Exemplo n.º 1
0
    def __init__(self, X, Y,  kern, Z=None, Zy=None,Zvar = None,mean_function=None, minibatch_size=None, var = 1.0, shuffle=True, trainable_var=True,**kwargs):
        """
        X is a data matrix, size N x D
        Y is a data matrix, size N x R
        kern, mean_function are appropriate GPflow objects
        minibatch_size, if not None, turns on mini-batching with that size.
        vector_obs_variance if not None (default) is vectorized measurement variance
        """
        Z = DataHolder(Z) if (Z is not None) and (Zy is not None) and (Zvar is not None) else None
        Zy = DataHolder(Zy) if (Z is not None) and (Zy is not None) and (Zvar is not None) else None
        Zvar = DataHolder(Zvar) if (Z is not None) and (Zy is not None) and (Zvar is not None) else None

        if minibatch_size is None:
            X = DataHolder(X)
            Y = DataHolder(Y)
            Y_var = DataHolder(var)
        else:
            X = Minibatch(X, batch_size=minibatch_size, shuffle=shuffle, seed=0)
            Y = Minibatch(Y, batch_size=minibatch_size, shuffle=shuffle, seed=0)
            Y_var = Minibatch(var, batch_size=minibatch_size, shuffle=shuffle, seed=0)
        likelihood = Gaussian_v2(var=1.0,trainable=trainable_var)
        likelihood.relative_variance = Y_var

        GPModel.__init__(self, X, Y, kern, likelihood, mean_function, **kwargs)
        self.Z = Z
        self.Zy = Zy
        self.Zvar = Zvar
Exemplo n.º 2
0
    def __init__(self,
                 data: RegressionData,
                 kernel: Kernel,
                 mu_old: Optional[tf.Tensor],
                 Su_old: Optional[tf.Tensor],
                 Kaa_old: Optional[tf.Tensor],
                 Z_old: Optional[tf.Tensor],
                 inducing_variable: Union[InducingPoints, np.ndarray],
                 mean_function=Zero()):
        """
        Z is a matrix of pseudo inputs, size M x D
        kern, mean_function are appropriate gpflow objects
        mu_old, Su_old are mean and covariance of old q(u)
        Z_old is the old inducing inputs
        This method only works with a Gaussian likelihood.
        """
        X, Y = data
        self.X = X
        self.Y = Y
        likelihood = Gaussian()
        self.inducing_variable = gpflow.models.util.inducingpoint_wrapper(inducing_variable)

        GPModel.__init__(self, kernel, likelihood, mean_function, inducing_variable.size)

        self.num_data = X.shape[0]
        self.num_latent = Y.shape[1]

        self.mu_old = gpflow.Parameter(mu_old, trainable=False)
        self.M_old = Z_old.shape[0]
        self.Su_old = gpflow.Parameter(Su_old, trainable=False)
        self.Kaa_old = gpflow.Parameter(Kaa_old, trainable=False)
        self.Z_old = gpflow.Parameter(Z_old, trainable=False)
Exemplo n.º 3
0
    def __init__(self,
                 X,
                 Y,
                 W,
                 kern,
                 feat=None,
                 mean_function=None,
                 Z=None,
                 **kwargs):
        """
        X is a data matrix, size N x D
        Y is a data matrix, size N x R
        Z is a matrix of pseudo inputs, size M x D
        kern, mean_function are appropriate GPflow objects
        This method only works with a Gaussian likelihood.
        """
        X = DataHolder(X)
        Y = DataHolder(Y)
        likelihood = likelihoods.Gaussian()
        GPModel.__init__(self, X, Y, kern, likelihood, mean_function, **kwargs)
        self.feature = features.inducingpoint_wrapper(feat, Z)
        self.num_data = X.shape[0]

        self.W_prior = tf.ones(W.shape, dtype=settings.float_type) / W.shape[1]
        self.W = Parameter(W)
        self.num_inducing = Z.shape[0] * W.shape[1]
Exemplo n.º 4
0
def plot_boundary(m: GPModel, X: ndarray, y: ndarray, ax=None):
    x_grid = np.linspace(min(X[:, 0]), max(X[:, 0]), 40)
    y_grid = np.linspace(min(X[:, 1]), max(X[:, 1]), 40)
    xx, yy = np.meshgrid(x_grid, y_grid)
    Xplot = np.vstack((xx.flatten(), yy.flatten())).T
    mask = y[:, 0] == 1

    p, _ = m.predict_y(Xplot)  # here we only care about the mean
    if ax is None:
        fig, ax = plt.subplots(figsize=(10, 5))


#     plt.figure(figsize=(7, 7))
    ax.plot(X[mask, 0], X[mask, 1], "oC0", mew=0, alpha=0.5, label="1")
    ax.plot(X[np.logical_not(mask), 0],
            X[np.logical_not(mask), 1],
            "oC1",
            mew=0,
            alpha=0.5,
            label="0")

    _ = ax.contour(
        xx,
        yy,
        p.numpy().reshape(*xx.shape),
        [0.5],  # plot the p=0.5 contour line only
        colors="k",
        linewidths=1.8,
        zorder=100,
    )
    ax.legend(loc='best')
    ax.axis("off")
Exemplo n.º 5
0
    def __init__(self,
                 X,
                 Y,
                 W1,
                 W1_index,
                 W2,
                 W2_index,
                 kern,
                 feat=None,
                 mean_function=None,
                 Z=None,
                 **kwargs):
        """
        X is a data matrix, size N x D
        Y is a data matrix, size N x R
        Z is a matrix of pseudo inputs, size M x D
        W1, size NxK
        W1_index PxL

        W2, size NxL
        W2_index PxL

        kern, mean_function are appropriate GPflow objects
        This method only works with a Gaussian likelihood.
        """
        X = DataHolder(X)
        Y = DataHolder(Y, fix_shape=True)
        likelihood = likelihoods.Gaussian()
        GPModel.__init__(self, X, Y, kern, likelihood, mean_function, **kwargs)
        self.feature = features.inducingpoint_wrapper(feat, Z)
        self.num_data = X.shape[0]

        self.W1_prior = Parameter(np.log(
            np.ones(W1.shape[1], dtype=settings.float_type) / W1.shape[1]),
                                  trainable=False)
        self.W1 = Parameter(W1)
        self.W1_index = DataHolder(W1_index, dtype=np.int32, fix_shape=True)
        self.K = W1.shape[1]

        self.W2_prior = Parameter(np.log(
            np.ones(W2.shape[1], dtype=settings.float_type) / W2.shape[1]),
                                  trainable=False)
        self.W2 = Parameter(W2)
        self.W2_index = DataHolder(W2_index, dtype=np.int32, fix_shape=True)
        self.L = W2.shape[1]

        self.num_inducing = Z.shape[0]
Exemplo n.º 6
0
    def __init__(self, X, Y, W, kern, idx=None, feat=None, Z=None,
                 mean_function=None, q_diag=False, whiten=False,
                 q_mu=None, q_sqrt=None,
                 minibatch_size=None, num_latent=None, **kwargs):
        """
        X is a data matrix, size N x D
        Y is a data matrix, size N x R
        Z is a matrix of pseudo inputs, size M x D
        kern, mean_function are appropriate GPflow objects
        This method only works with a Gaussian likelihood.
        """
        num_data = X.shape[0]

        if minibatch_size is None:
            X = DataHolder(X, fix_shape=True)
            Y = DataHolder(Y, fix_shape=True)

        else:
            X = Minibatch(X, batch_size=minibatch_size, seed=0)
            Y = Minibatch(Y, batch_size=minibatch_size, seed=0)

        # init the super class
        likelihood = likelihoods.Gaussian()
        num_latent = W.shape[1]
        GPModel.__init__(self, X, Y, kern, likelihood, mean_function,
                         num_latent=num_latent, **kwargs)

        if minibatch_size is not None:
            idx = Minibatch(np.arange(num_data), batch_size=minibatch_size, seed=0, dtype=np.int32)

        self.idx = idx
        self.W = Parameter(W, trainable=False)
        self.K = self.W.shape[1]
        self.W_prior = Parameter(np.ones(self.K) / self.K, trainable=False)
        self.num_data = num_data
        self.feature = features.inducingpoint_wrapper(feat, Z)

        self.minibatch_size = minibatch_size
        self.q_diag, self.whiten = q_diag, whiten

        # init variational parameters
        num_inducing = len(self.feature)
        self._init_variational_parameters(
            num_inducing, q_mu, q_sqrt, q_diag)
Exemplo n.º 7
0
    def __init__(self, X, Y, W1, W2, kern, likelihood,
                 idx=None, W1_idx=None, W2_idx=None, feat=None,
                 mean_function=None,
                 num_latent=None,
                 q_diag=False,
                 whiten=True,
                 minibatch_size=None,
                 Z=None,
                 num_data=None,
                 q_mu=None,
                 q_sqrt=None,
                 **kwargs):
        """
        - X is a data matrix, size N x D
        - Y is a data matrix, size N x P
        - kern, likelihood, mean_function are appropriate GPflow objects
        - Z is a matrix of pseudo inputs, size M x D
        - num_latent is the number of latent process to use, default to
          Y.shape[1]
        - q_diag is a boolean. If True, the covariance is approximated by a
          diagonal matrix.
        - whiten is a boolean. If True, we use the whitened representation of
          the inducing points.
        - minibatch_size, if not None, turns on mini-batching with that size.
        - num_data is the total number of observations, default to X.shape[0]
          (relevant when feeding in external minibatches)
        """
        # sort out the X, Y into MiniBatch objects if required.
        num_data = X.shape[0]

        if minibatch_size is None:
            X = DataHolder(X)
            Y = DataHolder(Y)

            if W1_idx is not None:
                W1_idx = DataHolder(W1_idx, fix_shape=True)

            if W2_idx is not None:
                W2_idx = DataHolder(W2_idx, fix_shape=True)
        else:
            X = Minibatch(X, batch_size=minibatch_size, seed=0)
            Y = Minibatch(Y, batch_size=minibatch_size, seed=0)
            
            idx = Minibatch(np.arange(num_data), batch_size=minibatch_size, seed=0, dtype=np.int32)
            if W1_idx is not None:
                W1_idx = Minibatch(
                    W1_idx, batch_size=minibatch_size, seed=0, dtype=np.int32)

            if W2_idx is not None:
                W2_idx = Minibatch(
                    W2_idx, batch_size=minibatch_size, seed=0, dtype=np.int32)

        # init the super class, accept args
        num_latent = W1.shape[1] * W2.shape[1]
        GPModel.__init__(self, X, Y, kern, likelihood, mean_function, num_latent, **kwargs)
        self.num_data = num_data or X.shape[0]
        self.q_diag, self.whiten = q_diag, whiten
        self.feature = features.inducingpoint_wrapper(feat, Z)

        self.idx = idx
        self.W1_idx = W1_idx
        self.W2_idx = W2_idx

        self.K1 = W1.shape[1]
        self.W1 = Parameter(W1, trainable=False, dtype=settings.float_type)
        self.W1_prior = Parameter(np.ones(self.K1) / self.K1, trainable=False)

        self.K2 = W2.shape[1]
        self.W2 = Parameter(W2, trainable=False, dtype=settings.float_type)
        self.W2_prior = Parameter(np.ones(self.K2) / self.K2, trainable=False)

        # init variational parameters
        num_inducing = len(self.feature)
        self._init_variational_parameters(num_inducing, q_mu, q_sqrt, q_diag)
Exemplo n.º 8
0
def plot_gp_plotly(model: GPModel,
                   mins: TensorType,
                   maxs: TensorType,
                   grid_density=20) -> go.Figure:
    """
    Plots 2-dimensional plot of a GP model's predictions with mean and 2 standard deviations.

    :param model: a gpflow model
    :param mins: list of 2 lower bounds
    :param maxs: list of 2 upper bounds
    :param grid_density: integer (grid size)
    :return: a plotly figure
    """
    mins = to_numpy(mins)
    maxs = to_numpy(maxs)

    # Create a regular grid on the parameter space
    Xplot, xx, yy = create_grid(mins=mins,
                                maxs=maxs,
                                grid_density=grid_density)

    # Evaluate objective function
    Fmean, Fvar = model.predict_f(Xplot)

    n_output = Fmean.shape[1]

    fig = make_subplots(
        rows=1,
        cols=n_output,
        specs=[np.repeat({
            "type": "surface"
        }, n_output).tolist()])

    for k in range(n_output):
        fmean = Fmean[:, k].numpy()
        fvar = Fvar[:, k].numpy()

        lcb = fmean - 2 * np.sqrt(fvar)
        ucb = fmean + 2 * np.sqrt(fvar)

        fig = add_surface_plotly(xx,
                                 yy,
                                 fmean,
                                 fig,
                                 alpha=1.0,
                                 figrow=1,
                                 figcol=k + 1)
        fig = add_surface_plotly(xx,
                                 yy,
                                 lcb,
                                 fig,
                                 alpha=0.5,
                                 figrow=1,
                                 figcol=k + 1)
        fig = add_surface_plotly(xx,
                                 yy,
                                 ucb,
                                 fig,
                                 alpha=0.5,
                                 figrow=1,
                                 figcol=k + 1)

    return fig