Exemplo n.º 1
0
    def predict(self, predict_data=None, return_logits=True):

        if not self.model:
            raise RuntimeError(
                'You must compile your model before training/testing/predicting. Use `trainer.build()`.'
            )

        cache = self.cache
        cfg = self.cfg.predict
        cfg.return_logits = return_logits

        if predict_data is None:
            predict_data = np.arange(self.graph.num_nodes)

        if not isinstance(predict_data, Sequence):
            predict_data = gf.asarray(predict_data)
            predict_data = self.predict_sequence(predict_data)

        cache.predict_data = predict_data

        logits = self.predict_step(predict_data)

        if not return_logits:
            logits = softmax(logits)

        return logits.squeeze()
Exemplo n.º 2
0
    def predict(self, predict_data=None, return_prob=True):
        """
        Predict the output probability for the input data.

        Note:
        ----------
        You must compile your model before training/testing/predicting.
            Use `model.build()`.

        Parameters:
        ----------
        predict_data: Numpy 1D array, optional.
            The indices of objects to predict.
            if None, predict the all objects.

        return_prob: bool.
            whether to return the probability of prediction.

        Return:
        ----------
        The predicted probability of each class for each object,
            for node classification task, it has shape 
            (num_nodes, num_node_classes).

        """

        if not self.model:
            raise RuntimeError(
                'You must compile your model before training/testing/predicting. Use `model.build()`.'
            )

        if predict_data is None:
            predict_data = np.arange(self.graph.num_nodes, dtype=gg.intx())

        if not isinstance(predict_data, Sequence):
            predict_data = self.predict_sequence(predict_data)

        self.predict_data = predict_data

        logit = self.predict_step(predict_data)
        if return_prob:
            logit = softmax(logit)
        return logit
Exemplo n.º 3
0
    def predict(self, index=None, return_prob=True):
        """
        Predict the output probability for the input node index.


        Note:
        ----------
        You must compile your model before training/testing/predicting.
            Use `model.build()`.

        Parameters:
        ----------
        index: Numpy 1D array, optional.
            The indices of nodes to predict.
            if None, predict the all nodes.

        return_prob: bool.
            whether to return the probability of prediction.

        Return:
        ----------
        The predicted probability of each class for each node,
            shape (n_nodes, n_classes).

        """

        if not self.model:
            raise RuntimeError(
                'You must compile your model before training/testing/predicting. Use `model.build()`.'
            )

        if index is None:
            index = np.arange(self.graph.n_nodes, dtype=intx())
        else:
            index = asintarr(index)
        sequence = self.predict_sequence(index)
        logit = self.predict_step(sequence)
        if return_prob:
            logit = softmax(logit)
        return logit