Exemplo n.º 1
0
 def make_article_graph(self, layout="arf"):
     """Make an article graph"""
     self.graph = Graph(directed=False)
     # add vertex
     self.graph.add_vertex(len(self.db))
     # add properties
     cb = self.graph.new_vertex_property("int", self.db['Cited by'].values)
     self.graph.vertex_properties['nmb_citation'] = cb
     # Add links
     auths = list(self.author_betweeness.keys())
     auth2ind = {auths[i]: i
                 for i in range(len(auths))}
     auth2pub = self._get_author_publication()
     for _, pubs in auth2pub.items():
         if len(pubs) < 2:
             continue
         combis = itertools.combinations(pubs, 2)
         self.graph.add_edge_list(list(combis))
     # layout
     if layout == "arf":
         self.layout_pos = arf_layout(self.graph)
     elif layout == "sfpd":
         self.layout_pos = sfdp_layout(self.graph)
     elif layout == "fr":
         self.layout_pos = fruchterman_reingold_layout(self.graph)
     elif layout == "radial":
         self.layout_pos = radial_tree_layout(self.graph,
                                              auth2ind['Logan, B.E.'])
     else:
         raise ValueError()
Exemplo n.º 2
0
def output_json_fd_lay(u, model):
    if model == "FR":
        pos = gt.fruchterman_reingold_layout(u, n_iter=100, r=100, a=10)
    if model == "Ran":
        pos = gt.random_layout(g, dim=2)
    if model == "ARF":
        pos = gt.arf_layout(g, max_iter=0)

    # gt.sfdp_layout(u, p=2.6,K=40,C=1)
    nodes = []
    convert = []
    for v in u.vertices():
        s_node = {}
        s_node["name"] = v_userid[v]["userid"]
        s_node['gender'] = v_gender[v]["gender"]
        s_node['schregion'] = v_schregion[v]['schregion']
        s_node['school'] = v_school[v]['school']
        s_node['major'] = v_major[v]['major']
        s_node['marriage'] = v_marriage[v]['marriage']
        s_node['grade'] = v_grade[v]['grade']
        s_node['liveplace'] = v_liveplace[v]['liveplace']
        s_node['height'] = v_height[v]['height']
        s_node['weight'] = v_weight[v]['weight']
        s_node['scorelevel'] = v_scorelevel[v]['scorelevel']
        s_node['birthyear'] = v_birthyear[v]['birthyear']
        s_node["out-degree"] = v.out_degree()
        s_node["in-degree"] = v.in_degree()
        s_node["cx"] = pos[v][0]
        s_node["cy"] = pos[v][1]
        convert.append(v_userid[v]["userid"])
        # o_node={}
        # o_node[v_userid[v]["userid"]]=s_node
        nodes.append(s_node)
    all_data = {}
    all_data['nodes'] = nodes
    links = []
    for e in u.edges():
        s_edge = {}
        s_edge['source'] = convert.index(str(e_source[e]))
        s_edge['target'] = convert.index(str(e_target[e]))
        s_edge['date'] = e_date[e]['date']
        s_edge['dailycount'] = e_dailycount[e]['dailycount']
        s_edge['weight'] = len(u.edge(e.target(), e.source(), all_edges=True, add_missing=False)) + \
            len(u.edge(e.source(), e.target(), all_edges=True, add_missing=False))
        links.append(s_edge)
    all_data['links'] = links
    # gt.graph_draw(u, pos=pos, output="graph-draw.png")
    return(all_data)
Exemplo n.º 3
0
 def __fruchterman_reingold_layout(self, net, **params):
     """
     :Graph net: A Graph
     :string weight: Attribute name of an edge attribute with the respective weights
     :string pos: Attribute name of vector vertex property maps where the coordinates should be stored. If provided, this will also be used as the initial position of the vertices.
     """
     valid_params = {}
     vparam = ["pos"]
     for param_name in vparam:
         if params[param_name] in net.vp:
              valid_params[param_name] = net.vp[params[param_name]]
     eparam = ["weight"]
     for param_name in eparam:
         if params[param_name] in net.ep:
              valid_params[param_name] = net.ep[params[param_name]]
     return gt.fruchterman_reingold_layout(net, **valid_params)
Exemplo n.º 4
0
    def make_author_graph(self, layout="arf"):
        """Make an author graph"""
        self.graph = Graph(directed=False)
        # add vertex
        auths = self.author_list
        self.graph.add_vertex(len(auths))
        # add links
        auth2ind = {auths[i]: i
                    for i in range(len(auths))}
        abet = []
        authbet = copy.deepcopy(self.author_betweeness)
        for auth in auths:
            for col, weight in authbet[auth].items():
                if col == auth:
                    continue
                self.graph.add_edge(auth2ind[auth], auth2ind[col])
                del authbet[col][auth]  # ensure that edges are not doubled
                abet.append(weight)
        # add properties
        cb = self.graph.new_edge_property("int", abet)
        self.graph.edge_properties['weight'] = cb
        # layout
        if layout == "arf":
            self.layout_pos = arf_layout(self.graph,
                                         weight=self.graph.ep.weight,
                                         pos=self.layout_pos,
                                         max_iter=10000)
        elif layout == "sfpd":
            self.layout_pos = sfdp_layout(self.graph,
                                          eweight=self.graph.ep.weight,
                                          pos=self.layout_pos)
        elif layout == "fr":
            self.layout_pos = fruchterman_reingold_layout(self.graph,
                                                          weight=self.graph.ep.weight,
                                                          circular=True,
                                                          pos=self.layout_pos)
        elif layout == "radial":
            nc = self.get_total_citation()
            main_auth_ind = np.argmax(list(nc.values()))
            main_auth = list(nc.keys())[main_auth_ind]
            self.layout_pos = radial_tree_layout(self.graph,
                                                 auth2ind[main_auth])
        elif layout == "planar":
            self.layout_pos = planar_layout(self.graph)

        else:
            raise ValueError()
def output_json_fd_lay_b(u, model):
    if model == "FR":
        pos = gt.fruchterman_reingold_layout(u, n_iter=100, r=100, a=10)
    if model == "Ran":
        pos = gt.random_layout(g, dim=2)
    if model == "ARF":
        pos = gt.arf_layout(g, max_iter=0)
    nodes = []
    convert = []
    for v in u.vertices():
        s_node = {}
        s_node["name"] = v_userid[v]["userid"]
        s_node['race'] = v_race[v]["race"]
        s_node['cohort'] = v_cohort[v]['cohort']
        s_node['gender'] = v_gender[v]['gender']
        s_node['c1net'] = v_c1net[v]['c1net']
        s_node['c2net'] = v_c2net[v]['c2net']
        s_node['c3net'] = v_c3net[v]['c3net']
        s_node['c4net'] = v_c4net[v]['c4net']
        s_node['c5net'] = v_c5net[v]['c5net']
        s_node['c6net'] = v_c6net[v]['c6net']
        s_node['c7net'] = v_c7net[v]['c7net']
        s_node["out-degree"] = v.out_degree()
        s_node["in-degree"] = v.in_degree()
        s_node["cx"] = (pos[v][0])
        s_node["cy"] = (pos[v][1])
        convert.append(v_userid[v]["userid"])
        # o_node={}
        # o_node[v_userid[v]["userid"]]=s_node
        nodes.append(s_node)
    all_data = {}
    all_data['nodes'] = nodes
    links = []
    for e in u.edges():
        s_edge = {}
        s_edge['source'] = convert.index(str(e_source[e]))
        s_edge['target'] = convert.index(str(e_target[e]))
        s_edge['type'] = e_type[e]['type']
        s_edge['year'] = e_year[e]['year']
        s_edge['weight'] = len(u.edge(e.target(), e.source(), all_edges=True, add_missing=False)) + \
            len(u.edge(e.source(), e.target(), all_edges=True, add_missing=False))
        links.append(s_edge)
    all_data['links'] = links
    return (all_data)
Exemplo n.º 6
0
def draw_graph(
    adata: AnnData,
    layout: _Layout = 'sfdp',
    #    init_pos: Union[str, bool, None] = None,
    #    root: Optional[int] = None,
    use_tree: bool = False,
    random_seed: Optional[int] = None,
    adjacency: Optional[spmatrix] = None,
    key_added_ext: Optional[str] = None,
    key: Optional[str] = 'schist',
    copy: bool = False,
    **kwds,
):
    """\
    Extends scanpy.tools.draw_graph function using some layouts available in 
    graph-tool library. Three layouts are available here:
    
    - SFDP spring-block layout.
    - ARF spring-block layout.
    - Fruchterman-Reingold spring-block layout.
    
    Fruchterman-Reingold is already available in scanpy, but here can be used
    to render the nested model tree. 
    
    In order to use these plotting function, the NestedBlockState needs to be
    saved when building the model, so `save_state=True` needs to be set.
    
    Parameters
    ----------
    adata
        Annotated data matrix. A NestedBlockState object needs to be saved
    layout
        A layout among 'sfdp', 'fr' or 'arf'. Other graph-tool layouts haven't been
        implemented.
    use_tree
        When this is set, the tree of the nested model is used to generate layout, 
        otherwise the layout only accounts for the neighborhood graph.    
    random_seed
        Random number to be used as seed for graph-tool
    adjacency
        Sparse adjacency matrix of the graph, defaults to
        `adata.uns['neighbors']['connectivities']`.
    key_added_ext
        By default, append `layout`.
    key
        The slot in `AnnData.uns` containing the state. Default is 'nsbm'
    copy
        Return a copy instead of writing to adata.
    **kwds
        Parameters of chosen igraph layout. See e.g. `fruchterman-reingold`_
        [Fruchterman91]_. One of the most important ones is `maxiter`.

        .. _fruchterman-reingold: http://igraph.org/python/doc/igraph.Graph-class.html#layout_fruchterman_reingold

    Returns
    -------
    Depending on `copy`, returns or updates `adata` with the following field.

    **X_draw_graph_layout** : `adata.obsm`
        Coordinates of graph layout. E.g. for layout='fa' (the default),
        the field is called 'X_draw_graph_fa'
    """
    if random_seed:
        np.random.seed(random_seed)
        gt.seed_rng(random_seed)

    n_cells = adata.shape[0]
    start = logg.info(f'drawing single-cell graph using layout {layout!r}')
    if layout not in _LAYOUTS:
        raise ValueError(f'Provide a valid layout, one of {_LAYOUTS}.')
    adata = adata.copy() if copy else adata
    if adjacency is None and 'neighbors' not in adata.uns:
        raise ValueError('You need to run `pp.neighbors` first '
                         'to compute a neighborhood graph.')
    if not key in adata.uns:
        raise ValueError(
            'You need to run `nested_model` before trying to run this function '
        )

    if use_tree and 'state' not in adata.uns[key]:
        raise ValueError(
            'When `use_tree` is set to `True`, a state should be saved'
            'running  `nested_model(adata, save_state=True)`.')
    if adjacency is None:
        adjacency = adata.uns['neighbors']['connectivities']

    g = get_graph_tool_from_adjacency(adjacency)
    weights = g.ep['weight']
    if use_tree:
        state = state_from_blocks(adata)
        g, _, _ = gt.get_hierarchy_tree(state, empty_branches=False)
        weights = None

    # actual drawing
    positions = np.zeros((n_cells, 2))
    if layout == 'fr':
        positions = gt.fruchterman_reingold_layout(g, weight=weights)
        positions = np.array([x for x in positions][:n_cells])
    elif layout == 'sfdp':
        positions = gt.sfdp_layout(g)
        positions = np.array([x for x in positions][:n_cells])
    elif layout == 'arf':
        positions = gt.arf_layout(g)
        positions = np.array([x for x in positions][:n_cells])

    adata.uns['draw_graph'] = {}
    adata.uns['draw_graph']['params'] = dict(layout=layout,
                                             random_seed=random_seed)
    key_added = f'X_draw_graph_{layout}'
    adata.obsm[key_added] = positions
    logg.info(
        '    finished',
        time=start,
        deep=('added\n'
              f'    {key_added!r}, graph_drawing coordinates (adata.obsm)'),
    )
    return adata if copy else None
Exemplo n.º 7
0
pos_prop2 = g.new_vertex_property('vector<double>')
for v in g.vertices():
    i = g.vertex_index[v]
    pos_prop2[v] = pos[i]#[::-1]
    
fastlayout_strided = time.clock()
fastlayout_strided = fastlayout - start
    
# draw the graph in graph_tool
gt.graph_draw(g, pos=pos_prop2, output="output/fr-fastlayout-strided.pdf")



# call and plot the reference implementation of graph-tool
start = time.clock()
reference = gt.fruchterman_reingold_layout(g, n_iter=max_it)
reflayout = time.clock()
reflayout = reflayout - start
gt.graph_draw(g, pos=reference, output="output/fr-reference.pdf")

print "Time for fastlayout is: ", fastlayout
print "Time for reference implementaion in gt is: ", reflayout
print "Speedup is x%.2f" % (reflayout / fastlayout)

# Graph-Tool references
# =====================
# * vertices and edgelist
#   https://graph-tool.skewed.de/static/doc/quickstart.html#iterating-over-all-vertices-or-edges
# * calling a layout function
#   https://graph-tool.skewed.de/static/doc/draw.html#graph_tool.draw.fruchterman_reingold_layout
# * draw graphs
Exemplo n.º 8
0
    vprop_shape[v_switch] = "hexagon"
    for host in switch['hosts']:
        v_host = g.add_vertex()
        e_link = g.add_edge(v_switch, v_host)
        vprop_text[v_host] = host['name']
        vprop_color[v_host] = 100
        vprop_size[v_host] = 40
        vprop_shape[v_host] = "circle"
        name_to_vertex[host['name']] = v_host
for link in network['switch_links']:
    v_node1 = name_to_vertex[link['node1']['name']]
    v_node2 = name_to_vertex[link['node2']['name']]

    g.add_edge(v_node1, v_node2)

pos = fruchterman_reingold_layout(g, n_iter=1000)

#manually assign positions
pos[name_to_vertex['s1']] = [2, 0]
pos[name_to_vertex['s2']] = [3, 0.5]
pos[name_to_vertex['s3']] = [2, 1]
pos[name_to_vertex['s4']] = [1, 1.5]
pos[name_to_vertex['s5']] = [3, 1.5]
pos[name_to_vertex['s6']] = [2, 2]
pos[name_to_vertex['s7']] = [1, 2.5]
pos[name_to_vertex['s8']] = [3, 2.5]

pos[name_to_vertex['h1']] = [2, -0.7]
pos[name_to_vertex['h2']] = [3.5, 0]
pos[name_to_vertex['h3']] = [1.5, 0.5]
pos[name_to_vertex['h4']] = [0.5, 1]
def calculate_cen_b(pre_u, type, pos_type):
    # if type == "DeC":
    if type == "BetC":
        v_be = pre_u.new_vertex_property("float")
        v_betweenness = gtc.betweenness(pre_u, vprop=v_be)
        pre_u.vertex_properties['betweenness'] = v_be
    if type == "CloC":
        v_clo = pre_u.new_vertex_property("float")
        v_closeness = gtc.closeness(pre_u, vprop=v_clo)
        pre_u.vertex_properties['closeness'] = v_clo
    # if type == "EigenveC":
    # if type == "KatzC":
    # if type == "EigentrustC":

    if pos_type == "FD":
        pos = gt.sfdp_layout(pre_u, p=2.6, K=40, C=1)
    if pos_type == "FR":
        pos = gt.fruchterman_reingold_layout(pre_u, n_iter=100, r=100, a=10)

    nodes = []
    convert = []
    for v in pre_u.vertices():
        s_node = {}
        s_node["name"] = v_userid[v]["userid"]
        s_node['race'] = v_race[v]["race"]
        s_node['cohort'] = v_cohort[v]['cohort']
        s_node['gender'] = v_gender[v]['gender']
        s_node['c1net'] = v_c1net[v]['c1net']
        s_node['c2net'] = v_c2net[v]['c2net']
        s_node['c3net'] = v_c3net[v]['c3net']
        s_node['c4net'] = v_c4net[v]['c4net']
        s_node['c5net'] = v_c5net[v]['c5net']
        s_node['c6net'] = v_c6net[v]['c6net']
        s_node['c7net'] = v_c7net[v]['c7net']
        s_node["out-degree"] = v.out_degree()
        s_node["in-degree"] = v.in_degree()
        s_node["cx"] = (pos[v][0])
        s_node["cy"] = (pos[v][1])
        if 'v_be' in locals().keys():
            s_node["BetC"] = v_be[v]
        if 'v_clo' in locals().keys():
            if math.isnan(v_clo[v]):
                v_clo[v] = 0
            s_node["CloC"] = v_clo[v]
        convert.append(v_userid[v]["userid"])
        # o_node={}
        # o_node[v_userid[v]["userid"]]=s_node
        nodes.append(s_node)
    all_data = {}
    all_data['nodes'] = nodes
    links = []
    for e in pre_u.edges():
        s_edge = {}
        s_edge['source'] = convert.index(str(e_source[e]))
        s_edge['target'] = convert.index(str(e_target[e]))
        s_edge['type'] = e_type[e]['type']
        s_edge['year'] = e_year[e]['year']
        s_edge['weight'] = len(pre_u.edge(e.target(), e.source(), all_edges=True, add_missing=False)) + \
            len(pre_u.edge(e.source(), e.target(),
                           all_edges=True, add_missing=False))
        links.append(s_edge)
    all_data['links'] = links
    return (all_data)
Exemplo n.º 10
0
 def make_fr_graph(self):
     if self.random_state is not None:
         np.random.seed(self.random_state)
     pos = self.g.new_edge_property("double")
     self.g.vertex_properties['pos'] = gt.fruchterman_reingold_layout(
         self.g)
Exemplo n.º 11
0
def calculate_cen(pre_u, type, pos_type):
    # if type == "DeC":
    if type == "BetC":
        v_be = pre_u.new_vertex_property("float")
        v_betweenness = gtc.betweenness(pre_u, vprop=v_be)
        pre_u.vertex_properties['betweenness'] = v_be

    if type == "CloC":
        v_clo = pre_u.new_vertex_property("float")
        v_closeness = gtc.closeness(pre_u, vprop=v_clo)
        pre_u.vertex_properties['closeness'] = v_clo
    # if type == "EigenveC":
    # if type == "KatzC":
    # if type == "EigentrustC":

    if pos_type == "FD":
        pos = gt.sfdp_layout(pre_u, p=2.6, K=40, C=1)
    if pos_type == "FR":
        pos = gt.fruchterman_reingold_layout(pre_u, n_iter=100, r=100, a=10)

    nodes = []
    convert = []
    for v in pre_u.vertices():
        s_node = {}
        s_node["name"] = v_userid[v]["userid"]
        s_node['gender'] = v_gender[v]["gender"]
        s_node['schregion'] = v_schregion[v]['schregion']
        s_node['school'] = v_school[v]['school']
        s_node['major'] = v_major[v]['major']
        s_node['marriage'] = v_marriage[v]['marriage']
        s_node['grade'] = v_grade[v]['grade']
        s_node['liveplace'] = v_liveplace[v]['liveplace']
        s_node['height'] = v_height[v]['height']
        s_node['weight'] = v_weight[v]['weight']
        s_node['scorelevel'] = v_scorelevel[v]['scorelevel']
        s_node['birthyear'] = v_birthyear[v]['birthyear']
        s_node["out-degree"] = v.out_degree()
        s_node["in-degree"] = v.in_degree()
        s_node["cx"] = pos[v][0]
        s_node["cy"] = pos[v][1]
        if 'v_be' in locals().keys():
            s_node["BetC"] = v_be[v]
        if 'v_clo' in locals().keys():
            if math.isnan(v_clo[v]):
                v_clo[v] = 0
            s_node["CloC"] = v_clo[v]
            # print(v_clo[v])
        convert.append(v_userid[v]["userid"])
        # o_node={}
        # o_node[v_userid[v]["userid"]]=s_node
        nodes.append(s_node)
    all_data = {}
    all_data['nodes'] = nodes
    links = []
    for e in pre_u.edges():
        s_edge = {}
        s_edge['source'] = convert.index(str(e_source[e]))
        s_edge['target'] = convert.index(str(e_target[e]))
        s_edge['date'] = e_date[e]['date']
        s_edge['dailycount'] = e_dailycount[e]['dailycount']
        s_edge['weight'] = len(pre_u.edge(e.target(), e.source(), all_edges=True, add_missing=False)) + \
            len(pre_u.edge(e.source(), e.target(),
                           all_edges=True, add_missing=False))
        links.append(s_edge)
    all_data['links'] = links
    return(all_data)
Exemplo n.º 12
0
color_list = [[0.64, 0.16, 0.16, 1], [0.41, 0.55, 0.13, 1],
              [0.06, 0.3, 0.54, 1]]
mode_list = ["BA", "SW", "ER"]
color_index = 0
mode_index = 2
mode_select = 6
#demo_graph, node_number, edge_number = open_file_data_graph(file_name[mode_select])
demo_graph, node_number, edge_number = networkx_graph_generator(
    mode=mode_list[mode_index])

# create graph_tool graph
original_graph = gt.Graph(directed=False)
for edge in demo_graph.edges():
    original_graph.add_edge(edge[0], edge[1])
pos1 = gt.fruchterman_reingold_layout(original_graph)
#pos1 = gt.sfdp_layout(original_graph)
gt.graph_draw(original_graph,
              pos=pos1,
              vprops={
                  "size": 5,
                  "fill_color": color_list[color_index]
              },
              eprops={
                  "color": [0.5, 0.5, 0.5, 0.5],
                  "marker_size": 4
              },
              output_size=(400, 400),
              output="out.eps")
gt.graph_draw(original_graph,
              pos=pos1,
Exemplo n.º 13
0
color_index = 0
mode_index = 0
er_graph, node_number, edge_number = networkx_graph_generator(
    mode=mode_list[mode_index])
dat, dat_path = dats_generator(graph_topology=er_graph,
                               mode="gaussian",
                               dat_number=1,
                               seed=True)
dat = dat[0]
dat_path = dat_path[0]

# create graph_tool graph
original_graph = gt.Graph(directed=False)
for edge in er_graph.edges():
    original_graph.add_edge(edge[0], edge[1])
pos1 = gt.fruchterman_reingold_layout(original_graph)
#pos1 = gt.sfdp_layout(original_graph)
gt.graph_draw(original_graph,
              pos=pos1,
              vprops={
                  "size": 5,
                  "fill_color": color_list[color_index]
              },
              eprops={
                  "color": [0.5, 0.5, 0.5, 0.5],
                  "marker_size": 4
              },
              output_size=(400, 400),
              output="ER.eps")
count = 0
for i in pos1:
    edge_width[edge] = width_edge_dict[link]

g.edge_properties["edge_color"] = edge_color
g.edge_properties["edge_label"] = edge_label
g.edge_properties["edge_width"] = edge_width

print('global_clustering', gt.global_clustering(g))
print('assortativity out', gt.assortativity(g, "out"))  # correlations
print('assortativity in', gt.assortativity(g, "in"))
print('assortativity total', gt.assortativity(g, "total"))

g = gt.GraphView(g)

print('start drawing')

pos_fr = gt.fruchterman_reingold_layout(g, n_iter=1000)
g.vertex_properties["pos_fr"] = pos_fr
control = g.new_edge_property("vector<double>")
for e in g.edges():
    d = sqrt(sum((pos_fr[e.source()].a - pos_fr[e.target()].a)**2)) / 5
    control[e] = [0.3, d, 0.7, d]
g.edge_properties["control"] = control

gt.graph_draw(g,
              pos=pos_fr,
              vertex_pen_width=0.6,
              vertex_color=[1, 1, 1, 1],
              vertex_fill_color=color_bytype,
              vertex_size=gt.prop_to_size(degrees, mi=10, ma=20),
              edge_color=edge_color,
              edge_control_points=control,