, activation='relu',name='conv_4b',border_mode = 'same',W_regularizer=l2(0.0002))(inception_4b_output)
        inception_4b_gap = GlobalAveragePooling2D()(conv_4b_output)



    inception_4c_1x1 = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_4c/1x1',W_regularizer=l2(0.0002))(inception_4b_output)
    inception_4c_3x3_reduce = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_4c/3x3_reduce',W_regularizer=l2(0.0002))(inception_4b_output)
    inception_4c_3x3 = Convolution2D(256,3,3,border_mode='same',activation='relu',name='inception_4c/3x3',W_regularizer=l2(0.0002))(inception_4c_3x3_reduce)
    inception_4c_5x5_reduce = Convolution2D(24,1,1,border_mode='same',activation='relu',name='inception_4c/5x5_reduce',W_regularizer=l2(0.0002))(inception_4b_output)
    inception_4c_5x5 = Convolution2D(64,5,5,border_mode='same',activation='relu',name='inception_4c/5x5',W_regularizer=l2(0.0002))(inception_4c_5x5_reduce)
    inception_4c_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4c/pool')(inception_4b_output)
    inception_4c_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_4c/pool_proj',W_regularizer=l2(0.0002))(inception_4c_pool)
    inception_4c_output = merge([inception_4c_1x1,inception_4c_3x3,inception_4c_5x5,inception_4c_pool_proj],mode='concat',concat_axis=1,name='inception_4c/output')

    if extra_conv_layer:
        conv_4c_output = Convolution2D(663, 3, 3, activation='relu',name='conv_4c',border_mode = 'same',W_regularizer=l2(0.0002))(inception_4c_output)
        inception_4c_gap = GlobalAveragePooling2D()(conv_4c_output)




    inception_4d_1x1 = Convolution2D(112,1,1,border_mode='same',activation='relu',name='inception_4d/1x1',W_regularizer=l2(0.0002))(inception_4c_output)
    inception_4d_3x3_reduce = Convolution2D(144,1,1,border_mode='same',activation='relu',name='inception_4d/3x3_reduce',W_regularizer=l2(0.0002))(inception_4c_output)
    inception_4d_3x3 = Convolution2D(288,3,3,border_mode='same',activation='relu',name='inception_4d/3x3',W_regularizer=l2(0.0002))(inception_4d_3x3_reduce)
    inception_4d_5x5_reduce = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_4d/5x5_reduce',W_regularizer=l2(0.0002))(inception_4c_output)
    inception_4d_5x5 = Convolution2D(64,5,5,border_mode='same',activation='relu',name='inception_4d/5x5',W_regularizer=l2(0.0002))(inception_4d_5x5_reduce)
    inception_4d_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4d/pool')(inception_4c_output)
    inception_4d_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_4d/pool_proj',W_regularizer=l2(0.0002))(inception_4d_pool)
    inception_4d_output = merge([inception_4d_1x1,inception_4d_3x3,inception_4d_5x5,inception_4d_pool_proj],mode='concat',concat_axis=1,name='inception_4d/output')

    if extra_conv_layer:
        conv_4d_output = Convolution2D(704, 3, 3, activation='relu',name='conv_4d',border_mode = 'same',W_regularizer=l2(0.0002))(inception_4d_output)
        inception_4d_gap = GlobalAveragePooling2D()(conv_4d_output)

    if use_semantics:
        inception_4e_1x1_aesthetics = Convolution2D(256,1,1,border_mode='same',activation='relu',name='inception_4e/1x1_aesthetics',W_regularizer=l2(0.0002))(inception_4d_output)
        inception_4e_3x3_reduce_aesthetics = Convolution2D(160,1,1,border_mode='same',activation='relu',name='inception_4e/3x3_reduce_aesthetics',W_regularizer=l2(0.0002))(inception_4d_output)
        inception_4e_3x3_aesthetics= Convolution2D(320,3,3,border_mode='same',activation='relu',name='inception_4e/3x3_aesthetics',W_regularizer=l2(0.0002))(inception_4e_3x3_reduce_aesthetics)
        inception_4e_5x5_reduce_aesthetics = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_4e/5x5_reduce_aesthetics',W_regularizer=l2(0.0002))(inception_4d_output)
        inception_4e_5x5_aesthetics = Convolution2D(128,5,5,border_mode='same',activation='relu',name='inception_4e/5x5_aesthetics',W_regularizer=l2(0.0002))(inception_4e_5x5_reduce_aesthetics)
        inception_4e_pool_aesthetics = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4e/pool_aesthetics')(inception_4d_output)
        inception_4e_pool_proj_aesthetics = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_4e/pool_proj_aesthetics',W_regularizer=l2(0.0002))(inception_4e_pool_aesthetics)
        inception_4e_output_aesthetics = merge([inception_4e_1x1_aesthetics,inception_4e_3x3_aesthetics,inception_4e_5x5_aesthetics,inception_4e_pool_proj_aesthetics],mode='concat',concat_axis=1,name='inception_4e/output_aesthetics')
        conv_output_aesthetics = Convolution2D(1024, 3, 3, activation='relu',name='conv_6_1',border_mode = 'same',W_regularizer=l2(0.0002))(inception_4e_output_aesthetics)
        
        if rapid_style:
            conv1_7x7_s2 = Convolution2D(64,7,7,subsample=(2,2),border_mode='same',activation='relu',name='semantic_conv1/7x7_s2',W_regularizer=l2(0.0002))(input_image)
            conv1_zero_pad = ZeroPadding2D(padding=(1, 1))(conv1_7x7_s2)
            pool1_helper = PoolHelper()(conv1_zero_pad)
            pool1_3x3_s2 = MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='semantic_pool1/3x3_s2')(pool1_helper)
            pool1_norm1 = LRN(name='semantic_pool1/norm1')(pool1_3x3_s2)
            conv2_3x3_reduce = Convolution2D(64,1,1,border_mode='same',activation='relu',name='semantic_conv2/3x3_reduce',W_regularizer=l2(0.0002))(pool1_norm1)
            conv2_3x3 = Convolution2D(192,3,3,border_mode='same',activation='relu',name='semantic_conv2/3x3',W_regularizer=l2(0.0002))(conv2_3x3_reduce)
            conv2_norm2 = LRN(name='semantic_conv2/norm2')(conv2_3x3)
            conv2_zero_pad = ZeroPadding2D(padding=(1, 1))(conv2_norm2)
            pool2_helper = PoolHelper()(conv2_zero_pad)
            pool2_3x3_s2 = MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='semantic_pool2/3x3_s2')(pool2_helper)
            
            inception_3a_1x1 = Convolution2D(64,1,1,border_mode='same',activation='relu',name='semantic_inception_3a/1x1',W_regularizer=l2(0.0002))(pool2_3x3_s2)
            inception_3a_3x3_reduce = Convolution2D(96,1,1,border_mode='same',activation='relu',name='semantic_inception_3a/3x3_reduce',W_regularizer=l2(0.0002))(pool2_3x3_s2)
            inception_3a_3x3 = Convolution2D(128,3,3,border_mode='same',activation='relu',name='semantic_inception_3a/3x3',W_regularizer=l2(0.0002))(inception_3a_3x3_reduce)
            inception_3a_5x5_reduce = Convolution2D(16,1,1,border_mode='same',activation='relu',name='semantic_inception_3a/5x5_reduce',W_regularizer=l2(0.0002))(pool2_3x3_s2)
            inception_3a_5x5 = Convolution2D(32,5,5,border_mode='same',activation='relu',name='semantic_inception_3a/5x5',W_regularizer=l2(0.0002))(inception_3a_5x5_reduce)
            inception_3a_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='semantic_inception_3a/pool')(pool2_3x3_s2)
            inception_3a_pool_proj = Convolution2D(32,1,1,border_mode='same',activation='relu',name='semantic_inception_3a/pool_proj',W_regularizer=l2(0.0002))(inception_3a_pool)
            inception_3a_output = merge([inception_3a_1x1,inception_3a_3x3,inception_3a_5x5,inception_3a_pool_proj],mode='concat',concat_axis=1,name='semantic_inception_3a/output')
              
            inception_3b_1x1 = Convolution2D(128,1,1,border_mode='same',activation='relu',name='semantic_inception_3b/1x1',W_regularizer=l2(0.0002))(inception_3a_output)
            inception_3b_3x3_reduce = Convolution2D(128,1,1,border_mode='same',activation='relu',name='semantic_inception_3b/3x3_reduce',W_regularizer=l2(0.0002))(inception_3a_output)
            inception_3b_3x3 = Convolution2D(192,3,3,border_mode='same',activation='relu',name='semantic_inception_3b/3x3',W_regularizer=l2(0.0002))(inception_3b_3x3_reduce)
            inception_3b_5x5_reduce = Convolution2D(32,1,1,border_mode='same',activation='relu',name='semantic_inception_3b/5x5_reduce',W_regularizer=l2(0.0002))(inception_3a_output)
            inception_3b_5x5 = Convolution2D(96,5,5,border_mode='same',activation='relu',name='semantic_inception_3b/5x5',W_regularizer=l2(0.0002))(inception_3b_5x5_reduce)
            inception_3b_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='semantic_inception_3b/pool')(inception_3a_output)
            inception_3b_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='semantic_inception_3b/pool_proj',W_regularizer=l2(0.0002))(inception_3b_pool)
            inception_3b_output = merge([inception_3b_1x1,inception_3b_3x3,inception_3b_5x5,inception_3b_pool_proj],mode='concat',concat_axis=1,name='semantic_inception_3b/output')
            
            inception_3b_output_zero_pad = ZeroPadding2D(padding=(1, 1))(inception_3b_output)
            pool3_helper = PoolHelper()(inception_3b_output_zero_pad)
            pool3_3x3_s2 = MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='semantic_pool3/3x3_s2')(pool3_helper)
            
            inception_4a_1x1 = Convolution2D(192,1,1,border_mode='same',activation='relu',name='semantic_inception_4a/1x1',W_regularizer=l2(0.0002))(pool3_3x3_s2)
            inception_4a_3x3_reduce = Convolution2D(96,1,1,border_mode='same',activation='relu',name='semantic_inception_4a/3x3_reduce',W_regularizer=l2(0.0002))(pool3_3x3_s2)
            inception_4a_3x3 = Convolution2D(208,3,3,border_mode='same',activation='relu',name='semantic_inception_4a/3x3',W_regularizer=l2(0.0002))(inception_4a_3x3_reduce)
            inception_4a_5x5_reduce = Convolution2D(16,1,1,border_mode='same',activation='relu',name='semantic_inception_4a/5x5_reduce',W_regularizer=l2(0.0002))(pool3_3x3_s2)
            inception_4a_5x5 = Convolution2D(48,5,5,border_mode='same',activation='relu',name='semantic_inception_4a/5x5',W_regularizer=l2(0.0002))(inception_4a_5x5_reduce)
            inception_4a_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='semantic_inception_4a/pool')(pool3_3x3_s2)
            inception_4a_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='semantic_inception_4a/pool_proj',W_regularizer=l2(0.0002))(inception_4a_pool)
            inception_4a_output = merge([inception_4a_1x1,inception_4a_3x3,inception_4a_5x5,inception_4a_pool_proj],mode='concat',concat_axis=1,name='semantic_inception_4a/output')
             
            inception_4b_1x1 = Convolution2D(160,1,1,border_mode='same',activation='relu',name='semantic_inception_4b/1x1',W_regularizer=l2(0.0002))(inception_4a_output)
            inception_4b_3x3_reduce = Convolution2D(112,1,1,border_mode='same',activation='relu',name='semantic_inception_4b/3x3_reduce',W_regularizer=l2(0.0002))(inception_4a_output)
            inception_4b_3x3 = Convolution2D(224,3,3,border_mode='same',activation='relu',name='semantic_inception_4b/3x3',W_regularizer=l2(0.0002))(inception_4b_3x3_reduce)
            inception_4b_5x5_reduce = Convolution2D(24,1,1,border_mode='same',activation='relu',name='semantic_inception_4b/5x5_reduce',W_regularizer=l2(0.0002))(inception_4a_output)
            inception_4b_5x5 = Convolution2D(64,5,5,border_mode='same',activation='relu',name='semantic_inception_4b/5x5',W_regularizer=l2(0.0002))(inception_4b_5x5_reduce)
            inception_4b_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='semantic_inception_4b/pool')(inception_4a_output)
            inception_4b_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='semantic_inception_4b/pool_proj',W_regularizer=l2(0.0002))(inception_4b_pool)
            inception_4b_output = merge([inception_4b_1x1,inception_4b_3x3,inception_4b_5x5,inception_4b_pool_proj],mode='concat',concat_axis=1,name='semantic_inception_4b_output')
            
            
            inception_4c_1x1 = Convolution2D(128,1,1,border_mode='same',activation='relu',name='semantic_inception_4c/1x1',W_regularizer=l2(0.0002))(inception_4b_output)
            inception_4c_3x3_reduce = Convolution2D(128,1,1,border_mode='same',activation='relu',name='semantic_inception_4c/3x3_reduce',W_regularizer=l2(0.0002))(inception_4b_output)
            inception_4c_3x3 = Convolution2D(256,3,3,border_mode='same',activation='relu',name='semantic_inception_4c/3x3',W_regularizer=l2(0.0002))(inception_4c_3x3_reduce)
            inception_4c_5x5_reduce = Convolution2D(24,1,1,border_mode='same',activation='relu',name='semantic_inception_4c/5x5_reduce',W_regularizer=l2(0.0002))(inception_4b_output)
            inception_4c_5x5 = Convolution2D(64,5,5,border_mode='same',activation='relu',name='semantic_inception_4c/5x5',W_regularizer=l2(0.0002))(inception_4c_5x5_reduce)
            inception_4c_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='semantic_inception_4c/pool')(inception_4b_output)
            inception_4c_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='semantic_inception_4c/pool_proj',W_regularizer=l2(0.0002))(inception_4c_pool)
            inception_4c_output = merge([inception_4c_1x1,inception_4c_3x3,inception_4c_5x5,inception_4c_pool_proj],mode='concat',concat_axis=1,name='semantic_inception_4c/output')
            
            
            inception_4d_1x1 = Convolution2D(112,1,1,border_mode='same',activation='relu',name='semantic_inception_4d/1x1',W_regularizer=l2(0.0002))(inception_4c_output)
            inception_4d_3x3_reduce = Convolution2D(144,1,1,border_mode='same',activation='relu',name='semantic_inception_4d/3x3_reduce',W_regularizer=l2(0.0002))(inception_4c_output)
            inception_4d_3x3 = Convolution2D(288,3,3,border_mode='same',activation='relu',name='semantic_inception_4d/3x3',W_regularizer=l2(0.0002))(inception_4d_3x3_reduce)
            inception_4d_5x5_reduce = Convolution2D(32,1,1,border_mode='same',activation='relu',name='semantic_inception_4d/5x5_reduce',W_regularizer=l2(0.0002))(inception_4c_output)
            inception_4d_5x5 = Convolution2D(64,5,5,border_mode='same',activation='relu',name='semantic_inception_4d/5x5',W_regularizer=l2(0.0002))(inception_4d_5x5_reduce)
            inception_4d_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='semantic_inception_4d/pool')(inception_4c_output)
            inception_4d_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='semantic_inception_4d/pool_proj',W_regularizer=l2(0.0002))(inception_4d_pool)
            inception_4d_output = merge([inception_4d_1x1,inception_4d_3x3,inception_4d_5x5,inception_4d_pool_proj],mode='concat',concat_axis=1,name='semantic_inception_4d/output')
            

        inception_4e_1x1_semantics = Convolution2D(256,1,1,border_mode='same',activation='relu',name='inception_4e/1x1_semantics',W_regularizer=l2(0.0002))(inception_4d_output)
        inception_4e_3x3_reduce_semantics = Convolution2D(160,1,1,border_mode='same',activation='relu',name='inception_4e/3x3_reduce_semantics',W_regularizer=l2(0.0002))(inception_4d_output)
        inception_4e_3x3_semantics = Convolution2D(320,3,3,border_mode='same',activation='relu',name='inception_4e/3x3_semantics',W_regularizer=l2(0.0002))(inception_4e_3x3_reduce_semantics)
        inception_4e_5x5_reduce_semantics = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_4e/5x5_reduce_semantics',W_regularizer=l2(0.0002))(inception_4d_output)
        inception_4e_5x5_semantics = Convolution2D(128,5,5,border_mode='same',activation='relu',name='inception_4e/5x5_semantics',W_regularizer=l2(0.0002))(inception_4e_5x5_reduce_semantics)
        inception_4e_pool_semantics = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4e/pool_semantics')(inception_4d_output)
        inception_4e_pool_proj_semantics = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_4e/pool_proj_semantics',W_regularizer=l2(0.0002))(inception_4e_pool_semantics)
        inception_4e_output_semantics = merge([inception_4e_1x1_semantics,inception_4e_3x3_semantics,inception_4e_5x5_semantics,inception_4e_pool_proj_semantics],mode='concat',concat_axis=1,name='inception_4e/output_semantics')
        conv_output_semantics = Convolution2D(1024, 3, 3, activation='relu',name='conv_6_1_semantics',border_mode = 'same',W_regularizer=l2(0.0002))(inception_4e_output_semantics)
        

        if not rapid_style:
            x_semantics = GlobalAveragePooling2D()(conv_output_semantics)
            if use_comments:
                 x_semantics = merge([x_semantics, x_text_semantics],mode='concat',concat_axis=1)
            output_semantics = Dense(65, activation = 'softmax', name="output_semantics")(x_semantics)

    else:
        inception_4e_1x1 = Convolution2D(256,1,1,border_mode='same',activation='relu',name='inception_4e/1x1',W_regularizer=l2(0.0002))(inception_4d_output)
        inception_4e_3x3_reduce = Convolution2D(160,1,1,border_mode='same',activation='relu',name='inception_4e/3x3_reduce',W_regularizer=l2(0.0002))(inception_4d_output)
        inception_4e_3x3 = Convolution2D(320,3,3,border_mode='same',activation='relu',name='inception_4e/3x3',W_regularizer=l2(0.0002))(inception_4e_3x3_reduce)
        inception_4e_5x5_reduce = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_4e/5x5_reduce',W_regularizer=l2(0.0002))(inception_4d_output)
        inception_4e_5x5 = Convolution2D(128,5,5,border_mode='same',activation='relu',name='inception_4e/5x5',W_regularizer=l2(0.0002))(inception_4e_5x5_reduce)
        inception_4e_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4e/pool')(inception_4d_output)
        inception_4e_pool_proj = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_4e/pool_proj',W_regularizer=l2(0.0002))(inception_4e_pool)
        inception_4e_output = merge([inception_4e_1x1,inception_4e_3x3,inception_4e_5x5,inception_4e_pool_proj],mode='concat',concat_axis=1,name='inception_4e/output')  
        conv_output_aesthetics = Convolution2D(1024, 3, 3, activation='relu',name='conv_6_1',border_mode = 'same',W_regularizer=l2(0.0002))(inception_4e_output)
    
    if rapid_style:
        merged_conv = merge([conv_output_aesthetics, conv_output_semantics], mode='concat', concat_axis=1)
        x_aesthetics =  GlobalAveragePooling2D()(merged_conv)
    else:
        x_aesthetics = GlobalAveragePooling2D()(conv_output_aesthetics)

    if use_multigap:
        if use_comments:
            x_aesthetics = merge([x_aesthetics, x_text_aesthetics, inception_4a_gap, inception_4b_gap, inception_4c_gap, inception_4d_gap],mode='concat',concat_axis=1)
        else:
            x_aesthetics = merge([x_aesthetics, inception_4a_gap, inception_4b_gap, inception_4c_gap, inception_4d_gap],mode='concat',concat_axis=1)
    else:
        if use_comments:
            x_aesthetics = merge([x_aesthetics, x_text_aesthetics],mode='concat',concat_axis=1)


    if use_distribution:
        if use_multigap:
            output_aesthetics = Dense(10, activation = 'softmax', name="main_output__")(x_aesthetics)
        else:
            output_aesthetics = Dense(10, activation = 'softmax', name="main_output_")(x_aesthetics)
    else:
        if use_multigap:
            output_aesthetics = Dense(2, activation = 'softmax', name="main_output_")(x_aesthetics)
        else:
            output_aesthetics = Dense(2, activation = 'softmax', name="main_output")(x_aesthetics)
    
    if use_semantics and not rapid_style:
        if use_comments:
            googlenet = Model(input=[input_image, comment_input], output=[output_aesthetics,output_semantics])
        else:
            googlenet = Model(input=input_image, output=[output_aesthetics,output_semantics])
    else:
        if use_comments:
            googlenet = Model(input=[input_image, comment_input], output=output_aesthetics)
        else:
            googlenet = Model(input=input_image, output=output_aesthetics)
    
    if weights_path:
        if use_semantics:
            googlenet.load_weights('weights/named_googlenet_semantics_weights.h5', by_name=True)
        googlenet.load_weights(weights_path,by_name=load_weights_by_name)

        if rapid_style:
            for i, layer in enumerate(googlenet.layers):
                if 'semantic' in layer.name:
                    # print("{} - {}".format(i, layer.name))
                    layer.trainable = False

    return googlenet
Exemplo n.º 3
0
def create_achu_net(weights_path=None, img_chs = 3, img_rows=200, img_cols=200 , nb_output_classes = 7, drop_out_rate = 0.4, n_hidden = 256, n_samples = 100, n_timesteps = 16):
    # creates alinet based LSTM
    input_shape = (n_timesteps,  img_chs, img_rows, img_cols)
    input = Input(shape=input_shape)
    
    K.set_image_dim_ordering('th')
    
    conv1_7x7_s2 = TimeDistributed(Convolution2D(64,7,7,subsample=(2,2),border_mode='same',activation='relu',name='conv1/7x7_s2',W_regularizer=l2(0.0002)))(input)
    
    conv1_zero_pad = TimeDistributed(ZeroPadding2D(padding=(1, 1)))(conv1_7x7_s2)
    
    pool1_helper = TimeDistributed(PoolHelper())(conv1_zero_pad)
    
    pool1_3x3_s2 = TimeDistributed(MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='pool1/3x3_s2'))(pool1_helper)
    
    pool1_norm1 = TimeDistributed(LRN(name='pool1/norm1'))(pool1_3x3_s2)
    
    conv2_3x3_reduce = TimeDistributed(Convolution2D(64,1,1,border_mode='same',activation='relu',name='conv2/3x3_reduce',W_regularizer=l2(0.0002)))(pool1_norm1)
    
    conv2_3x3 = TimeDistributed(Convolution2D(192,3,3,border_mode='same',activation='relu',name='conv2/3x3',W_regularizer=l2(0.0002)))(conv2_3x3_reduce)
    
    conv2_norm2 = TimeDistributed(LRN(name='conv2/norm2'))(conv2_3x3)
    
    conv2_zero_pad = TimeDistributed(ZeroPadding2D(padding=(1, 1)))(conv2_norm2)
    
    pool2_helper = TimeDistributed(PoolHelper())(conv2_zero_pad)
    
    pool2_3x3_s2 = TimeDistributed(MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='pool2/3x3_s2'))(pool2_helper)
    
    
    inception_3a_1x1 = TimeDistributed(Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_3a/1x1',W_regularizer=l2(0.0002)))(pool2_3x3_s2)
    
    inception_3a_3x3_reduce = TimeDistributed(Convolution2D(96,1,1,border_mode='same',activation='relu',name='inception_3a/3x3_reduce',W_regularizer=l2(0.0002)))(pool2_3x3_s2)
    
    inception_3a_3x3 = TimeDistributed(Convolution2D(128,3,3,border_mode='same',activation='relu',name='inception_3a/3x3',W_regularizer=l2(0.0002)))(inception_3a_3x3_reduce)
    
    inception_3a_5x5_reduce = TimeDistributed(Convolution2D(16,1,1,border_mode='same',activation='relu',name='inception_3a/5x5_reduce',W_regularizer=l2(0.0002)))(pool2_3x3_s2)
    
    inception_3a_5x5 = TimeDistributed(Convolution2D(32,5,5,border_mode='same',activation='relu',name='inception_3a/5x5',W_regularizer=l2(0.0002)))(inception_3a_5x5_reduce)
    
    inception_3a_pool = TimeDistributed(MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_3a/pool'))(pool2_3x3_s2)
    
    inception_3a_pool_proj = TimeDistributed(Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_3a/pool_proj',W_regularizer=l2(0.0002)))(inception_3a_pool)
    
    inception_3a_output = merge([inception_3a_1x1,inception_3a_3x3,inception_3a_5x5,inception_3a_pool_proj],mode='concat',concat_axis=2,name='inception_3a/output')
    
    
    inception_3b_1x1 = TimeDistributed(Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_3b/1x1',W_regularizer=l2(0.0002)))(inception_3a_output)
    
    inception_3b_3x3_reduce = TimeDistributed(Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_3b/3x3_reduce',W_regularizer=l2(0.0002)))(inception_3a_output)
                                       
    inception_3b_3x3 = TimeDistributed(Convolution2D(192,3,3,border_mode='same',activation='relu',name='inception_3b/3x3',W_regularizer=l2(0.0002)))(inception_3b_3x3_reduce)
    
    inception_3b_5x5_reduce = TimeDistributed(Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_3b/5x5_reduce',W_regularizer=l2(0.0002)))(inception_3a_output)
    
    inception_3b_5x5 = TimeDistributed(Convolution2D(96,5,5,border_mode='same',activation='relu',name='inception_3b/5x5',W_regularizer=l2(0.0002)))(inception_3b_5x5_reduce)
    
    inception_3b_pool = TimeDistributed(MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_3b/pool'))(inception_3a_output)
    
    inception_3b_pool_proj = TimeDistributed(Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_3b/pool_proj',W_regularizer=l2(0.0002)))(inception_3b_pool)
    
    inception_3b_output = merge([inception_3b_1x1,inception_3b_3x3,inception_3b_5x5,inception_3b_pool_proj],mode='concat',concat_axis=2,name='inception_3b/output')
    
    
    inception_3b_output_zero_pad = TimeDistributed(ZeroPadding2D(padding=(1, 1)))(inception_3b_output)
    
    pool3_helper = TimeDistributed(PoolHelper())(inception_3b_output_zero_pad)
    
    pool3_3x3_s2 = TimeDistributed(MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='pool3/3x3_s2'))(pool3_helper)
    
    
    inception_4a_1x1 = TimeDistributed(Convolution2D(192,1,1,border_mode='same',activation='relu',name='inception_4a/1x1',W_regularizer=l2(0.0002)))(pool3_3x3_s2)
    
    inception_4a_3x3_reduce = TimeDistributed(Convolution2D(96,1,1,border_mode='same',activation='relu',name='inception_4a/3x3_reduce',W_regularizer=l2(0.0002)))(pool3_3x3_s2)
    
    inception_4a_3x3 = TimeDistributed(Convolution2D(208,3,3,border_mode='same',activation='relu',name='inception_4a/3x3',W_regularizer=l2(0.0002)))(inception_4a_3x3_reduce)
    
    inception_4a_5x5_reduce = TimeDistributed(Convolution2D(16,1,1,border_mode='same',activation='relu',name='inception_4a/5x5_reduce',W_regularizer=l2(0.0002)))(pool3_3x3_s2)
    
    inception_4a_5x5 = TimeDistributed(Convolution2D(48,5,5,border_mode='same',activation='relu',name='inception_4a/5x5',W_regularizer=l2(0.0002)))(inception_4a_5x5_reduce)
    
    inception_4a_pool = TimeDistributed(MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4a/pool'))(pool3_3x3_s2)
    
    inception_4a_pool_proj = TimeDistributed(Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_4a/pool_proj',W_regularizer=l2(0.0002)))(inception_4a_pool)
    
    inception_4a_output = merge([inception_4a_1x1,inception_4a_3x3,inception_4a_5x5,inception_4a_pool_proj],mode='concat',concat_axis=2,name='inception_4a/output')
    
    
    loss1_max_pool = TimeDistributed(MaxPooling2D(pool_size=(3,3),strides=(2,2),name='loss1/max_pool'))(inception_4a_output)
    
    loss1_conv = TimeDistributed(Convolution2D(128,1,1,border_mode='same',activation='relu',name='loss1/conv',W_regularizer=l2(0.0002)))(loss1_max_pool)
    
    loss1_flat = TimeDistributed(Flatten())(loss1_conv)
    
    #LSTMs
    
    lstm_bd_1 = Bidirectional(LSTM(n_hidden, return_sequences=True, name='lstm1'))(loss1_flat)
    
    lstm_drop_1 = Dropout(drop_out_rate)(lstm_bd_1)
                              
    lstm_bd_2 = Bidirectional(LSTM(n_hidden, return_sequences=True, name='lstm2'))(lstm_drop_1)
    
    lstm_drop_2 = Dropout(drop_out_rate)(lstm_bd_2)
    
    lstm_bd_3 = Bidirectional(LSTM(n_hidden, return_sequences=True, name='lstm3'))(lstm_drop_2)
    
    lstm_drop_3 = Dropout(drop_out_rate)(lstm_bd_3)
                              
    lstm_bd_4 = Bidirectional(LSTM(n_hidden, return_sequences=True, name='lstm4'))(lstm_drop_3)
    
    lstm_drop_4 = Dropout(drop_out_rate)(lstm_bd_4)
    
    #lstm_max_pool = TimeDistributed(MaxPooling2D(pool_size=(3,3),strides=(2,2),name='lstm/max_pool'))(lstm_drop_4)
    
    loss1_fc_2 = TimeDistributed(Dense(1024,activation='relu',name='loss1/fc_2',W_regularizer=l2(0.0002)))(lstm_drop_4)
    
    loss1_drop_fc_2 = Dropout(drop_out_rate)(loss1_fc_2)
    
    loss1_classifier = Dense(nb_output_classes,name='loss1/classifier',W_regularizer=l2(0.0002))(loss1_drop_fc_2)
    
    loss1_classifier_act = Activation('softmax')(loss1_classifier)
    
    achu_net = Model(input=input, output=[loss1_classifier_act])
    if weights_path:
        achu_net.load_weights(weights_path)
    
    return achu_net
Exemplo n.º 4
0
def create_posenet(weights_path=None):
    # creates PoseNet base on the GoogLeNet a.k.a. Inception v1 (Szegedy, 2015)

    # Set the input dimension (the same as GoogLeNet)
    input = Input(shape=(3, 224, 224))

    # Convolutional layer
    conv1_7x7_s2 = Convolution2D(64,7,7,subsample=(2,2),border_mode='same',activation='relu',name='conv1/7x7_s2',
                                 W_regularizer=l2(0.0002))(input)

    # Zero padding
    conv1_zero_pad = ZeroPadding2D(padding=(1, 1))(conv1_7x7_s2)
    
    pool1_helper = PoolHelper()(conv1_zero_pad)

    # Max Pooling layer
    pool1_3x3_s2 = MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='pool1/3x3_s2')(pool1_helper)

    # Normalizatio after max pooling
    pool1_norm1 = LRN(name='pool1/norm1')(pool1_3x3_s2)

    # Reduction layer
    conv2_3x3_reduce = Convolution2D(64,1,1,border_mode='same',activation='relu',name='conv2/3x3_reduce',
                                     W_regularizer=l2(0.0002))(pool1_norm1)

    # Convolutional layer
    conv2_3x3 = Convolution2D(192,3,3,border_mode='same',activation='relu',name='conv2/3x3',
                              W_regularizer=l2(0.0002))(conv2_3x3_reduce)

    # Normalizaion
    conv2_norm2 = LRN(name='conv2/norm2')(conv2_3x3)

    # Zero padding
    conv2_zero_pad = ZeroPadding2D(padding=(1, 1))(conv2_norm2)
    
    pool2_helper = PoolHelper()(conv2_zero_pad)

    # Max Pooling layer
    pool2_3x3_s2 = MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='pool2/3x3_s2')(pool2_helper)
    
    ## First inception module
    inception_3a_1x1 = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_3a/1x1',
                                     W_regularizer=l2(0.0002))(pool2_3x3_s2)
    
    inception_3a_3x3_reduce = Convolution2D(96,1,1,border_mode='same',activation='relu',name='inception_3a/3x3_reduce',
                                            W_regularizer=l2(0.0002))(pool2_3x3_s2)
    
    inception_3a_3x3 = Convolution2D(128,3,3,border_mode='same',activation='relu',name='inception_3a/3x3',
                                     W_regularizer=l2(0.0002))(inception_3a_3x3_reduce)
    
    inception_3a_5x5_reduce = Convolution2D(16,1,1,border_mode='same',activation='relu',name='inception_3a/5x5_reduce',
                                            W_regularizer=l2(0.0002))(pool2_3x3_s2)
    
    inception_3a_5x5 = Convolution2D(32,5,5,border_mode='same',activation='relu',name='inception_3a/5x5',
                                     W_regularizer=l2(0.0002))(inception_3a_5x5_reduce)
    
    inception_3a_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',
                                     name='inception_3a/pool')(pool2_3x3_s2)
    
    inception_3a_pool_proj = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_3a/pool_proj',
                                           W_regularizer=l2(0.0002))(inception_3a_pool)
    
    inception_3a_output = merge([inception_3a_1x1,inception_3a_3x3,inception_3a_5x5,inception_3a_pool_proj],
                                mode='concat',concat_axis=1,name='inception_3a/output')
    
    ## Second inception module

    # 1x1 convolution layer
    inception_3b_1x1 = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_3b/1x1',
                                     W_regularizer=l2(0.0002))(inception_3a_output)

    # 3x3 reduction layerc and its onvulutional layer
    inception_3b_3x3_reduce = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_3b/3x3_reduce',
                                            W_regularizer=l2(0.0002))(inception_3a_output)
    
    inception_3b_3x3 = Convolution2D(192,3,3,border_mode='same',activation='relu',name='inception_3b/3x3',
                                     W_regularizer=l2(0.0002))(inception_3b_3x3_reduce)

    # 5x5 reduction layerc and its onvulutional layer
    inception_3b_5x5_reduce = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_3b/5x5_reduce',
                                            W_regularizer=l2(0.0002))(inception_3a_output)
    
    inception_3b_5x5 = Convolution2D(96,5,5,border_mode='same',activation='relu',name='inception_3b/5x5',
                                     W_regularizer=l2(0.0002))(inception_3b_5x5_reduce)
    # Max Pooling
    inception_3b_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_3b/pool')(inception_3a_output)
    
    inception_3b_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_3b/pool_proj',
                                           W_regularizer=l2(0.0002))(inception_3b_pool)
    
    inception_3b_output = merge([inception_3b_1x1,inception_3b_3x3,inception_3b_5x5,inception_3b_pool_proj],
                                mode='concat',concat_axis=1,name='inception_3b/output')
    
    # Zero padding
    inception_3b_output_zero_pad = ZeroPadding2D(padding=(1, 1))(inception_3b_output)
    
    pool3_helper = PoolHelper()(inception_3b_output_zero_pad)

    # Max Pooling
    pool3_3x3_s2 = MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='pool3/3x3_s2')(pool3_helper)
    
    ## Third inception module
    inception_4a_1x1 = Convolution2D(192,1,1,border_mode='same',activation='relu',name='inception_4a/1x1',
                                     W_regularizer=l2(0.0002))(pool3_3x3_s2)
    
    inception_4a_3x3_reduce = Convolution2D(96,1,1,border_mode='same',activation='relu',name='inception_4a/3x3_reduce',
                                            W_regularizer=l2(0.0002))(pool3_3x3_s2)
    
    inception_4a_3x3 = Convolution2D(208,3,3,border_mode='same',activation='relu',name='inception_4a/3x3',
                                     W_regularizer=l2(0.0002))(inception_4a_3x3_reduce)
    
    inception_4a_5x5_reduce = Convolution2D(16,1,1,border_mode='same',activation='relu',name='inception_4a/5x5_reduce',
                                            W_regularizer=l2(0.0002))(pool3_3x3_s2)
    
    inception_4a_5x5 = Convolution2D(48,5,5,border_mode='same',activation='relu',name='inception_4a/5x5',
                                     W_regularizer=l2(0.0002))(inception_4a_5x5_reduce)
    
    inception_4a_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4a/pool')(pool3_3x3_s2)
    
    inception_4a_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_4a/pool_proj',
                                           W_regularizer=l2(0.0002))(inception_4a_pool)
    
    inception_4a_output = merge([inception_4a_1x1,inception_4a_3x3,inception_4a_5x5,inception_4a_pool_proj],
                                mode='concat',concat_axis=1,name='inception_4a/output')
    
    ## First classification branch

    # Average Pooling
    loss1_ave_pool = AveragePooling2D(pool_size=(5,5),strides=(3,3),name='loss1/ave_pool')(inception_4a_output)

    # Convolutional Layer for loss
    loss1_conv = Convolution2D(128,1,1,border_mode='same',activation='relu',name='loss1/conv',
                               W_regularizer=l2(0.0002))(loss1_ave_pool)
    # Flatten for the next full connection layer
    loss1_flat = Flatten()(loss1_conv)

    # Full connection layer
    loss1_fc = Dense(1024,activation='relu',name='loss1/fc',W_regularizer=l2(0.0002))(loss1_flat)

    # Dropout
    loss1_drop_fc = Dropout(0.7)(loss1_fc)

    # 3-D Position Regression
    cls1_fc_pose_xyz = Dense(3, name='posexyz1',W_regularizer=l2(0.0002))(loss1_drop_fc) # New and different from the original GoogLeNet. The classification is replaced by regression.

    # 4-D Orientation Regression
    cls1_fc_pose_wpqr = Dense(4,name='posewpqr1',W_regularizer=l2(0.0002))(loss1_drop_fc) # New

    ## Fourth inception module
    inception_4b_1x1 = Convolution2D(160,1,1,border_mode='same',activation='relu',name='inception_4b/1x1',
                                     W_regularizer=l2(0.0002))(inception_4a_output)
    
    inception_4b_3x3_reduce = Convolution2D(112,1,1,border_mode='same',activation='relu',name='inception_4b/3x3_reduce',
                                            W_regularizer=l2(0.0002))(inception_4a_output)
    
    inception_4b_3x3 = Convolution2D(224,3,3,border_mode='same',activation='relu',name='inception_4b/3x3',
                                     W_regularizer=l2(0.0002))(inception_4b_3x3_reduce)
    
    inception_4b_5x5_reduce = Convolution2D(24,1,1,border_mode='same',activation='relu',name='inception_4b/5x5_reduce',
                                            W_regularizer=l2(0.0002))(inception_4a_output)
    
    inception_4b_5x5 = Convolution2D(64,5,5,border_mode='same',activation='relu',name='inception_4b/5x5',
                                     W_regularizer=l2(0.0002))(inception_4b_5x5_reduce)
    
    inception_4b_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4b/pool')(inception_4a_output)
    
    inception_4b_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_4b/pool_proj',
                                           W_regularizer=l2(0.0002))(inception_4b_pool)
    
    inception_4b_output = merge([inception_4b_1x1,inception_4b_3x3,inception_4b_5x5,inception_4b_pool_proj],
                                mode='concat',concat_axis=1,name='inception_4b_output')
    
    ## Fifth inception module
    inception_4c_1x1 = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_4c/1x1',
                                     W_regularizer=l2(0.0002))(inception_4b_output)
    
    inception_4c_3x3_reduce = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_4c/3x3_reduce',
                                            W_regularizer=l2(0.0002))(inception_4b_output)
    
    inception_4c_3x3 = Convolution2D(256,3,3,border_mode='same',activation='relu',name='inception_4c/3x3',
                                     W_regularizer=l2(0.0002))(inception_4c_3x3_reduce)
    
    inception_4c_5x5_reduce = Convolution2D(24,1,1,border_mode='same',activation='relu',name='inception_4c/5x5_reduce',
                                            W_regularizer=l2(0.0002))(inception_4b_output)
    
    inception_4c_5x5 = Convolution2D(64,5,5,border_mode='same',activation='relu',name='inception_4c/5x5',
                                     W_regularizer=l2(0.0002))(inception_4c_5x5_reduce)
    
    inception_4c_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4c/pool')(inception_4b_output)
    
    inception_4c_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_4c/pool_proj',
                                           W_regularizer=l2(0.0002))(inception_4c_pool)
    
    inception_4c_output = merge([inception_4c_1x1,inception_4c_3x3,inception_4c_5x5,inception_4c_pool_proj],
                                mode='concat',concat_axis=1,name='inception_4c/output')
    
    ## Sixth inception module
    inception_4d_1x1 = Convolution2D(112,1,1,border_mode='same',activation='relu',name='inception_4d/1x1',
                                     W_regularizer=l2(0.0002))(inception_4c_output)
    
    inception_4d_3x3_reduce = Convolution2D(144,1,1,border_mode='same',activation='relu',name='inception_4d/3x3_reduce',
                                            W_regularizer=l2(0.0002))(inception_4c_output)
    
    inception_4d_3x3 = Convolution2D(288,3,3,border_mode='same',activation='relu',name='inception_4d/3x3',
                                     W_regularizer=l2(0.0002))(inception_4d_3x3_reduce)
    
    inception_4d_5x5_reduce = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_4d/5x5_reduce',
                                            W_regularizer=l2(0.0002))(inception_4c_output)
    
    inception_4d_5x5 = Convolution2D(64,5,5,border_mode='same',activation='relu',name='inception_4d/5x5',
                                     W_regularizer=l2(0.0002))(inception_4d_5x5_reduce)
    
    inception_4d_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4d/pool')(inception_4c_output)
    
    inception_4d_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_4d/pool_proj',
                                           W_regularizer=l2(0.0002))(inception_4d_pool)
    
    inception_4d_output = merge([inception_4d_1x1,inception_4d_3x3,inception_4d_5x5,inception_4d_pool_proj],
                                mode='concat',concat_axis=1,name='inception_4d/output')
    
    ## Second classification branch

    # Average Pooling
    loss2_ave_pool = AveragePooling2D(pool_size=(5,5),strides=(3,3),name='loss2/ave_pool')(inception_4d_output)

    # Convolutional Layer for loss
    loss2_conv = Convolution2D(128,1,1,border_mode='same',activation='relu',name='loss2/conv',
                               W_regularizer=l2(0.0002))(loss2_ave_pool)
    # Flatten for the next full connection layer
    loss2_flat = Flatten()(loss2_conv)

    # Fully connected layer
    loss2_fc = Dense(1024,activation='relu',name='loss2/fc',W_regularizer=l2(0.0002))(loss2_flat)

    # Dropout layer
    loss2_drop_fc = Dropout(0.7)(loss2_fc)

    # 3-D position regression
    cls2_fc_pose_xyz = Dense(3, name='posexyz2',W_regularizer=l2(0.0002))(loss2_drop_fc) # New

    # 4-D orientation regression
    cls2_fc_pose_wpqr = Dense(4,name='posewpqr2',W_regularizer=l2(0.0002))(loss2_drop_fc) # New


    ## Seventh inceptio module
    inception_4e_1x1 = Convolution2D(256,1,1,border_mode='same',activation='relu',name='inception_4e/1x1',
                                     W_regularizer=l2(0.0002))(inception_4d_output)
    
    inception_4e_3x3_reduce = Convolution2D(160,1,1,border_mode='same',activation='relu',name='inception_4e/3x3_reduce',
                                            W_regularizer=l2(0.0002))(inception_4d_output)
    
    inception_4e_3x3 = Convolution2D(320,3,3,border_mode='same',activation='relu',name='inception_4e/3x3',
                                     W_regularizer=l2(0.0002))(inception_4e_3x3_reduce)
    
    inception_4e_5x5_reduce = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_4e/5x5_reduce',
                                            W_regularizer=l2(0.0002))(inception_4d_output)
    
    inception_4e_5x5 = Convolution2D(128,5,5,border_mode='same',activation='relu',name='inception_4e/5x5',
                                     W_regularizer=l2(0.0002))(inception_4e_5x5_reduce)
    
    inception_4e_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4e/pool')(inception_4d_output)
    
    inception_4e_pool_proj = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_4e/pool_proj',
                                           W_regularizer=l2(0.0002))(inception_4e_pool)
    
    inception_4e_output = merge([inception_4e_1x1,inception_4e_3x3,inception_4e_5x5,inception_4e_pool_proj],
                                mode='concat',concat_axis=1,name='inception_4e/output')
    
    # Zero padding
    inception_4e_output_zero_pad = ZeroPadding2D(padding=(1, 1))(inception_4e_output)
    
    pool4_helper = PoolHelper()(inception_4e_output_zero_pad)

    # Max pooling
    pool4_3x3_s2 = MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='pool4/3x3_s2')(pool4_helper)
    
    ## Eighth inception module
    inception_5a_1x1 = Convolution2D(256,1,1,border_mode='same',activation='relu',name='inception_5a/1x1',
                                     W_regularizer=l2(0.0002))(pool4_3x3_s2)
    
    inception_5a_3x3_reduce = Convolution2D(160,1,1,border_mode='same',activation='relu',name='inception_5a/3x3_reduce',
                                            W_regularizer=l2(0.0002))(pool4_3x3_s2)
    
    inception_5a_3x3 = Convolution2D(320,3,3,border_mode='same',activation='relu',name='inception_5a/3x3',
                                     W_regularizer=l2(0.0002))(inception_5a_3x3_reduce)
    
    inception_5a_5x5_reduce = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_5a/5x5_reduce',
                                            W_regularizer=l2(0.0002))(pool4_3x3_s2)
    
    inception_5a_5x5 = Convolution2D(128,5,5,border_mode='same',activation='relu',name='inception_5a/5x5',
                                     W_regularizer=l2(0.0002))(inception_5a_5x5_reduce)
    
    inception_5a_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_5a/pool')(pool4_3x3_s2)
    
    inception_5a_pool_proj = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_5a/pool_proj',
                                           W_regularizer=l2(0.0002))(inception_5a_pool)
    
    inception_5a_output = merge([inception_5a_1x1,inception_5a_3x3,inception_5a_5x5,inception_5a_pool_proj],
                                mode='concat',concat_axis=1,name='inception_5a/output')
    
    ## Ninth inception module
    inception_5b_1x1 = Convolution2D(384,1,1,border_mode='same',activation='relu',name='inception_5b/1x1',
                                     W_regularizer=l2(0.0002))(inception_5a_output)
    
    inception_5b_3x3_reduce = Convolution2D(192,1,1,border_mode='same',activation='relu',name='inception_5b/3x3_reduce',
                                            W_regularizer=l2(0.0002))(inception_5a_output)
    
    inception_5b_3x3 = Convolution2D(384,3,3,border_mode='same',activation='relu',name='inception_5b/3x3',
                                     W_regularizer=l2(0.0002))(inception_5b_3x3_reduce)
    
    inception_5b_5x5_reduce = Convolution2D(48,1,1,border_mode='same',activation='relu',name='inception_5b/5x5_reduce',
                                            W_regularizer=l2(0.0002))(inception_5a_output)
    
    inception_5b_5x5 = Convolution2D(128,5,5,border_mode='same',activation='relu',name='inception_5b/5x5',
                                     W_regularizer=l2(0.0002))(inception_5b_5x5_reduce)
    
    inception_5b_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_5b/pool')(inception_5a_output)
    
    inception_5b_pool_proj = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_5b/pool_proj',
                                           W_regularizer=l2(0.0002))(inception_5b_pool)
    
    inception_5b_output = merge([inception_5b_1x1,inception_5b_3x3,inception_5b_5x5,inception_5b_pool_proj],
                                mode='concat',concat_axis=1,name='inception_5b/output')
    
    ## the following layers only for bayesian_posenet

    # Dropout layer(Bayesian)
    pool5_drop_bay = Dropout(0.5)(inception_5b_output)  #bay

    # Average pooling
    pool5_7x7_s1 = AveragePooling2D(pool_size=(7,7),strides=(1,1),name='pool5/7x7_s2')(pool5_drop_bay)

    # Flatten
    loss3_flat = Flatten()(pool5_7x7_s1)

    # Fully connected layer
    loss3_poseregressor = Dense(2048,,activation='relu', name='loss3/poseregressor',W_regularizer=l2(0.0002))(loss3_flat)

    # Dropout
    pool5_drop_7x7_s1 = Dropout(0.5)(loss3_poseregressor)

    # 3-D position regression
    cls3_fc_pose_xyz = Dense(3, name='posexyz3',W_regularizer=l2(0.0002))(pool5_drop_7x7_s1) # New

    # 4-D orientation regression
    cls3_fc_pose_wpqr = Dense(4,name='posewpqr3',W_regularizer=l2(0.0002))(pool5_drop_7x7_s1) # New    

    posenet = Model(input=input, output=[cls1_fc_pose_xyz,cls2_fc_pose_xyz,cls3_fc_pose_xyz,
                                         cls1_fc_pose_wpqr,cls2_fc_pose_wpqr,cls3_fc_pose_wpqr])
    
    if weights_path:
        posenet.load_weights(weights_path)

    #sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True)
    #posenet.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy'])
    
    return posenet
Exemplo n.º 5
0
def googlenet_model(img_rows, img_cols, channel=1, num_classes=None):
    """
    GoogLeNet a.k.a. Inception v1 for Keras

    Model Schema is based on
    https://gist.github.com/joelouismarino/a2ede9ab3928f999575423b9887abd14

    ImageNet Pretrained Weights
    https://drive.google.com/open?id=0B319laiAPjU3RE1maU9MMlh2dnc

    Blog Post:
    http://joelouismarino.github.io/blog_posts/blog_googlenet_keras.html

    Parameters:
      img_rows, img_cols - resolution of inputs
      channel - 1 for grayscale, 3 for color
      num_classes - number of class labels for our classification task
    """

    input = Input(shape=(channel, img_rows, img_cols))
    conv1_7x7_s2 = Convolution2D(64,
                                 7,
                                 7,
                                 subsample=(2, 2),
                                 border_mode='same',
                                 activation='relu',
                                 name='conv1/7x7_s2',
                                 W_regularizer=l2(0.0002))(input)
    conv1_zero_pad = ZeroPadding2D(padding=(1, 1))(conv1_7x7_s2)
    pool1_helper = PoolHelper()(conv1_zero_pad)
    pool1_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool1/3x3_s2')(pool1_helper)
    pool1_norm1 = LRN(name='pool1/norm1')(pool1_3x3_s2)
    # pool1_norm1 = BatchNormalization(name='pool1/norm1')(pool1_3x3_s2)
    conv2_3x3_reduce = Convolution2D(64,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='conv2/3x3_reduce',
                                     W_regularizer=l2(0.0002))(pool1_norm1)
    conv2_3x3 = Convolution2D(192,
                              3,
                              3,
                              border_mode='same',
                              activation='relu',
                              name='conv2/3x3',
                              W_regularizer=l2(0.0002))(conv2_3x3_reduce)
    conv2_norm2 = LRN(name='conv2/norm2')(conv2_3x3)
    # conv2_norm2 = BatchNormalization(name='conv2/norm2')(conv2_3x3)
    conv2_zero_pad = ZeroPadding2D(padding=(1, 1))(conv2_norm2)
    pool2_helper = PoolHelper()(conv2_zero_pad)
    pool2_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool2/3x3_s2')(pool2_helper)

    inception_3a_1x1 = Convolution2D(64,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='inception_3a/1x1',
                                     W_regularizer=l2(0.0002))(pool2_3x3_s2)
    inception_3a_3x3_reduce = Convolution2D(
        96,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3a/3x3_reduce',
        W_regularizer=l2(0.0002))(pool2_3x3_s2)
    inception_3a_3x3 = Convolution2D(
        128,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_3a/3x3',
        W_regularizer=l2(0.0002))(inception_3a_3x3_reduce)
    inception_3a_5x5_reduce = Convolution2D(
        16,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3a/5x5_reduce',
        W_regularizer=l2(0.0002))(pool2_3x3_s2)
    inception_3a_5x5 = Convolution2D(
        32,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_3a/5x5',
        W_regularizer=l2(0.0002))(inception_3a_5x5_reduce)
    inception_3a_pool = MaxPooling2D(pool_size=(3, 3),
                                     strides=(1, 1),
                                     border_mode='same',
                                     name='inception_3a/pool')(pool2_3x3_s2)
    inception_3a_pool_proj = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3a/pool_proj',
        W_regularizer=l2(0.0002))(inception_3a_pool)
    inception_3a_output = merge([
        inception_3a_1x1, inception_3a_3x3, inception_3a_5x5,
        inception_3a_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_3a/output')

    inception_3b_1x1 = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/1x1',
        W_regularizer=l2(0.0002))(inception_3a_output)
    inception_3b_3x3_reduce = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_3a_output)
    inception_3b_3x3 = Convolution2D(
        192,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_3b/3x3',
        W_regularizer=l2(0.0002))(inception_3b_3x3_reduce)
    inception_3b_5x5_reduce = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_3a_output)
    inception_3b_5x5 = Convolution2D(
        96,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_3b/5x5',
        W_regularizer=l2(0.0002))(inception_3b_5x5_reduce)
    inception_3b_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_3b/pool')(inception_3a_output)
    inception_3b_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/pool_proj',
        W_regularizer=l2(0.0002))(inception_3b_pool)
    inception_3b_output = merge([
        inception_3b_1x1, inception_3b_3x3, inception_3b_5x5,
        inception_3b_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_3b/output')

    inception_3b_output_zero_pad = ZeroPadding2D(
        padding=(1, 1))(inception_3b_output)
    pool3_helper = PoolHelper()(inception_3b_output_zero_pad)
    pool3_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool3/3x3_s2')(pool3_helper)

    inception_4a_1x1 = Convolution2D(192,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='inception_4a/1x1',
                                     W_regularizer=l2(0.0002))(pool3_3x3_s2)
    inception_4a_3x3_reduce = Convolution2D(
        96,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4a/3x3_reduce',
        W_regularizer=l2(0.0002))(pool3_3x3_s2)
    inception_4a_3x3 = Convolution2D(
        208,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4a/3x3',
        W_regularizer=l2(0.0002))(inception_4a_3x3_reduce)
    inception_4a_5x5_reduce = Convolution2D(
        16,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4a/5x5_reduce',
        W_regularizer=l2(0.0002))(pool3_3x3_s2)
    inception_4a_5x5 = Convolution2D(
        48,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4a/5x5',
        W_regularizer=l2(0.0002))(inception_4a_5x5_reduce)
    inception_4a_pool = MaxPooling2D(pool_size=(3, 3),
                                     strides=(1, 1),
                                     border_mode='same',
                                     name='inception_4a/pool')(pool3_3x3_s2)
    inception_4a_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4a/pool_proj',
        W_regularizer=l2(0.0002))(inception_4a_pool)
    inception_4a_output = merge([
        inception_4a_1x1, inception_4a_3x3, inception_4a_5x5,
        inception_4a_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4a/output')

    loss1_ave_pool = AveragePooling2D(
        pool_size=(5, 5), strides=(3, 3),
        name='loss1/ave_pool')(inception_4a_output)
    loss1_conv = Convolution2D(128,
                               1,
                               1,
                               border_mode='same',
                               activation='relu',
                               name='loss1/conv',
                               W_regularizer=l2(0.0002))(loss1_ave_pool)
    loss1_flat = Flatten()(loss1_conv)
    loss1_fc = Dense(1024,
                     activation='relu',
                     name='loss1/fc',
                     W_regularizer=l2(0.0002))(loss1_flat)
    loss1_drop_fc = Dropout(0.7)(loss1_fc)
    loss1_classifier = Dense(1000,
                             name='loss1/classifier',
                             W_regularizer=l2(0.0002))(loss1_drop_fc)
    loss1_classifier_act = Activation('softmax')(loss1_classifier)

    inception_4b_1x1 = Convolution2D(
        160,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4b/1x1',
        W_regularizer=l2(0.0002))(inception_4a_output)
    inception_4b_3x3_reduce = Convolution2D(
        112,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4b/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_4a_output)
    inception_4b_3x3 = Convolution2D(
        224,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4b/3x3',
        W_regularizer=l2(0.0002))(inception_4b_3x3_reduce)
    inception_4b_5x5_reduce = Convolution2D(
        24,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4b/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_4a_output)
    inception_4b_5x5 = Convolution2D(
        64,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4b/5x5',
        W_regularizer=l2(0.0002))(inception_4b_5x5_reduce)
    inception_4b_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4b/pool')(inception_4a_output)
    inception_4b_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4b/pool_proj',
        W_regularizer=l2(0.0002))(inception_4b_pool)
    inception_4b_output = merge([
        inception_4b_1x1, inception_4b_3x3, inception_4b_5x5,
        inception_4b_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4b_output')

    inception_4c_1x1 = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4c/1x1',
        W_regularizer=l2(0.0002))(inception_4b_output)
    inception_4c_3x3_reduce = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4c/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_4b_output)
    inception_4c_3x3 = Convolution2D(
        256,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4c/3x3',
        W_regularizer=l2(0.0002))(inception_4c_3x3_reduce)
    inception_4c_5x5_reduce = Convolution2D(
        24,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4c/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_4b_output)
    inception_4c_5x5 = Convolution2D(
        64,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4c/5x5',
        W_regularizer=l2(0.0002))(inception_4c_5x5_reduce)
    inception_4c_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4c/pool')(inception_4b_output)
    inception_4c_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4c/pool_proj',
        W_regularizer=l2(0.0002))(inception_4c_pool)
    inception_4c_output = merge([
        inception_4c_1x1, inception_4c_3x3, inception_4c_5x5,
        inception_4c_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4c/output')

    inception_4d_1x1 = Convolution2D(
        112,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4d/1x1',
        W_regularizer=l2(0.0002))(inception_4c_output)
    inception_4d_3x3_reduce = Convolution2D(
        144,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4d/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_4c_output)
    inception_4d_3x3 = Convolution2D(
        288,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4d/3x3',
        W_regularizer=l2(0.0002))(inception_4d_3x3_reduce)
    inception_4d_5x5_reduce = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4d/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_4c_output)
    inception_4d_5x5 = Convolution2D(
        64,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4d/5x5',
        W_regularizer=l2(0.0002))(inception_4d_5x5_reduce)
    inception_4d_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4d/pool')(inception_4c_output)
    inception_4d_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4d/pool_proj',
        W_regularizer=l2(0.0002))(inception_4d_pool)
    inception_4d_output = merge([
        inception_4d_1x1, inception_4d_3x3, inception_4d_5x5,
        inception_4d_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4d/output')

    loss2_ave_pool = AveragePooling2D(
        pool_size=(5, 5), strides=(3, 3),
        name='loss2/ave_pool')(inception_4d_output)
    loss2_conv = Convolution2D(128,
                               1,
                               1,
                               border_mode='same',
                               activation='relu',
                               name='loss2/conv',
                               W_regularizer=l2(0.0002))(loss2_ave_pool)
    loss2_flat = Flatten()(loss2_conv)
    loss2_fc = Dense(1024,
                     activation='relu',
                     name='loss2/fc',
                     W_regularizer=l2(0.0002))(loss2_flat)
    loss2_drop_fc = Dropout(0.7)(loss2_fc)
    loss2_classifier = Dense(1000,
                             name='loss2/classifier',
                             W_regularizer=l2(0.0002))(loss2_drop_fc)
    loss2_classifier_act = Activation('softmax')(loss2_classifier)

    inception_4e_1x1 = Convolution2D(
        256,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/1x1',
        W_regularizer=l2(0.0002))(inception_4d_output)
    inception_4e_3x3_reduce = Convolution2D(
        160,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_4d_output)
    inception_4e_3x3 = Convolution2D(
        320,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4e/3x3',
        W_regularizer=l2(0.0002))(inception_4e_3x3_reduce)
    inception_4e_5x5_reduce = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_4d_output)
    inception_4e_5x5 = Convolution2D(
        128,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4e/5x5',
        W_regularizer=l2(0.0002))(inception_4e_5x5_reduce)
    inception_4e_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4e/pool')(inception_4d_output)
    inception_4e_pool_proj = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/pool_proj',
        W_regularizer=l2(0.0002))(inception_4e_pool)
    inception_4e_output = merge([
        inception_4e_1x1, inception_4e_3x3, inception_4e_5x5,
        inception_4e_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4e/output')

    inception_4e_output_zero_pad = ZeroPadding2D(
        padding=(1, 1))(inception_4e_output)
    pool4_helper = PoolHelper()(inception_4e_output_zero_pad)
    pool4_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool4/3x3_s2')(pool4_helper)

    inception_5a_1x1 = Convolution2D(256,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='inception_5a/1x1',
                                     W_regularizer=l2(0.0002))(pool4_3x3_s2)
    inception_5a_3x3_reduce = Convolution2D(
        160,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5a/3x3_reduce',
        W_regularizer=l2(0.0002))(pool4_3x3_s2)
    inception_5a_3x3 = Convolution2D(
        320,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_5a/3x3',
        W_regularizer=l2(0.0002))(inception_5a_3x3_reduce)
    inception_5a_5x5_reduce = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5a/5x5_reduce',
        W_regularizer=l2(0.0002))(pool4_3x3_s2)
    inception_5a_5x5 = Convolution2D(
        128,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_5a/5x5',
        W_regularizer=l2(0.0002))(inception_5a_5x5_reduce)
    inception_5a_pool = MaxPooling2D(pool_size=(3, 3),
                                     strides=(1, 1),
                                     border_mode='same',
                                     name='inception_5a/pool')(pool4_3x3_s2)
    inception_5a_pool_proj = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5a/pool_proj',
        W_regularizer=l2(0.0002))(inception_5a_pool)
    inception_5a_output = merge([
        inception_5a_1x1, inception_5a_3x3, inception_5a_5x5,
        inception_5a_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_5a/output')

    inception_5b_1x1 = Convolution2D(
        384,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5b/1x1',
        W_regularizer=l2(0.0002))(inception_5a_output)
    inception_5b_3x3_reduce = Convolution2D(
        192,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5b/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_5a_output)
    inception_5b_3x3 = Convolution2D(
        384,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_5b/3x3',
        W_regularizer=l2(0.0002))(inception_5b_3x3_reduce)
    inception_5b_5x5_reduce = Convolution2D(
        48,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5b/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_5a_output)
    inception_5b_5x5 = Convolution2D(
        128,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_5b/5x5',
        W_regularizer=l2(0.0002))(inception_5b_5x5_reduce)
    inception_5b_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_5b/pool')(inception_5a_output)
    inception_5b_pool_proj = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5b/pool_proj',
        W_regularizer=l2(0.0002))(inception_5b_pool)
    inception_5b_output = merge([
        inception_5b_1x1, inception_5b_3x3, inception_5b_5x5,
        inception_5b_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_5b/output')

    pool5_7x7_s1 = AveragePooling2D(pool_size=(7, 7),
                                    strides=(1, 1),
                                    name='pool5/7x7_s2')(inception_5b_output)
    loss3_flat = Flatten()(pool5_7x7_s1)
    pool5_drop_7x7_s1 = Dropout(0.4)(loss3_flat)
    loss3_classifier = Dense(1000,
                             name='loss3/classifier',
                             W_regularizer=l2(0.0002))(pool5_drop_7x7_s1)
    loss3_classifier_act = Activation('softmax', name='prob')(loss3_classifier)

    # Create model
    model = Model(input=input,
                  output=[
                      loss1_classifier_act, loss2_classifier_act,
                      loss3_classifier_act
                  ])

    # Load ImageNet pre-trained data
    model.load_weights('/home/cnd/.keras/models/googlenet_weights.h5')

    # Truncate and replace softmax layer for transfer learning
    # Cannot use model.layers.pop() since model is not of Sequential() type
    # The method below works since pre-trained weights are stored in layers but not in the model
    loss3_classifier_statefarm = Dense(
        num_classes, name='loss3/classifier',
        W_regularizer=l2(0.0002))(pool5_drop_7x7_s1)
    loss3_classifier_act_statefarm = Activation(
        'softmax', name='prob')(loss3_classifier_statefarm)
    loss2_classifier_statefarm = Dense(num_classes,
                                       name='loss2/classifier',
                                       W_regularizer=l2(0.0002))(loss2_drop_fc)
    loss2_classifier_act_statefarm = Activation('softmax')(
        loss2_classifier_statefarm)
    loss1_classifier_statefarm = Dense(num_classes,
                                       name='loss1/classifier',
                                       W_regularizer=l2(0.0002))(loss1_drop_fc)
    loss1_classifier_act_statefarm = Activation('softmax')(
        loss1_classifier_statefarm)

    # Create another model with our customized softmax
    model = Model(input=input,
                  output=[
                      loss1_classifier_act_statefarm,
                      loss2_classifier_act_statefarm,
                      loss3_classifier_act_statefarm
                  ])

    # Learning rate is changed to 0.001
    sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(optimizer=sgd,
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

    return model
Exemplo n.º 6
0
def create_alinet(weights_path=None,
                  input_shape=(3, 48, 48),
                  nb_output_classes=7,
                  drop_out_rate=0.4):
    # creates alinet Ali Mollahosseini 2015

    input = Input(shape=input_shape)

    conv1_7x7_s2 = Convolution2D(64,
                                 7,
                                 7,
                                 subsample=(2, 2),
                                 border_mode='same',
                                 activation='relu',
                                 name='conv1/7x7_s2',
                                 W_regularizer=l2(0.0002))(input)

    conv1_zero_pad = ZeroPadding2D(padding=(1, 1))(conv1_7x7_s2)

    pool1_helper = PoolHelper()(conv1_zero_pad)

    pool1_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool1/3x3_s2')(pool1_helper)

    pool1_norm1 = LRN(name='pool1/norm1')(pool1_3x3_s2)

    conv2_3x3_reduce = Convolution2D(64,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='conv2/3x3_reduce',
                                     W_regularizer=l2(0.0002))(pool1_norm1)

    conv2_3x3 = Convolution2D(192,
                              3,
                              3,
                              border_mode='same',
                              activation='relu',
                              name='conv2/3x3',
                              W_regularizer=l2(0.0002))(conv2_3x3_reduce)

    conv2_norm2 = LRN(name='conv2/norm2')(conv2_3x3)

    conv2_zero_pad = ZeroPadding2D(padding=(1, 1))(conv2_norm2)

    pool2_helper = PoolHelper()(conv2_zero_pad)

    pool2_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool2/3x3_s2')(pool2_helper)

    inception_3a_1x1 = Convolution2D(64,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='inception_3a/1x1',
                                     W_regularizer=l2(0.0002))(pool2_3x3_s2)

    inception_3a_3x3_reduce = Convolution2D(
        96,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3a/3x3_reduce',
        W_regularizer=l2(0.0002))(pool2_3x3_s2)

    inception_3a_3x3 = Convolution2D(
        128,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_3a/3x3',
        W_regularizer=l2(0.0002))(inception_3a_3x3_reduce)

    inception_3a_5x5_reduce = Convolution2D(
        16,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3a/5x5_reduce',
        W_regularizer=l2(0.0002))(pool2_3x3_s2)

    inception_3a_5x5 = Convolution2D(
        32,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_3a/5x5',
        W_regularizer=l2(0.0002))(inception_3a_5x5_reduce)

    inception_3a_pool = MaxPooling2D(pool_size=(3, 3),
                                     strides=(1, 1),
                                     border_mode='same',
                                     name='inception_3a/pool')(pool2_3x3_s2)

    inception_3a_pool_proj = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3a/pool_proj',
        W_regularizer=l2(0.0002))(inception_3a_pool)

    inception_3a_output = merge([
        inception_3a_1x1, inception_3a_3x3, inception_3a_5x5,
        inception_3a_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_3a/output')

    inception_3b_1x1 = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/1x1',
        W_regularizer=l2(0.0002))(inception_3a_output)

    inception_3b_3x3_reduce = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_3a_output)

    inception_3b_3x3 = Convolution2D(
        192,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_3b/3x3',
        W_regularizer=l2(0.0002))(inception_3b_3x3_reduce)

    inception_3b_5x5_reduce = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_3a_output)

    inception_3b_5x5 = Convolution2D(
        96,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_3b/5x5',
        W_regularizer=l2(0.0002))(inception_3b_5x5_reduce)

    inception_3b_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_3b/pool')(inception_3a_output)

    inception_3b_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/pool_proj',
        W_regularizer=l2(0.0002))(inception_3b_pool)

    inception_3b_output = merge([
        inception_3b_1x1, inception_3b_3x3, inception_3b_5x5,
        inception_3b_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_3b/output')

    inception_3b_output_zero_pad = ZeroPadding2D(
        padding=(1, 1))(inception_3b_output)

    pool3_helper = PoolHelper()(inception_3b_output_zero_pad)

    pool3_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool3/3x3_s2')(pool3_helper)

    inception_4a_1x1 = Convolution2D(192,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='inception_4a/1x1',
                                     W_regularizer=l2(0.0002))(pool3_3x3_s2)

    inception_4a_3x3_reduce = Convolution2D(
        96,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4a/3x3_reduce',
        W_regularizer=l2(0.0002))(pool3_3x3_s2)

    inception_4a_3x3 = Convolution2D(
        208,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4a/3x3',
        W_regularizer=l2(0.0002))(inception_4a_3x3_reduce)

    inception_4a_5x5_reduce = Convolution2D(
        16,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4a/5x5_reduce',
        W_regularizer=l2(0.0002))(pool3_3x3_s2)

    inception_4a_5x5 = Convolution2D(
        48,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4a/5x5',
        W_regularizer=l2(0.0002))(inception_4a_5x5_reduce)

    inception_4a_pool = MaxPooling2D(pool_size=(3, 3),
                                     strides=(1, 1),
                                     border_mode='same',
                                     name='inception_4a/pool')(pool3_3x3_s2)

    inception_4a_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4a/pool_proj',
        W_regularizer=l2(0.0002))(inception_4a_pool)

    inception_4a_output = merge([
        inception_4a_1x1, inception_4a_3x3, inception_4a_5x5,
        inception_4a_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4a/output')

    loss1_max_pool = MaxPooling2D(pool_size=(3, 3),
                                  strides=(2, 2),
                                  name='loss1/max_pool')(inception_4a_output)

    loss1_conv = Convolution2D(128,
                               1,
                               1,
                               border_mode='same',
                               activation='relu',
                               name='loss1/conv',
                               W_regularizer=l2(0.0002))(loss1_max_pool)

    loss1_flat = Flatten()(loss1_conv)

    loss1_fc_1 = Dense(4096,
                       activation='relu',
                       name='loss1/fc_1',
                       W_regularizer=l2(0.0002))(loss1_flat)

    loss1_drop_fc_1 = Dropout(drop_out_rate)(loss1_fc_1)

    loss1_fc_2 = Dense(1024,
                       activation='relu',
                       name='loss1/fc_2',
                       W_regularizer=l2(0.0002))(loss1_drop_fc_1)

    loss1_drop_fc_2 = Dropout(drop_out_rate)(loss1_fc_2)

    loss1_classifier = Dense(nb_output_classes,
                             name='loss1/classifier',
                             W_regularizer=l2(0.0002))(loss1_drop_fc_2)

    loss1_classifier_act = Activation('softmax')(loss1_classifier)

    alinet = Model(input=input, output=[loss1_classifier_act])
    if weights_path:
        alinet.load_weights(weights_path)

    return alinet
Exemplo n.º 7
0
def create_googlenet(weights_path=None, heatmap=False):
    # creates GoogLeNet a.k.a. Inception v1 (Szegedy, 2015)

    input = Input(shape=(3, 224, 224))

    conv1_7x7_s2 = Convolution2D(64,
                                 7,
                                 7,
                                 subsample=(2, 2),
                                 border_mode='same',
                                 activation='relu',
                                 name='conv1/7x7_s2',
                                 W_regularizer=l2(0.0002))(input)

    conv1_zero_pad = ZeroPadding2D(padding=(1, 1))(conv1_7x7_s2)

    pool1_helper = PoolHelper()(conv1_zero_pad)

    pool1_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool1/3x3_s2')(pool1_helper)

    pool1_norm1 = LRN(name='pool1/norm1')(pool1_3x3_s2)

    conv2_3x3_reduce = Convolution2D(64,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='conv2/3x3_reduce',
                                     W_regularizer=l2(0.0002))(pool1_norm1)

    conv2_3x3 = Convolution2D(192,
                              3,
                              3,
                              border_mode='same',
                              activation='relu',
                              name='conv2/3x3',
                              W_regularizer=l2(0.0002))(conv2_3x3_reduce)

    conv2_norm2 = LRN(name='conv2/norm2')(conv2_3x3)

    conv2_zero_pad = ZeroPadding2D(padding=(1, 1))(conv2_norm2)

    pool2_helper = PoolHelper()(conv2_zero_pad)

    pool2_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool2/3x3_s2')(pool2_helper)

    inception_3a_1x1 = Convolution2D(64,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='inception_3a/1x1',
                                     W_regularizer=l2(0.0002))(pool2_3x3_s2)

    inception_3a_3x3_reduce = Convolution2D(
        96,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3a/3x3_reduce',
        W_regularizer=l2(0.0002))(pool2_3x3_s2)

    inception_3a_3x3 = Convolution2D(
        128,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_3a/3x3',
        W_regularizer=l2(0.0002))(inception_3a_3x3_reduce)

    inception_3a_5x5_reduce = Convolution2D(
        16,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3a/5x5_reduce',
        W_regularizer=l2(0.0002))(pool2_3x3_s2)

    inception_3a_5x5 = Convolution2D(
        32,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_3a/5x5',
        W_regularizer=l2(0.0002))(inception_3a_5x5_reduce)

    inception_3a_pool = MaxPooling2D(pool_size=(3, 3),
                                     strides=(1, 1),
                                     border_mode='same',
                                     name='inception_3a/pool')(pool2_3x3_s2)

    inception_3a_pool_proj = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3a/pool_proj',
        W_regularizer=l2(0.0002))(inception_3a_pool)

    inception_3a_output = merge([
        inception_3a_1x1, inception_3a_3x3, inception_3a_5x5,
        inception_3a_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_3a/output')

    inception_3b_1x1 = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/1x1',
        W_regularizer=l2(0.0002))(inception_3a_output)

    inception_3b_3x3_reduce = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_3a_output)

    inception_3b_3x3 = Convolution2D(
        192,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_3b/3x3',
        W_regularizer=l2(0.0002))(inception_3b_3x3_reduce)

    inception_3b_5x5_reduce = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_3a_output)

    inception_3b_5x5 = Convolution2D(
        96,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_3b/5x5',
        W_regularizer=l2(0.0002))(inception_3b_5x5_reduce)

    inception_3b_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_3b/pool')(inception_3a_output)

    inception_3b_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/pool_proj',
        W_regularizer=l2(0.0002))(inception_3b_pool)

    inception_3b_output = merge([
        inception_3b_1x1, inception_3b_3x3, inception_3b_5x5,
        inception_3b_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_3b/output')

    inception_3b_output_zero_pad = ZeroPadding2D(
        padding=(1, 1))(inception_3b_output)

    pool3_helper = PoolHelper()(inception_3b_output_zero_pad)

    pool3_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool3/3x3_s2')(pool3_helper)

    inception_4a_1x1 = Convolution2D(192,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='inception_4a/1x1',
                                     W_regularizer=l2(0.0002))(pool3_3x3_s2)

    inception_4a_3x3_reduce = Convolution2D(
        96,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4a/3x3_reduce',
        W_regularizer=l2(0.0002))(pool3_3x3_s2)

    inception_4a_3x3 = Convolution2D(
        208,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4a/3x3',
        W_regularizer=l2(0.0002))(inception_4a_3x3_reduce)

    inception_4a_5x5_reduce = Convolution2D(
        16,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4a/5x5_reduce',
        W_regularizer=l2(0.0002))(pool3_3x3_s2)

    inception_4a_5x5 = Convolution2D(
        48,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4a/5x5',
        W_regularizer=l2(0.0002))(inception_4a_5x5_reduce)

    inception_4a_pool = MaxPooling2D(pool_size=(3, 3),
                                     strides=(1, 1),
                                     border_mode='same',
                                     name='inception_4a/pool')(pool3_3x3_s2)

    inception_4a_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4a/pool_proj',
        W_regularizer=l2(0.0002))(inception_4a_pool)

    inception_4a_output = merge([
        inception_4a_1x1, inception_4a_3x3, inception_4a_5x5,
        inception_4a_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4a/output')

    inception_4b_1x1 = Convolution2D(
        160,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4b/1x1',
        W_regularizer=l2(0.0002))(inception_4a_output)

    inception_4b_3x3_reduce = Convolution2D(
        112,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4b/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_4a_output)

    inception_4b_3x3 = Convolution2D(
        224,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4b/3x3',
        W_regularizer=l2(0.0002))(inception_4b_3x3_reduce)

    inception_4b_5x5_reduce = Convolution2D(
        24,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4b/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_4a_output)

    inception_4b_5x5 = Convolution2D(
        64,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4b/5x5',
        W_regularizer=l2(0.0002))(inception_4b_5x5_reduce)

    inception_4b_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4b/pool')(inception_4a_output)

    inception_4b_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4b/pool_proj',
        W_regularizer=l2(0.0002))(inception_4b_pool)

    inception_4b_output = merge([
        inception_4b_1x1, inception_4b_3x3, inception_4b_5x5,
        inception_4b_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4b_output')

    inception_4c_1x1 = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4c/1x1',
        W_regularizer=l2(0.0002))(inception_4b_output)

    inception_4c_3x3_reduce = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4c/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_4b_output)

    inception_4c_3x3 = Convolution2D(
        256,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4c/3x3',
        W_regularizer=l2(0.0002))(inception_4c_3x3_reduce)

    inception_4c_5x5_reduce = Convolution2D(
        24,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4c/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_4b_output)

    inception_4c_5x5 = Convolution2D(
        64,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4c/5x5',
        W_regularizer=l2(0.0002))(inception_4c_5x5_reduce)

    inception_4c_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4c/pool')(inception_4b_output)

    inception_4c_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4c/pool_proj',
        W_regularizer=l2(0.0002))(inception_4c_pool)

    inception_4c_output = merge([
        inception_4c_1x1, inception_4c_3x3, inception_4c_5x5,
        inception_4c_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4c/output')

    inception_4d_1x1 = Convolution2D(
        112,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4d/1x1',
        W_regularizer=l2(0.0002))(inception_4c_output)

    inception_4d_3x3_reduce = Convolution2D(
        144,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4d/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_4c_output)

    inception_4d_3x3 = Convolution2D(
        288,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4d/3x3',
        W_regularizer=l2(0.0002))(inception_4d_3x3_reduce)

    inception_4d_5x5_reduce = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4d/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_4c_output)

    inception_4d_5x5 = Convolution2D(
        64,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4d/5x5',
        W_regularizer=l2(0.0002))(inception_4d_5x5_reduce)

    inception_4d_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4d/pool')(inception_4c_output)

    inception_4d_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4d/pool_proj',
        W_regularizer=l2(0.0002))(inception_4d_pool)

    inception_4d_output = merge([
        inception_4d_1x1, inception_4d_3x3, inception_4d_5x5,
        inception_4d_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4d/output')

    inception_4e_1x1_aesthetics = Convolution2D(
        256,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/1x1_aesthetics',
        W_regularizer=l2(0.0002))(inception_4d_output)

    inception_4e_3x3_reduce_aesthetics = Convolution2D(
        160,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/3x3_reduce_aesthetics',
        W_regularizer=l2(0.0002))(inception_4d_output)

    inception_4e_3x3_aesthetics = Convolution2D(
        320,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4e/3x3_aesthetics',
        W_regularizer=l2(0.0002))(inception_4e_3x3_reduce_aesthetics)

    inception_4e_5x5_reduce_aesthetics = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/5x5_reduce_aesthetics',
        W_regularizer=l2(0.0002))(inception_4d_output)

    inception_4e_5x5_aesthetics = Convolution2D(
        128,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4e/5x5_aesthetics',
        W_regularizer=l2(0.0002))(inception_4e_5x5_reduce_aesthetics)

    inception_4e_pool_aesthetics = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4e/pool_aesthetics')(inception_4d_output)

    inception_4e_pool_proj_aesthetics = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/pool_proj_aesthetics',
        W_regularizer=l2(0.0002))(inception_4e_pool_aesthetics)

    inception_4e_output_aesthetics = merge(
        [
            inception_4e_1x1_aesthetics, inception_4e_3x3_aesthetics,
            inception_4e_5x5_aesthetics, inception_4e_pool_proj_aesthetics
        ],
        mode='concat',
        concat_axis=1,
        name='inception_4e/output_aesthetics')

    conv_output_aesthetics = Convolution2D(
        1024,
        3,
        3,
        activation='relu',
        name='conv_6_1_aesthetics',
        border_mode='same',
        W_regularizer=l2(0.0002))(inception_4e_output_aesthetics)

    x_aesthetics = GlobalAveragePooling2D()(conv_output_aesthetics)

    output_aesthetics = Dense(10,
                              activation='softmax',
                              name="output_aesthetics")(x_aesthetics)

    inception_4e_1x1_semantics = Convolution2D(
        256,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/1x1_semantics',
        W_regularizer=l2(0.0002))(inception_4d_output)

    inception_4e_3x3_reduce_semantics = Convolution2D(
        160,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/3x3_reduce_semantics',
        W_regularizer=l2(0.0002))(inception_4d_output)

    inception_4e_3x3_semantics = Convolution2D(
        320,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4e/3x3_semantics',
        W_regularizer=l2(0.0002))(inception_4e_3x3_reduce_semantics)

    inception_4e_5x5_reduce_semantics = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/5x5_reduce_semantics',
        W_regularizer=l2(0.0002))(inception_4d_output)

    inception_4e_5x5_semantics = Convolution2D(
        128,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4e/5x5_semantics',
        W_regularizer=l2(0.0002))(inception_4e_5x5_reduce_semantics)

    inception_4e_pool_semantics = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4e/pool_semantics')(inception_4d_output)

    inception_4e_pool_proj_semantics = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/pool_proj_semantics',
        W_regularizer=l2(0.0002))(inception_4e_pool_semantics)

    inception_4e_output_semantics = merge([
        inception_4e_1x1_semantics, inception_4e_3x3_semantics,
        inception_4e_5x5_semantics, inception_4e_pool_proj_semantics
    ],
                                          mode='concat',
                                          concat_axis=1,
                                          name='inception_4e/output_semantics')

    conv_output_semantics = Convolution2D(
        1024,
        3,
        3,
        activation='relu',
        name='conv_6_1_semantics',
        border_mode='same',
        W_regularizer=l2(0.0002))(inception_4e_output_semantics)

    x_semantics = GlobalAveragePooling2D()(conv_output_semantics)

    output_semantics = Dense(65, activation='softmax',
                             name="output_semantics")(x_semantics)

    if heatmap:
        googlenet = Model(input=input,
                          output=[
                              output_aesthetics, output_semantics,
                              conv_output_aesthetics, conv_output_semantics
                          ])
    else:
        googlenet = Model(input=input,
                          output=[output_aesthetics, output_semantics])

    if weights_path:
        googlenet.load_weights(weights_path, by_name=True)

    return googlenet
Exemplo n.º 8
0
def modified_googlenet(WIDTH, HEIGHT):
    # creates GoogLeNet a.k.a. Inception v1 (Szegedy, 2015)

    input = Input(shape=(3, WIDTH, HEIGHT))

    conv1_7x7_s2 = Convolution2D(64,
                                 7,
                                 7,
                                 subsample=(2, 2),
                                 border_mode='same',
                                 activation='relu',
                                 name='conv1/7x7_s2',
                                 W_regularizer=l2(0.0002))(input)

    conv1_zero_pad = ZeroPadding2D(padding=(1, 1))(conv1_7x7_s2)

    pool1_helper = PoolHelper()(conv1_zero_pad)

    pool1_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool1/3x3_s2')(pool1_helper)

    pool1_norm1 = LRN(name='pool1/norm1')(pool1_3x3_s2)

    conv2_3x3_reduce = Convolution2D(64,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='conv2/3x3_reduce',
                                     W_regularizer=l2(0.0002))(pool1_norm1)

    conv2_3x3 = Convolution2D(192,
                              3,
                              3,
                              border_mode='same',
                              activation='relu',
                              name='conv2/3x3',
                              W_regularizer=l2(0.0002))(conv2_3x3_reduce)

    conv2_norm2 = LRN(name='conv2/norm2')(conv2_3x3)

    conv2_zero_pad = ZeroPadding2D(padding=(1, 1))(conv2_norm2)

    pool2_helper = PoolHelper()(conv2_zero_pad)

    pool2_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool2/3x3_s2')(pool2_helper)

    inception_3a_1x1 = Convolution2D(64,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='inception_3a/1x1',
                                     W_regularizer=l2(0.0002))(pool2_3x3_s2)

    inception_3a_3x3_reduce = Convolution2D(
        96,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3a/3x3_reduce',
        W_regularizer=l2(0.0002))(pool2_3x3_s2)

    inception_3a_3x3 = Convolution2D(
        128,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_3a/3x3',
        W_regularizer=l2(0.0002))(inception_3a_3x3_reduce)

    inception_3a_5x5_reduce = Convolution2D(
        16,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3a/5x5_reduce',
        W_regularizer=l2(0.0002))(pool2_3x3_s2)

    inception_3a_5x5 = Convolution2D(
        32,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_3a/5x5',
        W_regularizer=l2(0.0002))(inception_3a_5x5_reduce)

    inception_3a_pool = MaxPooling2D(pool_size=(3, 3),
                                     strides=(1, 1),
                                     border_mode='same',
                                     name='inception_3a/pool')(pool2_3x3_s2)

    inception_3a_pool_proj = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3a/pool_proj',
        W_regularizer=l2(0.0002))(inception_3a_pool)

    inception_3a_output = merge([
        inception_3a_1x1, inception_3a_3x3, inception_3a_5x5,
        inception_3a_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_3a/output')

    inception_3b_1x1 = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/1x1',
        W_regularizer=l2(0.0002))(inception_3a_output)

    inception_3b_3x3_reduce = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_3a_output)

    inception_3b_3x3 = Convolution2D(
        192,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_3b/3x3',
        W_regularizer=l2(0.0002))(inception_3b_3x3_reduce)

    inception_3b_5x5_reduce = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_3a_output)

    inception_3b_5x5 = Convolution2D(
        96,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_3b/5x5',
        W_regularizer=l2(0.0002))(inception_3b_5x5_reduce)

    inception_3b_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_3b/pool')(inception_3a_output)

    inception_3b_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_3b/pool_proj',
        W_regularizer=l2(0.0002))(inception_3b_pool)

    inception_3b_output = merge([
        inception_3b_1x1, inception_3b_3x3, inception_3b_5x5,
        inception_3b_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_3b/output')

    inception_3b_output_zero_pad = ZeroPadding2D(
        padding=(1, 1))(inception_3b_output)

    pool3_helper = PoolHelper()(inception_3b_output_zero_pad)

    pool3_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool3/3x3_s2')(pool3_helper)

    inception_4a_1x1 = Convolution2D(192,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='inception_4a/1x1',
                                     W_regularizer=l2(0.0002))(pool3_3x3_s2)

    inception_4a_3x3_reduce = Convolution2D(
        96,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4a/3x3_reduce',
        W_regularizer=l2(0.0002))(pool3_3x3_s2)

    inception_4a_3x3 = Convolution2D(
        208,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4a/3x3',
        W_regularizer=l2(0.0002))(inception_4a_3x3_reduce)

    inception_4a_5x5_reduce = Convolution2D(
        16,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4a/5x5_reduce',
        W_regularizer=l2(0.0002))(pool3_3x3_s2)

    inception_4a_5x5 = Convolution2D(
        48,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4a/5x5',
        W_regularizer=l2(0.0002))(inception_4a_5x5_reduce)

    inception_4a_pool = MaxPooling2D(pool_size=(3, 3),
                                     strides=(1, 1),
                                     border_mode='same',
                                     name='inception_4a/pool')(pool3_3x3_s2)

    inception_4a_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4a/pool_proj',
        W_regularizer=l2(0.0002))(inception_4a_pool)

    inception_4a_output = merge([
        inception_4a_1x1, inception_4a_3x3, inception_4a_5x5,
        inception_4a_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4a/output')

    loss1_ave_pool = AveragePooling2D(
        pool_size=(5, 5), strides=(3, 3),
        name='loss1/ave_pool')(inception_4a_output)

    loss1_conv = Convolution2D(128,
                               1,
                               1,
                               border_mode='same',
                               activation='relu',
                               name='loss1/conv',
                               W_regularizer=l2(0.0002))(loss1_ave_pool)

    loss1_flat = Flatten()(loss1_conv)

    loss1_fc = Dense(1024,
                     activation='relu',
                     name='loss1/fc',
                     W_regularizer=l2(0.0002))(loss1_flat)

    loss1_drop_fc = Dropout(0.7)(loss1_fc)

    loss1_classifier = Dense(1,
                             name='loss1/classifier',
                             W_regularizer=l2(0.0002))(loss1_drop_fc)

    loss1_classifier_act = Activation('sigmoid')(loss1_classifier)

    inception_4b_1x1 = Convolution2D(
        160,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4b/1x1',
        W_regularizer=l2(0.0002))(inception_4a_output)

    inception_4b_3x3_reduce = Convolution2D(
        112,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4b/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_4a_output)

    inception_4b_3x3 = Convolution2D(
        224,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4b/3x3',
        W_regularizer=l2(0.0002))(inception_4b_3x3_reduce)

    inception_4b_5x5_reduce = Convolution2D(
        24,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4b/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_4a_output)

    inception_4b_5x5 = Convolution2D(
        64,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4b/5x5',
        W_regularizer=l2(0.0002))(inception_4b_5x5_reduce)

    inception_4b_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4b/pool')(inception_4a_output)

    inception_4b_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4b/pool_proj',
        W_regularizer=l2(0.0002))(inception_4b_pool)

    inception_4b_output = merge([
        inception_4b_1x1, inception_4b_3x3, inception_4b_5x5,
        inception_4b_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4b_output')

    inception_4c_1x1 = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4c/1x1',
        W_regularizer=l2(0.0002))(inception_4b_output)

    inception_4c_3x3_reduce = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4c/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_4b_output)

    inception_4c_3x3 = Convolution2D(
        256,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4c/3x3',
        W_regularizer=l2(0.0002))(inception_4c_3x3_reduce)

    inception_4c_5x5_reduce = Convolution2D(
        24,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4c/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_4b_output)

    inception_4c_5x5 = Convolution2D(
        64,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4c/5x5',
        W_regularizer=l2(0.0002))(inception_4c_5x5_reduce)

    inception_4c_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4c/pool')(inception_4b_output)

    inception_4c_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4c/pool_proj',
        W_regularizer=l2(0.0002))(inception_4c_pool)

    inception_4c_output = merge([
        inception_4c_1x1, inception_4c_3x3, inception_4c_5x5,
        inception_4c_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4c/output')

    inception_4d_1x1 = Convolution2D(
        112,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4d/1x1',
        W_regularizer=l2(0.0002))(inception_4c_output)

    inception_4d_3x3_reduce = Convolution2D(
        144,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4d/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_4c_output)

    inception_4d_3x3 = Convolution2D(
        288,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4d/3x3',
        W_regularizer=l2(0.0002))(inception_4d_3x3_reduce)

    inception_4d_5x5_reduce = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4d/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_4c_output)

    inception_4d_5x5 = Convolution2D(
        64,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4d/5x5',
        W_regularizer=l2(0.0002))(inception_4d_5x5_reduce)

    inception_4d_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4d/pool')(inception_4c_output)

    inception_4d_pool_proj = Convolution2D(
        64,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4d/pool_proj',
        W_regularizer=l2(0.0002))(inception_4d_pool)

    inception_4d_output = merge([
        inception_4d_1x1, inception_4d_3x3, inception_4d_5x5,
        inception_4d_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4d/output')

    loss2_ave_pool = AveragePooling2D(
        pool_size=(5, 5), strides=(3, 3),
        name='loss2/ave_pool')(inception_4d_output)

    loss2_conv = Convolution2D(128,
                               1,
                               1,
                               border_mode='same',
                               activation='relu',
                               name='loss2/conv',
                               W_regularizer=l2(0.0002))(loss2_ave_pool)

    loss2_flat = Flatten()(loss2_conv)

    loss2_fc = Dense(1024,
                     activation='relu',
                     name='loss2/fc',
                     W_regularizer=l2(0.0002))(loss2_flat)

    loss2_drop_fc = Dropout(0.7)(loss2_fc)

    loss2_classifier = Dense(1,
                             name='loss2/classifier',
                             W_regularizer=l2(0.0002))(loss2_drop_fc)

    loss2_classifier_act = Activation('sigmoid')(loss2_classifier)

    inception_4e_1x1 = Convolution2D(
        256,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/1x1',
        W_regularizer=l2(0.0002))(inception_4d_output)

    inception_4e_3x3_reduce = Convolution2D(
        160,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_4d_output)

    inception_4e_3x3 = Convolution2D(
        320,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_4e/3x3',
        W_regularizer=l2(0.0002))(inception_4e_3x3_reduce)

    inception_4e_5x5_reduce = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_4d_output)

    inception_4e_5x5 = Convolution2D(
        128,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_4e/5x5',
        W_regularizer=l2(0.0002))(inception_4e_5x5_reduce)

    inception_4e_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_4e/pool')(inception_4d_output)

    inception_4e_pool_proj = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_4e/pool_proj',
        W_regularizer=l2(0.0002))(inception_4e_pool)

    inception_4e_output = merge([
        inception_4e_1x1, inception_4e_3x3, inception_4e_5x5,
        inception_4e_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_4e/output')

    inception_4e_output_zero_pad = ZeroPadding2D(
        padding=(1, 1))(inception_4e_output)

    pool4_helper = PoolHelper()(inception_4e_output_zero_pad)

    pool4_3x3_s2 = MaxPooling2D(pool_size=(3, 3),
                                strides=(2, 2),
                                border_mode='valid',
                                name='pool4/3x3_s2')(pool4_helper)

    inception_5a_1x1 = Convolution2D(256,
                                     1,
                                     1,
                                     border_mode='same',
                                     activation='relu',
                                     name='inception_5a/1x1',
                                     W_regularizer=l2(0.0002))(pool4_3x3_s2)

    inception_5a_3x3_reduce = Convolution2D(
        160,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5a/3x3_reduce',
        W_regularizer=l2(0.0002))(pool4_3x3_s2)

    inception_5a_3x3 = Convolution2D(
        320,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_5a/3x3',
        W_regularizer=l2(0.0002))(inception_5a_3x3_reduce)

    inception_5a_5x5_reduce = Convolution2D(
        32,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5a/5x5_reduce',
        W_regularizer=l2(0.0002))(pool4_3x3_s2)

    inception_5a_5x5 = Convolution2D(
        128,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_5a/5x5',
        W_regularizer=l2(0.0002))(inception_5a_5x5_reduce)

    inception_5a_pool = MaxPooling2D(pool_size=(3, 3),
                                     strides=(1, 1),
                                     border_mode='same',
                                     name='inception_5a/pool')(pool4_3x3_s2)

    inception_5a_pool_proj = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5a/pool_proj',
        W_regularizer=l2(0.0002))(inception_5a_pool)

    inception_5a_output = merge([
        inception_5a_1x1, inception_5a_3x3, inception_5a_5x5,
        inception_5a_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_5a/output')

    inception_5b_1x1 = Convolution2D(
        384,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5b/1x1',
        W_regularizer=l2(0.0002))(inception_5a_output)

    inception_5b_3x3_reduce = Convolution2D(
        192,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5b/3x3_reduce',
        W_regularizer=l2(0.0002))(inception_5a_output)

    inception_5b_3x3 = Convolution2D(
        384,
        3,
        3,
        border_mode='same',
        activation='relu',
        name='inception_5b/3x3',
        W_regularizer=l2(0.0002))(inception_5b_3x3_reduce)

    inception_5b_5x5_reduce = Convolution2D(
        48,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5b/5x5_reduce',
        W_regularizer=l2(0.0002))(inception_5a_output)

    inception_5b_5x5 = Convolution2D(
        128,
        5,
        5,
        border_mode='same',
        activation='relu',
        name='inception_5b/5x5',
        W_regularizer=l2(0.0002))(inception_5b_5x5_reduce)

    inception_5b_pool = MaxPooling2D(
        pool_size=(3, 3),
        strides=(1, 1),
        border_mode='same',
        name='inception_5b/pool')(inception_5a_output)

    inception_5b_pool_proj = Convolution2D(
        128,
        1,
        1,
        border_mode='same',
        activation='relu',
        name='inception_5b/pool_proj',
        W_regularizer=l2(0.0002))(inception_5b_pool)

    inception_5b_output = merge([
        inception_5b_1x1, inception_5b_3x3, inception_5b_5x5,
        inception_5b_pool_proj
    ],
                                mode='concat',
                                concat_axis=1,
                                name='inception_5b/output')

    pool5_7x7_s1 = AveragePooling2D(pool_size=(7, 7),
                                    strides=(1, 1),
                                    name='pool5/7x7_s2')(inception_5b_output)

    loss3_flat = Flatten()(pool5_7x7_s1)

    pool5_drop_7x7_s1 = Dropout(0.4)(loss3_flat)

    loss3_classifier = Dense(1,
                             name='loss3/classifier',
                             W_regularizer=l2(0.0002))(pool5_drop_7x7_s1)

    loss3_classifier_act = Activation('sigmoid', name='prob')(loss3_classifier)

    googlenet = Model(input=input,
                      output=[
                          loss1_classifier_act, loss2_classifier_act,
                          loss3_classifier_act
                      ])

    sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)

    googlenet.compile(optimizer=sgd,
                      loss='binary_crossentropy',
                      metrics=['accuracy'])

    return googlenet