Exemplo n.º 1
0
def kst_oscillator(close_arr, r1, r2, r3, r4, n1, n2, n3, n4):
    """Calculate KST Oscillator for given data.

    :param close_arr: close price of the bar, expect series from cudf
    :param r1: r1 time steps
    :param r2: r2 time steps
    :param r3: r3 time steps
    :param r4: r4 time steps
    :param n1: n1 time steps
    :param n2: n2 time steps
    :param n3: n3 time steps
    :param n4: n4 time steps
    :return:  KST Oscillator in cudf.Series
    """
    M1 = diff(close_arr, r1 - 1)
    N1 = shift(close_arr, r1 - 1)
    M2 = diff(close_arr, r2 - 1)
    N2 = shift(close_arr, r2 - 1)
    M3 = diff(close_arr, r3 - 1)
    N3 = shift(close_arr, r3 - 1)
    M4 = diff(close_arr, r4 - 1)
    N4 = shift(close_arr, r4 - 1)
    term1 = Rolling(n1, division(M1, N1)).sum()
    term2 = scale(Rolling(n2, division(M2, N2)).sum(), 2.0)
    term3 = scale(Rolling(n3, division(M3, N3)).sum(), 3.0)
    term4 = scale(Rolling(n4, division(M4, N4)).sum(), 4.0)
    KST = summation(summation(summation(term1, term2), term3), term4)
    return cudf.Series(KST)
Exemplo n.º 2
0
def port_average_directional_movement_index(asset_indicator, high_arr, low_arr,
                                            close_arr, n, n_ADX):
    """Calculate the port Average Directional Movement Index for given data.

    :param asset_indicator: the indicator of beginning of the stock
    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps to do EWM average
    :param n_ADX: time steps to do EWM average of ADX
    :return: Average Directional Movement Index in cudf.Series
    """
    UpI, DoI = upDownMove(high_arr.data.to_gpu_array(),
                          low_arr.data.to_gpu_array())
    tr = port_true_range(asset_indicator.to_gpu_array(),
                         high_arr.data.to_gpu_array(),
                         low_arr.data.to_gpu_array(),
                         close_arr.data.to_gpu_array())
    ATR = PEwm(n, tr, asset_indicator).mean()
    PosDI = division(PEwm(n, UpI, asset_indicator).mean(), ATR)
    NegDI = division(PEwm(n, DoI, asset_indicator).mean(), ATR)
    NORM = division(abs_arr(substract(PosDI, NegDI)), summation(PosDI, NegDI))
    port_mask_nan(asset_indicator.data.to_gpu_array(), NORM, -1, 0)
    ADX = cudf.Series(PEwm(n_ADX, NORM, asset_indicator).mean())
    return ADX
Exemplo n.º 3
0
def coppock_curve(close_arr, n):
    """Calculate Coppock Curve for given data.

    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps
    :return: Coppock Curve in cudf.Series
    """
    M = diff(close_arr, int(n * 11 / 10) - 1)
    N = shift(close_arr, int(n * 11 / 10) - 1)
    ROC1 = division(M, N)
    M = diff(close_arr, int(n * 14 / 10) - 1)
    N = shift(close_arr, int(n * 14 / 10) - 1)
    ROC2 = division(M, N)
    Copp = Ewm(n, summation(ROC1, ROC2)).mean()
    return cudf.Series(Copp)
Exemplo n.º 4
0
def port_vortex_indicator(asset_indicator, high_arr, low_arr, close_arr, n):
    """Calculate the port Vortex Indicator for given data.
    Vortex Indicator described here:

        http://www.vortexindicator.com/VFX_VORTEX.PDF

    :param asset_indicator: the indicator of beginning of the stock
    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps to do EWM average
    :return:  Vortex Indicator in cudf.Series
    """
    TR = port_true_range(asset_indicator.to_gpu_array(),
                         high_arr.data.to_gpu_array(),
                         low_arr.data.to_gpu_array(),
                         close_arr.data.to_gpu_array())

    VM = port_lowhigh_diff(asset_indicator.to_gpu_array(),
                           high_arr.data.to_gpu_array(),
                           low_arr.data.to_gpu_array())

    VI = division(Rolling(n, VM).sum(), Rolling(n, TR).sum())
    port_mask_nan(asset_indicator.data.to_gpu_array(), VI, 0, n - 1)
    return cudf.Series(VI)
Exemplo n.º 5
0
def ultimate_oscillator(high_arr, low_arr, close_arr):
    """Calculate Ultimate Oscillator for given data.

    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param close_arr: close price of the bar, expect series from cudf
    :return: Ultimate Oscillator in cudf.Series
    """
    TR_l, BP_l = ultimate_osc(high_arr.to_gpu_array(), low_arr.to_gpu_array(),
                              close_arr.to_gpu_array())
    term1 = division(scale(Rolling(7, BP_l).sum(), 4.0),
                     Rolling(7, TR_l).sum())
    term2 = division(scale(Rolling(14, BP_l).sum(), 2.0),
                     Rolling(14, TR_l).sum())
    term3 = division(Rolling(28, BP_l).sum(), Rolling(28, TR_l).sum())
    UltO = summation(summation(term1, term2), term3)
    return cudf.Series(UltO, nan_as_null=False)
Exemplo n.º 6
0
def bollinger_bands(close_arr, n):
    """Calculate the Bollinger Bands.
    See https://www.investopedia.com/terms/b/bollingerbands.asp for details

    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps
    :return: b1 b2
    """
    MA = Rolling(n, close_arr).mean()
    MSD = Rolling(n, close_arr).std()
    close_arr_gpu = numba.cuda.device_array_like(close_arr.data.to_gpu_array())
    close_arr_gpu[:] = close_arr.data.to_gpu_array()[:]
    close_arr_gpu[0:n - 1] = math.nan
    MSD_4 = scale(MSD, 4.0)
    b1 = division(MSD_4, MA)
    b2 = division(summation(substract(close_arr_gpu, MA), scale(MSD, 2.0)),
                  MSD_4)
    out = collections.namedtuple('Bollinger', 'b1 b2')
    return out(b1=cudf.Series(b1), b2=cudf.Series(b2))
Exemplo n.º 7
0
def rate_of_change(close_arr, n):
    """ Calculate the rate of return

    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps
    :return: rate of change in cu.Series
    """
    M = diff(close_arr, n - 1)
    N = shift(close_arr, n - 1)
    return cudf.Series(division(M, N))
Exemplo n.º 8
0
def port_kst_oscillator(asset_indicator, close_arr, r1, r2, r3, r4, n1, n2, n3,
                        n4):
    """Calculate port KST Oscillator for given data.

    :param asset_indicator: the indicator of beginning of the stock
    :param close_arr: close price of the bar, expect series from cudf
    :param r1: r1 time steps
    :param r2: r2 time steps
    :param r3: r3 time steps
    :param r4: r4 time steps
    :param n1: n1 time steps
    :param n2: n2 time steps
    :param n3: n3 time steps
    :param n4: n4 time steps
    :return:  KST Oscillator in cudf.Series
    """
    M1 = diff(close_arr, r1 - 1)
    N1 = shift(close_arr, r1 - 1)
    port_mask_nan(asset_indicator.data.to_gpu_array(), M1, 0, r1 - 1)
    port_mask_nan(asset_indicator.data.to_gpu_array(), N1, 0, r1 - 1)
    M2 = diff(close_arr, r2 - 1)
    N2 = shift(close_arr, r2 - 1)
    port_mask_nan(asset_indicator.data.to_gpu_array(), M2, 0, r2 - 1)
    port_mask_nan(asset_indicator.data.to_gpu_array(), N2, 0, r2 - 1)
    M3 = diff(close_arr, r3 - 1)
    N3 = shift(close_arr, r3 - 1)
    port_mask_nan(asset_indicator.data.to_gpu_array(), M3, 0, r3 - 1)
    port_mask_nan(asset_indicator.data.to_gpu_array(), N3, 0, r3 - 1)
    M4 = diff(close_arr, r4 - 1)
    N4 = shift(close_arr, r4 - 1)
    port_mask_nan(asset_indicator.data.to_gpu_array(), M4, 0, r4 - 1)
    port_mask_nan(asset_indicator.data.to_gpu_array(), N4, 0, r4 - 1)
    term1 = Rolling(n1, division(M1, N1)).sum()
    port_mask_nan(asset_indicator.data.to_gpu_array(), term1, 0, n1 - 1)
    term2 = scale(Rolling(n2, division(M2, N2)).sum(), 2.0)
    port_mask_nan(asset_indicator.data.to_gpu_array(), term2, 0, n2 - 1)
    term3 = scale(Rolling(n3, division(M3, N3)).sum(), 3.0)
    port_mask_nan(asset_indicator.data.to_gpu_array(), term3, 0, n3 - 1)
    term4 = scale(Rolling(n4, division(M4, N4)).sum(), 4.0)
    port_mask_nan(asset_indicator.data.to_gpu_array(), term4, 0, n4 - 1)
    KST = summation(summation(summation(term1, term2), term3), term4)
    return cudf.Series(KST)
Exemplo n.º 9
0
def port_coppock_curve(asset_indicator, close_arr, n):
    """Calculate port Coppock Curve for given data.

    :param asset_indicator: the indicator of beginning of the stock
    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps
    :return: Coppock Curve in cudf.Series
    """
    M = diff(close_arr, int(n * 11 / 10) - 1)
    N = shift(close_arr, int(n * 11 / 10) - 1)
    port_mask_nan(asset_indicator.to_gpu_array(), M, 0, int(n * 11 / 10) - 1)
    port_mask_nan(asset_indicator.to_gpu_array(), N, 0, int(n * 11 / 10) - 1)
    ROC1 = division(M, N)
    M = diff(close_arr, int(n * 14 / 10) - 1)
    N = shift(close_arr, int(n * 14 / 10) - 1)
    port_mask_nan(asset_indicator.to_gpu_array(), M, 0, int(n * 14 / 10) - 1)
    port_mask_nan(asset_indicator.to_gpu_array(), N, 0, int(n * 14 / 10) - 1)
    ROC2 = division(M, N)
    Copp = PEwm(n, summation(ROC1, ROC2), asset_indicator).mean()
    return cudf.Series(Copp, nan_as_null=False)
Exemplo n.º 10
0
def average_directional_movement_index(high_arr, low_arr, close_arr, n, n_ADX):
    """Calculate the Average Directional Movement Index for given data.

    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps to do EWM average
    :param n_ADX: time steps to do EWM average of ADX
    :return: Average Directional Movement Index in cudf.Series
    """
    UpI, DoI = upDownMove(high_arr.to_gpu_array(), low_arr.to_gpu_array())
    last_ele = len(high_arr) - 1
    tr = true_range(high_arr.to_gpu_array(), low_arr.to_gpu_array(),
                    close_arr.to_gpu_array())
    ATR = Ewm(n, tr).mean()
    PosDI = division(Ewm(n, UpI).mean(), ATR)
    NegDI = division(Ewm(n, DoI).mean(), ATR)
    NORM = division(abs_arr(substract(PosDI, NegDI)), summation(PosDI, NegDI))
    NORM[last_ele] = math.nan
    ADX = cudf.Series(Ewm(n_ADX, NORM).mean(), nan_as_null=False)
    return ADX
Exemplo n.º 11
0
def port_ultimate_oscillator(asset_indicator, high_arr, low_arr, close_arr):
    """Calculate port Ultimate Oscillator for given data.

    :param asset_indicator: the indicator of beginning of the stock
    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param close_arr: close price of the bar, expect series from cudf
    :return: Ultimate Oscillator in cudf.Series
    """
    TR_l, BP_l = port_ultimate_osc(asset_indicator.data.to_gpu_array(),
                                   high_arr.data.to_gpu_array(),
                                   low_arr.data.to_gpu_array(),
                                   close_arr.data.to_gpu_array())
    term1 = division(scale(Rolling(7, BP_l).sum(), 4.0),
                     Rolling(7, TR_l).sum())
    term2 = division(scale(Rolling(14, BP_l).sum(), 2.0),
                     Rolling(14, TR_l).sum())
    term3 = division(Rolling(28, BP_l).sum(), Rolling(28, TR_l).sum())
    port_mask_nan(asset_indicator.data.to_gpu_array(), term1, 0, 6)
    port_mask_nan(asset_indicator.data.to_gpu_array(), term2, 0, 13)
    port_mask_nan(asset_indicator.data.to_gpu_array(), term3, 0, 27)
    UltO = summation(summation(term1, term2), term3)
    return cudf.Series(UltO)
Exemplo n.º 12
0
def port_bollinger_bands(asset_indicator, close_arr, n):
    """Calculate the port Bollinger Bands.
    See https://www.investopedia.com/terms/b/bollingerbands.asp for details

    :param asset_indicator: the indicator of beginning of the stock
    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps
    :return: b1 b2
    """
    MA = Rolling(n, close_arr).mean()
    port_mask_nan(asset_indicator.to_gpu_array(), MA, 0, n - 1)
    MSD = Rolling(n, close_arr).std()
    port_mask_nan(asset_indicator.to_gpu_array(), MSD, 0, n - 1)
    close_arr_gpu = numba.cuda.device_array_like(close_arr.to_gpu_array())
    close_arr_gpu[:] = close_arr.to_gpu_array()[:]
    close_arr_gpu[0:n - 1] = math.nan
    MSD_4 = scale(MSD, 4.0)
    b1 = division(MSD_4, MA)
    b2 = division(summation(substract(close_arr_gpu, MA), scale(MSD, 2.0)),
                  MSD_4)
    out = collections.namedtuple('Bollinger', 'b1 b2')
    return out(b1=cudf.Series(b1, nan_as_null=False),
               b2=cudf.Series(b2, nan_as_null=False))
Exemplo n.º 13
0
def mass_index(high_arr, low_arr, n1, n2):
    """Calculate the Mass Index for given data.

    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param n1: n1 time steps
    :param n1: n2 time steps
    :return: Mass Index in cudf.Series
    """
    Range = high_arr - low_arr
    EX1 = Ewm(n1, Range).mean()
    EX2 = Ewm(n1, EX1).mean()
    Mass = division(EX1, EX2)
    MassI = Rolling(n2, Mass).sum()
    return cudf.Series(MassI)
Exemplo n.º 14
0
def commodity_channel_index(high_arr, low_arr, close_arr, n):
    """Calculate Commodity Channel Index for given data.

    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps
    :return: Commodity Channel Index in cudf.Series
    """
    PP = average_price(high_arr.to_gpu_array(), low_arr.to_gpu_array(),
                       close_arr.to_gpu_array())
    M = Rolling(n, PP).mean()
    N = Rolling(n, PP).std()
    CCI = division(substract(PP, M), N)
    return cudf.Series(CCI, nan_as_null=False)
Exemplo n.º 15
0
def accumulation_distribution(high_arr, low_arr, close_arr, vol_arr, n):
    """Calculate Accumulation/Distribution for given data.

    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param close_arr: close price of the bar, expect series from cudf
    :param vol_arr: volume of the bar, expect series from cudf
    :param n: time steps
    :return: Accumulation/Distribution in cudf.Series
    """
    ad = (2.0 * close_arr - high_arr - low_arr) / (high_arr -
                                                   low_arr) * vol_arr
    M = diff(ad, n - 1)
    N = shift(ad, n - 1)
    return cudf.Series(division(M, N))
Exemplo n.º 16
0
def true_strength_index(close_arr, r, s):
    """Calculate True Strength Index (TSI) for given data.

    :param close_arr: close price of the bar, expect series from cudf
    :param r: r time steps
    :param s: s time steps
    :return: True Strength Index in cudf.Series
    """
    M = diff(close_arr, 1)
    aM = abs_arr(M)
    EMA1 = Ewm(r, M).mean()
    aEMA1 = Ewm(r, aM).mean()
    EMA2 = Ewm(s, EMA1).mean()
    aEMA2 = Ewm(s, aEMA1).mean()
    TSI = division(EMA2, aEMA2)
    return cudf.Series(TSI)
Exemplo n.º 17
0
def port_rate_of_change(asset_indicator, close_arr, n):
    """ Calculate the port rate of return

    :param asset_indicator: the indicator of beginning of the stock
    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps
    :return: rate of change in cu.Series
    """
    M = diff(close_arr, n - 1)
    N = shift(close_arr, n - 1)
    out = division(M, N)
    if n - 1 >= 0:
        port_mask_nan(asset_indicator.data.to_gpu_array(), out, 0, n - 1)
    else:
        port_mask_nan(asset_indicator.data.to_gpu_array(), out, n - 1, 0)
    return cudf.Series(out)
Exemplo n.º 18
0
def port_mass_index(asset_indicator, high_arr, low_arr, n1, n2):
    """Calculate the port Mass Index for given data.

    :param asset_indicator: the indicator of beginning of the stock
    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param n1: n1 time steps
    :param n1: n2 time steps
    :return: Mass Index in cudf.Series
    """
    Range = high_arr - low_arr
    EX1 = PEwm(n1, Range, asset_indicator).mean()
    EX2 = PEwm(n1, EX1, asset_indicator).mean()
    Mass = division(EX1, EX2)
    MassI = Rolling(n2, Mass).sum()
    port_mask_nan(asset_indicator.data.to_gpu_array(), MassI, 0, n2 - 1)
    return cudf.Series(MassI)
Exemplo n.º 19
0
def relative_strength_index(high_arr, low_arr, n):
    """Calculate Relative Strength Index(RSI) for given data.

    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param n: time steps to do EWM average
    :return: Relative Strength Index in cudf.Series
    """
    UpI, DoI = upDownMove(high_arr.to_gpu_array(), low_arr.to_gpu_array())
    UpI_s = shift(UpI, 1)
    UpI_s[0] = 0
    DoI_s = shift(DoI, 1)
    DoI_s[0] = 0
    PosDI = Ewm(n, UpI_s).mean()
    NegDI = Ewm(n, DoI_s).mean()
    RSI = division(PosDI, summation(PosDI, NegDI))
    return cudf.Series(RSI, nan_as_null=False)
Exemplo n.º 20
0
def money_flow_index(high_arr, low_arr, close_arr, volume_arr, n):
    """Calculate Money Flow Index and Ratio for given data.

    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param close_arr: close price of the bar, expect series from cudf
    :param volume_arr: volume the bar, expect series from cudf
    :param n: time steps
    :return: Money Flow Index in cudf.Series
    """
    PP = average_price(high_arr.to_gpu_array(), low_arr.to_gpu_array(),
                       close_arr.to_gpu_array())

    PosMF = money_flow(PP, volume_arr.to_gpu_array())
    MFR = division(PosMF, (multiply(PP, volume_arr.to_gpu_array())))  # TotMF
    MFI = Rolling(n, MFR).mean()
    return cudf.Series(MFI, nan_as_null=False)
Exemplo n.º 21
0
def port_true_strength_index(asset_indicator, close_arr, r, s):
    """Calculate port True Strength Index (TSI) for given data.

    :param asset_indicator: the indicator of beginning of the stock
    :param close_arr: close price of the bar, expect series from cudf
    :param r: r time steps
    :param s: s time steps
    :return: True Strength Index in cudf.Series
    """
    M = diff(close_arr, 1)
    port_mask_nan(asset_indicator.data.to_gpu_array(), M, 0, 1)
    aM = abs_arr(M)
    EMA1 = PEwm(r, M, asset_indicator).mean()
    aEMA1 = PEwm(r, aM, asset_indicator).mean()
    EMA2 = PEwm(s, EMA1, asset_indicator).mean()
    aEMA2 = PEwm(s, aEMA1, asset_indicator).mean()
    TSI = division(EMA2, aEMA2)
    return cudf.Series(TSI)
Exemplo n.º 22
0
def ease_of_movement(high_arr, low_arr, volume_arr, n):
    """Calculate Ease of Movement for given data.

    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param volume_arr: volume the bar, expect series from cudf
    :param n: time steps
    :return: Ease of Movement in cudf.Series
    """
    high_arr_gpu = high_arr.data.to_gpu_array()
    low_arr_gpu = low_arr.data.to_gpu_array()

    EoM = division(
        multiply(summation(diff(high_arr_gpu, 1), diff(low_arr_gpu, 1)),
                 substract(high_arr_gpu, low_arr_gpu)),
        scale(volume_arr.data.to_gpu_array(), 2.0))
    Eom_ma = Rolling(n, EoM).mean()
    return cudf.Series(Eom_ma)
Exemplo n.º 23
0
def vortex_indicator(high_arr, low_arr, close_arr, n):
    """Calculate the Vortex Indicator for given data.
    Vortex Indicator described here:

        http://www.vortexindicator.com/VFX_VORTEX.PDF

    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps to do EWM average
    :return:  Vortex Indicator in cudf.Series
    """
    TR = true_range(high_arr.to_gpu_array(), low_arr.to_gpu_array(),
                    close_arr.to_gpu_array())

    VM = lowhigh_diff(high_arr.to_gpu_array(), low_arr.to_gpu_array())

    VI = division(Rolling(n, VM).sum(), Rolling(n, TR).sum())
    return cudf.Series(VI, nan_as_null=False)
Exemplo n.º 24
0
def port_accumulation_distribution(asset_indicator, high_arr, low_arr,
                                   close_arr, vol_arr, n):
    """Calculate port Accumulation/Distribution for given data.

    :param asset_indicator: the indicator of beginning of the stock
    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param close_arr: close price of the bar, expect series from cudf
    :param vol_arr: volume of the bar, expect series from cudf
    :param n: time steps
    :return: Accumulation/Distribution in cudf.Series
    """
    ad = (2.0 * close_arr - high_arr - low_arr) / (high_arr -
                                                   low_arr) * vol_arr
    M = diff(ad, n - 1)
    port_mask_nan(asset_indicator.data.to_gpu_array(), M, 0, n - 1)
    N = shift(ad, n - 1)
    port_mask_nan(asset_indicator.data.to_gpu_array(), N, 0, n - 1)
    return cudf.Series(division(M, N))
Exemplo n.º 25
0
def port_commodity_channel_index(asset_indicator, high_arr, low_arr, close_arr,
                                 n):
    """Calculate port Commodity Channel Index for given data.

    :param asset_indicator: the indicator of beginning of the stock
    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param close_arr: close price of the bar, expect series from cudf
    :param n: time steps
    :return: Commodity Channel Index in cudf.Series
    """
    PP = average_price(high_arr.to_gpu_array(), low_arr.to_gpu_array(),
                       close_arr.to_gpu_array())
    M = Rolling(n, PP).mean()
    port_mask_nan(asset_indicator.to_gpu_array(), M, 0, n - 1)
    N = Rolling(n, PP).std()
    port_mask_nan(asset_indicator.to_gpu_array(), N, 0, n - 1)
    CCI = division(substract(PP, M), N)
    return cudf.Series(CCI, nan_as_null=False)
Exemplo n.º 26
0
def port_relative_strength_index(asset_indicator, high_arr, low_arr, n):
    """Calculate Relative Strength Index(RSI) for given data.

    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param n: time steps to do EWM average
    :return: Relative Strength Index in cudf.Series
    """
    UpI, DoI = upDownMove(high_arr.data.to_gpu_array(),
                          low_arr.data.to_gpu_array())
    UpI_s = shift(UpI, 1)
    UpI_s[0] = 0
    UpI_s = cudf.Series(UpI_s) * (1.0 - asset_indicator)
    DoI_s = shift(DoI, 1)
    DoI_s[0] = 0
    DoI_s = cudf.Series(DoI_s) * (1.0 - asset_indicator)
    PosDI = PEwm(n, UpI_s, asset_indicator).mean()
    NegDI = PEwm(n, DoI_s, asset_indicator).mean()
    RSI = division(PosDI, summation(PosDI, NegDI))
    return cudf.Series(RSI)
Exemplo n.º 27
0
def port_money_flow_index(asset_indicator, high_arr, low_arr, close_arr,
                          volume_arr, n):
    """Calculate port Money Flow Index and Ratio for given data.

    :param asset_indicator: the indicator of beginning of the stock
    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param close_arr: close price of the bar, expect series from cudf
    :param volume_arr: volume the bar, expect series from cudf
    :param n: time steps
    :return: Money Flow Index in cudf.Series
    """
    PP = average_price(high_arr.to_gpu_array(), low_arr.to_gpu_array(),
                       close_arr.to_gpu_array())

    PosMF = port_money_flow(asset_indicator.to_gpu_array(), PP,
                            volume_arr.to_gpu_array())
    MFR = division(PosMF, (multiply(PP, volume_arr.to_gpu_array())))  # TotMF
    MFI = Rolling(n, MFR).mean()
    port_mask_nan(asset_indicator.to_gpu_array(), MFI, 0, n - 1)
    return cudf.Series(MFI, nan_as_null=False)
Exemplo n.º 28
0
def port_ease_of_movement(asset_indicator, high_arr, low_arr, volume_arr, n):
    """Calculate port Ease of Movement for given data.

    :param asset_indicator: the indicator of beginning of the stock
    :param high_arr: high price of the bar, expect series from cudf
    :param low_arr: low price of the bar, expect series from cudf
    :param volume_arr: volume the bar, expect series from cudf
    :param n: time steps
    :return: Ease of Movement in cudf.Series
    """
    high_arr_gpu = high_arr.data.to_gpu_array()
    low_arr_gpu = low_arr.data.to_gpu_array()

    EoM = division(
        multiply(summation(diff(high_arr_gpu, 1), diff(low_arr_gpu, 1)),
                 substract(high_arr_gpu, low_arr_gpu)),
        scale(volume_arr.data.to_gpu_array(), 2.0))
    port_mask_nan(asset_indicator.data.to_gpu_array(), EoM, 0, 1)
    Eom_ma = Rolling(n, EoM).mean()
    port_mask_nan(asset_indicator.data.to_gpu_array(), Eom_ma, 0, n - 1)
    return cudf.Series(Eom_ma)