Exemplo n.º 1
0
def get_node_ns(graph, k=3):
    """
    Get k nodes to attack based on the Netshield algorithm :cite`tong2010vulnerability`.

    :param graph: an undirected NetworkX graph
    :param k: number of nodes to attack

    :return: a list of nodes to attack
    """

    if not scipy.sparse.issparse(graph):
        sparse_graph = get_sparse_graph(graph)
    else:
        sparse_graph = graph

    lam, u = eigsh(sparse_graph, k=1, which='LA')
    lam = lam[0]

    u = np.abs(np.real(u).flatten())
    v = (2 * lam * np.ones(len(u))) * np.power(u, 2)

    nodes = []
    for i in range(k):
        B = sparse_graph[:, nodes]
        b = B * u[nodes]

        score = v - 2 * b * u
        score[nodes] = -1

        nodes.append(np.argmax(score))

    return nodes
Exemplo n.º 2
0
    def __init__(self, graph, runs, steps, **kwargs):
        # TODO: efficiency improvement--store edge and node difference rather than whole graph twice
        self.graph_og = graph.copy()
        self.graph = graph

        self.prm = {
            'runs': runs,
            'steps': steps,
            'seed': 1,
            'max_val': 1,
            'gif_animation': False,
            'gif_snaps': False,
            'plot_transition': False,
            'edge_style': None,
            'node_style': None,
            'fa_iter': 200
        }

        self.sim_info = defaultdict()
        self.sparse_graph = get_sparse_graph(self.graph)

        if self.prm['seed'] is not None:
            random.seed(self.prm['seed'])
            np.random.seed(self.prm['seed'])