def test_fixed(self):
        G1 = nx.MultiDiGraph()        
        G1.add_edge(0, 0, action_number=0)
        G1.add_edge(0, 1, action_number=1)
        G1.add_edge(1, 2, action_number=0)
        G1.add_edge(2, 1, action_number=0)
        G1.add_edge(2, 0, action_number=1)
        G1.add_edge(2, 5, action_number=2)
        
        for node in G1:
            G1.node[node]['type_id'] = node
            G1.node[node]['parameters'] = pyevolve.G1DList.G1DList(0)
        
        G2 = nx.MultiDiGraph()
        G2.add_edge(0, 1, action_number=0)
        G2.add_edge(0, 3, action_number=1)
        G2.add_edge(3, 4, action_number=0)
        G2.add_edge(1, 4, action_number=0)
        for node in G2:
            G2.node[node]['type_id'] = node
            G2.node[node]['parameters'] = pyevolve.G1DList.G1DList(0)
        
        nodes_degrees = [2, 1, 3, 1, 0, 0]
        nodes_params = [0] * len(nodes_degrees)
        
        genome1 = graph_genome.GraphGenome(len(G1), 
                                          nodes_degrees, 
                                          nodes_params
                                          )
        genome1.graph = G1
        genome2 = graph_genome.GraphGenome(len(G2), 
                                          nodes_degrees, 
                                          nodes_params
                                          )
        genome2.graph = G2
        
        genome1.prune_non_connected()
        self.assertEqual(len(genome1), 4)
        self.assertEqual(len(genome2), 4)
        
        sanity_checks(self, genome1)
        sanity_checks(self, genome2)
        
        bogus = str(genome1)
        bogus = str(genome2)

        genome1, genome2 =  graph_genome.graph_crossover(None, 
                                                         mom=genome1, 
                                                         dad=genome2)
        sanity_checks(self, genome1)
        sanity_checks(self, genome2)
 def test_pickling(self):
     num_nodes = 100
     genome = graph_genome.GraphGenome(num_nodes, 
                                   self.nodes_degrees, 
                                   self.nodes_params)
     genome.initialize()
     state = cPickle.dumps(genome)
     newgenome = cPickle.loads(state)
     self.assertEqual(len(genome), len(newgenome))
    def test_iterator(self):
        num_nodes = 100
        genome = graph_genome.GraphGenome(num_nodes, 
                                  self.nodes_degrees, 
                                  self.nodes_params)

        genome.initialize()
        all_nodes = [node for node in genome.nodes]
        self.assertEqual(len(all_nodes), len(genome))
        sanity_checks(self, genome)
 def test_mutation_crossover(self):
     num_nodes_dad = random.randint(5,100)
     num_nodes_mom = random.randint(5,100)
     
     num_nodes_types = random.randint(1, 100)
     nodes_degrees = [random.randint(0,50) for _ in xrange(num_nodes_types)]
     nodes_params = [random.randint(0,50) for _ in xrange(num_nodes_types)]
     
     dad = graph_genome.GraphGenome(num_nodes_dad, 
                                    nodes_degrees, 
                                    nodes_params                                          
                                    )
     mom = graph_genome.GraphGenome(num_nodes_mom, 
                                    nodes_degrees, 
                                    nodes_params
                                    )
     
     mom.setParams(p_del=0.5, p_add=0.5)
     dad.setParams(p_del=0.5, p_add=0.5)
     mom.initialize()
     dad.initialize()
     sanity_checks(self, mom)
     sanity_checks(self, dad)
     
     for step in xrange(300):
         sister, brother = graph_genome.graph_crossover(None, mom=mom, dad=dad)
         sanity_checks(self, sister)
         sanity_checks(self, brother)
         
         sanity_check_all_connected(self, sister)
         sanity_check_all_connected(self, brother)
                             
         sister.mutate(pmut=0.5, ga_engine = None)
         brother.mutate(pmut=0.5, ga_engine = None)
         
         sanity_checks(self, sister)
         sanity_checks(self, brother)
         
         sanity_check_all_connected(self, sister)
         sanity_check_all_connected(self, brother)
         
         dad = brother
         mom = sister
 def test_puning(self):
     for _ in xrange(100):
         num_nodes = 100
         genome = graph_genome.GraphGenome(num_nodes, 
                                   self.nodes_degrees, 
                                   self.nodes_params)
 
         genome.initialize()
         genome.prune_non_connected()
         sanity_checks(self, genome)
         sanity_check_all_connected(self, genome)
 def test_crossover(self):
     num_nodes = 15
     dad = graph_genome.GraphGenome(num_nodes, 
                                       self.nodes_degrees, 
                                       self.nodes_params                                          
                                       )
     mom = graph_genome.GraphGenome(num_nodes, 
                                       self.nodes_degrees, 
                                       self.nodes_params
                                       )
     
     mom.setParams(p_del=0.0, p_add=0.0)
     dad.setParams(p_del=0.0, p_add=0.0)
     mom.initialize()
     dad.initialize()
     sanity_checks(self, mom)
     sanity_checks(self, dad)
     
     for step in xrange(100):
         mom, dad = graph_genome.graph_crossover(None, mom=mom, dad=dad)
         sanity_checks(self, mom)
         sanity_checks(self, dad)
 def mutation_test(self):
     num_nodes = 20
     genome = graph_genome.GraphGenome(num_nodes, 
                                       self.nodes_degrees, 
                                       self.nodes_params)
     genome.initialize()
     sanity_checks(self, genome)
     genome.setParams(p_del=0.5, p_add=0.5)
     
     for _ in xrange(100):
         genome.mutate(pmut=0.2)
         sanity_checks(self, genome)
         sanity_check_all_connected(self, genome)
 def test_single_add_node(self):
     num_nodes = 10
     genome = graph_genome.GraphGenome(num_nodes, 
                                       self.nodes_degrees, 
                                       self.nodes_params)
     
     genome.initialize()
     length = len(genome)  
     sanity_checks(self, genome)
     genome.add_random_node()
     
     self.assertEqual(len(genome), length + 1)
     sanity_checks(self, genome)
 def test_single_remove_node(self):
     num_nodes = 20
     genome = graph_genome.GraphGenome(num_nodes, 
                                       self.nodes_degrees, 
                                       self.nodes_params)
     genome.initialize()
     sanity_checks(self, genome)
     
     genome.setParams(p_del=0.5, p_add=0.5)
     length = len(genome)
     genome.remove_random_node()        
     
     self.assertEqual(len(genome), length - 1)
     sanity_checks(self, genome)
 def test_adding_removing(self):
     num_nodes = 20
     genome = graph_genome.GraphGenome(num_nodes, 
                                       self.nodes_degrees, 
                                       self.nodes_params)
     genome.initialize()
     sanity_checks(self, genome)
     genome.setParams(p_del=0.5, p_add=0.5)
     
     for _ in xrange(100):
         
         length = len(genome)
         genome.remove_random_node()
         self.assertEqual(len(genome), length - 1)
         sanity_checks(self, genome)
         
         length = len(genome)
         genome.add_random_node()
         self.assertEqual(len(genome), length + 1)
         sanity_checks(self, genome)            
Exemplo n.º 11
0
    return c_sum * p_sum


def eval_func(chromosome, **args):
    G = chromosome.graph
    return nx.average_clustering(nx.Graph(G))


def step_checks(ga_engine):
    for genome in ga_engine.getPopulation():
        sanity_checks(genome)


out_degrees = [1, 2, 3]
node_params = [0, 0, 0]
genome = graph_genome.GraphGenome(25, out_degrees, node_params)
genome.evaluator.set(eval_func2)
genome.setParams(p_del=0.5, p_add=0.5)

ga = GSimpleGA.GSimpleGA(genome)
ga.setElitism(True)

ga.selector.set(Selectors.GRouletteWheel)
ga.getPopulation().setParams(tournamentPool=500)

ga.setGenerations(10000)
ga.setPopulationSize(500)
ga.setCrossoverRate(0.78)
ga.setMutationRate(0.08)
#ga.setMinimax(Consts.minimaxType["maximize"])
ga.setMinimax(Consts.minimaxType["minimize"])