Exemplo n.º 1
0
def test_input(id, signals, sizes, Us, As, n_p,
               last_act_fn, batch_norm, V):
    error = np.zeros(N_EXPS)

    for i, x in enumerate(signals):
        x_n = ds.GraphSignal.add_noise(x, n_p)
        for j, exp in enumerate(EXPERIMENTS):
            cont = i*len(EXPERIMENTS)+j
            if not isinstance(exp, dict):
                x_est = utils.bandlimited_model(x_n, V, n_coefs=63)
            else:
                dec = GraphDeepDecoder(exp['arch'], sizes[j], Us[j], As=As[j],
                                       ups=exp['ups'], batch_norm=batch_norm,
                                       last_act_fn=last_act_fn)
                x_est, _ = dec.fit(x_n, n_iter=3000)
            error[cont] = np.sum(np.square(x-x_est))/np.square(np.linalg.norm(x))
            print('Signal: {} Scenario: {} Error: {:.4f}'
                  .format(id, cont+1, error[cont]))
    return error
Exemplo n.º 2
0
def test_resolution(id, x, sizes, descendances, hier_As):
    mse_est = np.zeros(N_SCENARIOS)
    x_n = gs.GraphSignal.add_noise(x, n_p)
    for i in range(N_SCENARIOS):
        dec = GraphDeepDecoder(descendances[i],
                               hier_As[i],
                               sizes[i],
                               n_channels=n_chans,
                               upsampling=up_method,
                               batch_norm=batch_norm,
                               last_act_fun=last_act_fun,
                               gamma=gamma)
        dec.build_network()
        x_est, _ = dec.fit(x_n)

        mse_est[i] = np.sum(np.square(x - x_est)) / np.square(
            np.linalg.norm(x))
        print('Signal: {} Exp: {}: Err: {}'.format(id, i, mse_est[i]))
    return mse_est
def denoise_real(id, x, sizes, descendances, hier_As, n_p, V):
    error = np.zeros(N_EXPS)
    x_n = gs.GraphSignal.add_noise(x, n_p)
    for i, exp in enumerate(EXPERIMENTS):
        if not isinstance(exp, dict):
            x_est = utils.bandlimited_model(x_n,
                                            V,
                                            n_coefs=N_PARAMS,
                                            max_coefs=False)
            n_params = N_PARAMS
        else:
            dec = GraphDeepDecoder(descendances[i],
                                   hier_As[i],
                                   sizes[i],
                                   n_channels=exp['arch'],
                                   upsampling=exp['ups'],
                                   gamma=exp['gamma'],
                                   last_act_fun=LAST_ACT_FUN,
                                   act_fun=ACT_FUN,
                                   batch_norm=BATCH_NORM)
            dec.build_network()
            n_params = dec.count_params()
            x_est, _ = dec.fit(x_n, n_iter=4000)
        error[i] = np.sum(np.square(x - x_est)) / np.square(np.linalg.norm(x))
        print(
            'Signal: {} Scenario {}: Error: {:.4f}, Params: {}, N: {}'.format(
                id, i, error[i], n_params, x_n.size))
    return error
Exemplo n.º 4
0
def test_upsampling(id, x, sizes, Us, As, n_p):
    error = np.zeros(N_SCENARIOS)
    mse_fit = np.zeros(N_SCENARIOS)
    x_n = ds.GraphSignal.add_noise(x, n_p)
    for i in range(N_SCENARIOS):
        dec = GraphDeepDecoder(n_chans,
                               sizes[i],
                               Us[i],
                               As=As[i],
                               ups=EXPS[i][0],
                               gamma=EXPS[i][1],
                               batch_norm=batch_norm,
                               act_fn=act_fun,
                               last_act_fn=last_act_fun)

        # Implement model??
        x_est, mse_fit[i] = dec.fit(x_n)
        error[i] = np.sum(np.square(x - x_est)) / np.square(np.linalg.norm(x))
        print('Signal: {} Scenario {}: Error: {:.4f}'.format(
            id, i + 1, error[i]))
    mse_fit = mse_fit / np.linalg.norm(x_n) * x_n.size
    return error
Exemplo n.º 5
0
def test_architecture(id, x, size, descendance, hier_A, n_p):
    error = np.zeros(N_EXPS)
    mse_fit = np.zeros(N_EXPS)
    x_n = gs.GraphSignal.add_noise(x, n_p)
    for i in range(N_EXPS):
        dec = GraphDeepDecoder(descendance,
                               hier_A,
                               size,
                               n_channels=n_chans,
                               upsampling=up_method,
                               batch_norm=batch_norm,
                               last_act_fun=EXPERIMENTS[i]['laf'],
                               act_fun=EXPERIMENTS[i]['af'],
                               gamma=gamma)

        dec.build_network()
        x_est, mse_fit[i] = dec.fit(x_n, n_iter=3500)

        error[i] = np.sum(np.square(x - x_est)) / np.square(np.linalg.norm(x))
        print('Signal: {} Scenario {}: Error: {:.4f}'.format(
            id, i + 1, error[i]))
    return error
def test_architecture(id, x, sizes, Us, As, n_p):
    error = np.zeros(N_EXPS)
    mse_fit = np.zeros(N_EXPS)
    params = np.zeros(N_EXPS)
    x_n = ds.GraphSignal.add_noise(x, n_p)
    for i in range(N_EXPS):
        dec = GraphDeepDecoder(EXPS[i]['feats'],
                               sizes[i],
                               Us[i],
                               As=As[i],
                               ups=up_method,
                               gamma=gamma,
                               batch_norm=batch_norm,
                               act_fn=act_fun,
                               last_act_fn=last_act_fun)

        # Implement model??
        x_est, mse_fit[i] = dec.fit(x_n, n_iter=3000)

        error[i] = np.sum(np.square(x - x_est)) / np.square(np.linalg.norm(x))
        params[i] = dec.count_params()
        print('Signal: {} Scenario {}: ({} params): Error: {:.4f}'.format(
            id, i + 1, params[i], error[i]))
    return error, params
Exemplo n.º 7
0
def run(id, Gs, Signals, Net, p_miss):
    G = ds.create_graph(Gs, SEED)
    clts = compute_clusters(G, Gs['k'], Net['type_A'])
    signal = ds.GraphSignal.create(Signals['type'],
                                   G,
                                   Signals['non_lin'],
                                   Signals['L'],
                                   Signals['deltas'],
                                   to_0_1=Signals['to_0_1'])
    x_n = ds.GraphSignal.add_noise(signal.x, Signals['noise'])
    inp_mask = ds.GraphSignal.generate_inpaint_mask(signal.x, p_miss)
    mask_err = np.sum(np.square(signal.x - x_n * inp_mask))

    err = np.zeros(N_EXPS)
    node_err = np.zeros(N_EXPS)
    params = np.zeros(N_EXPS)
    for i in range(N_EXPS):
        dec = GraphDeepDecoder(EXPS[i]['fts'],
                               clts[i].sizes,
                               clts[i].Us,
                               As=clts[i].As,
                               act_fn=Net['af'],
                               ups=EXPS[i]['ups'],
                               gamma=EXPS[i]['gamma'],
                               batch_norm=Net['bn'],
                               last_act_fn=Net['laf'])
        model = Inpaint(dec,
                        inp_mask,
                        learning_rate=Net['lr'],
                        epochs=EXPS[i]['epochs'])
        model.fit(x_n)
        node_err[i], err[i] = model.test(signal.x)
        params[i] = model.count_params()
        print('Graph {}-{} ({}):\tEpochs: {}\tNode Err: {:.8f}\tErr: {:.6f}'.
              format(id, i + 1, params[i], EXPS[i]['epochs'], node_err[i],
                     err[i]))
    return node_err, err, mask_err, params
Exemplo n.º 8
0
def denoise(x, sizes, descendances, hier_As, n_p, last_act_fn, batch_norm):
    error = np.zeros(len(EXPERIMENTS))
    params = np.zeros(len(EXPERIMENTS))
    x_n = gs.GraphSignal.add_noise(x, n_p)
    for i, exp in enumerate(EXPERIMENTS):
        dec = GraphDeepDecoder(descendances[i],
                               hier_As[i],
                               sizes[i],
                               n_channels=exp['arch'],
                               upsampling=exp['ups'],
                               gamma=exp['gamma'],
                               last_act_fun=last_act_fn,
                               batch_norm=batch_norm)
        dec.build_network()
        x_est, _ = dec.fit(x_n)
        error[i] = np.sum(np.square(x - x_est)) / np.linalg.norm(x)
        params[i] = dec.count_params()
        print('\tScenario {}: Error: {:.4f}'.format(i, error[i]))
    return error, params
Exemplo n.º 9
0
    np.save(path, data)
    print('SAVED as:', path)


if __name__ == '__main__':
    # Graph parameters
    G_params = {}
    G_params['type'] = 'SBM'  # SBM or ER
    G_params['N'] = N = 256
    G_params['k'] = 4
    G_params['p'] = 0.15
    G_params['q'] = 0.01 / 4

    # Set seeds
    gs.GraphSignal.set_seed(SEED)
    GraphDeepDecoder.set_seed(SEED)

    G = utils.create_graph(G_params)
    sizes, descendances, hier_As = compute_clusters(G_params['k'])

    start_time = time.time()
    mse_est = np.zeros((n_signals, N_SCENARIOS))
    results = []
    with Pool(processes=cpu_count()) as pool:
        for i in range(n_signals):
            signal = gs.DifussedSparseGS(G, L, G_params['k'])
            signal.signal_to_0_1_interval()
            signal.to_unit_norm()
            results.append(
                pool.apply_async(
                    test_resolution,