Exemplo n.º 1
0
def two_conv_graph():
    G = NNGraph(name='two_conv_graph')
    ti = G.add_input(Dim.unnamed([10, 10, 2]))
    c1filt = Conv2DFilterDim(3, 3, 2, in_c=2)
    c1filt.impose_order(['out_c', 'h', 'w', 'in_c'])
    n1 = Conv2DParameters("node1",
                          filt=c1filt,
                          stride=StrideDim(1, 1),
                          padding=PadDim(0),
                          in_dims_hint=SparseList([['h', 'w', 'c']]),
                          out_dims_hint=SparseList([['h', 'w', 'c']]))
    G.add_node(n1)
    w1 = [[0.25, 0.25], [0.25, 0.25], [0.25, 0.25]]
    w1 = [w1, w1, w1]
    w2 = [[0.75, 0.75], [0.75, 0.75], [0.75, 0.75]]
    w2 = [w2, w2, w2]
    n1.weights = np.array([w1, w2])
    c2filt = Conv2DFilterDim(3, 3, 2, in_c=2)
    c2filt.impose_order(['out_c', 'h', 'w', 'in_c'])
    n2 = Conv2DParameters("node2",
                          filt=c2filt,
                          stride=StrideDim(1, 1),
                          padding=PadDim(0),
                          in_dims_hint=SparseList([['h', 'w', 'c']]),
                          out_dims_hint=SparseList([['h', 'w', 'c']]))
    G.add_node(n2)
    w3 = [[0.75, 0.25], [0.75, 0.25], [0.75, 0.25]]
    w3 = [w3, w3, w3]
    n2.weights = np.array([w3, w3])
    to = G.add_output()
    G.add_edge(NNEdge(ti, n1))
    G.add_edge(NNEdge(n1, n2))
    G.add_edge(NNEdge(n2, to))
    G.add_dimensions()
    yield G
Exemplo n.º 2
0
def actfusion_graph():
    G = NNGraph(name='actfusion_graph')
    ti1 = G.add_input(Dim.unnamed([10, 10, 2])).name
    ti2 = G.add_input(Dim.unnamed([10, 10, 2])).name
    c1filt = Conv2DFilterDim(3, 3, 2, in_c=2)
    c1filt.impose_order(['out_c', 'h', 'w', 'in_c'])
    n1 = Conv2DParameters("node1",
                          filt=c1filt,
                          stride=StrideDim(1, 1),
                          padding=PadDim(0),
                          in_dims_hint=SparseList([['h', 'w', 'c']]),
                          out_dims_hint=SparseList([['h', 'w', 'c']]))
    G.add_node(n1)
    w1 = [[0.25, 0.25], [0.25, 0.25], [0.25, 0.25]]
    w1 = [w1, w1, w1]
    w2 = [[0.75, 0.75], [0.75, 0.75], [0.75, 0.75]]
    w2 = [w2, w2, w2]
    n1.weights = np.array([w1, w2])
    n1a = ReluActivationParameters("node1a")
    G.add_node(n1a)
    c2filt = Conv2DFilterDim(3, 3, 2, in_c=2)
    c2filt.impose_order(['out_c', 'h', 'w', 'in_c'])
    n2 = Conv2DParameters("node2",
                          filt=c2filt,
                          stride=StrideDim(1, 1),
                          padding=PadDim(0),
                          in_dims_hint=SparseList([['h', 'w', 'c']]),
                          out_dims_hint=SparseList([['h', 'w', 'c']]))
    G.add_node(n2)
    w3 = [[0.75, 0.25], [0.75, 0.25], [0.75, 0.25]]
    w3 = [w3, w3, w3]
    n2.weights = np.array([w3, w3])
    n3 = MatrixAddParameters("node3")
    G.add_node(n3)
    n4 = ReluActivationParameters("node4")
    G.add_node(n4)
    to = G.add_output()
    G.add_edge(NNEdge(ti1, n1))
    G.add_edge(NNEdge(n1, n1a))
    G.add_edge(NNEdge(ti2, n2))
    G.add_edge(NNEdge(n1a, n3, to_idx=0))
    G.add_edge(NNEdge(n2, n3, to_idx=1))
    G.add_edge(NNEdge(n3, n4))
    G.add_edge(NNEdge(n4, to))
    G.add_dimensions()
    yield G