Exemplo n.º 1
0
def test_logpdf():
    graph = Graph()
    f1, e1 = GP(EQ(), graph=graph), GP(2e-1 * Delta(), graph=graph)
    f2, e2 = GP(Linear(), graph=graph), GP(1e-1 * Delta(), graph=graph)
    gpar = GPAR().add_layer(lambda: (f1, e1)).add_layer(lambda: (f2, e2))

    # Sample some data from GPAR.
    x = B.linspace(0, 2, 10, dtype=torch.float64)[:, None]
    y = gpar.sample(x, latent=True)

    # Compute logpdf.
    logpdf1 = (f1 + e1)(x).logpdf(y[:, 0])
    logpdf2 = (f2 + e2)(B.concat([x, y[:, 0:1]], axis=1)).logpdf(y[:, 1])

    # Test computation of GPAR.
    yield eq, gpar.logpdf(x, y), logpdf1 + logpdf2
    yield eq, gpar.logpdf(x, y, only_last_layer=True), logpdf2

    # Test resuming computation.
    x_int, x_ind_int = gpar.logpdf(x, y, return_inputs=True, outputs=[0])
    yield eq, gpar.logpdf(x_int, y, x_ind=x_ind_int, outputs=[1]), logpdf2

    # Test that sampling missing gives a stochastic estimate.
    y[1, 0] = np.nan
    yield ge, \
          B.abs(gpar.logpdf(x, y, sample_missing=True) -
                gpar.logpdf(x, y, sample_missing=True)).numpy(), \
          1e-3
Exemplo n.º 2
0
def test_logpdf(x, w):
    prior = Measure()
    f1, noise1 = GP(EQ(), measure=prior), 2e-1
    f2, noise2 = GP(Linear(), measure=prior), 1e-1
    gpar = GPAR().add_layer(lambda: (f1, noise1)).add_layer(lambda: (f2, noise2))

    # Generate some data.
    y = gpar.sample(x, w, latent=True)

    # Compute logpdf.
    x1 = x
    x2 = B.concat(x, y[:, 0:1], axis=1)
    logpdf1 = f1(x1, noise1 / w[:, 0]).logpdf(y[:, 0])
    logpdf2 = f2(x2, noise2 / w[:, 1]).logpdf(y[:, 1])

    # Test computation of GPAR.
    assert gpar.logpdf(x, y, w) == logpdf1 + logpdf2
    assert gpar.logpdf(x, y, w, only_last_layer=True) == logpdf2

    # Test resuming computation.
    x_partial, x_ind_partial = gpar.logpdf(x, y, w, return_inputs=True, outputs=[0])
    assert gpar.logpdf(x_partial, y, w, x_ind=x_ind_partial, outputs=[1]) == logpdf2

    # Test that sampling missing gives a stochastic estimate.
    y[1, 0] = np.nan
    all_different(
        gpar.logpdf(x, y, w, sample_missing=True),
        gpar.logpdf(x, y, w, sample_missing=True),
    )
Exemplo n.º 3
0
def test_logpdf(x, w):
    prior = Measure()
    f1, e1 = GP(EQ(), measure=prior), GP(2e-1 * Delta(), measure=prior)
    f2, e2 = GP(Linear(), measure=prior), GP(1e-1 * Delta(), measure=prior)
    gpar = GPAR().add_layer(lambda: (f1, e1)).add_layer(lambda: (f2, e2))

    # Generate some data.
    y = gpar.sample(x, w, latent=True)

    # Compute logpdf.
    x1 = WeightedUnique(x, w[:, 0])
    x2 = WeightedUnique(B.concat(x, y[:, 0:1], axis=1), w[:, 1])
    logpdf1 = (f1 + e1)(x1).logpdf(y[:, 0])
    logpdf2 = (f2 + e2)(x2).logpdf(y[:, 1])

    # Test computation of GPAR.
    assert gpar.logpdf(x, y, w) == logpdf1 + logpdf2
    assert gpar.logpdf(x, y, w, only_last_layer=True) == logpdf2

    # Test resuming computation.
    x_partial, x_ind_partial = gpar.logpdf(x,
                                           y,
                                           w,
                                           return_inputs=True,
                                           outputs=[0])
    assert gpar.logpdf(x_partial, y, w, x_ind=x_ind_partial,
                       outputs=[1]) == logpdf2

    # Test that sampling missing gives a stochastic estimate.
    y[1, 0] = np.nan
    all_different(
        gpar.logpdf(x, y, w, sample_missing=True),
        gpar.logpdf(x, y, w, sample_missing=True),
    )