Exemplo n.º 1
0
def union1d(arr1, arr2, toarr=False):
    arr1 = asintarr(arr1)
    arr2 = asintarr(arr2)
    arr = list(arr1.intersection(arr2))
    if toarr:
        arr = np.asarray(arr)
    return arr
Exemplo n.º 2
0
def setdiff1d(arr1, arr2, toarr=False):
    arr1 = asintarr(arr1)
    arr2 = asintarr(arr2)
    arr = list(arr1.difference(arr2))
    if toarr:
        arr = np.asarray(arr)
    return arr
Exemplo n.º 3
0
    def __init__(self,
                 adj,
                 x,
                 labels,
                 idx_train,
                 idx_unlabeled,
                 hidden_layers,
                 use_relu,
                 self_training_labels=None,
                 seed=None,
                 name=None,
                 device='CPU:0',
                 **kwargs):

        super().__init__(adj=adj,
                         x=x,
                         labels=labels,
                         seed=seed,
                         name=name,
                         device=device,
                         **kwargs)
        adj, x, labels = self.adj, self.x, self.labels

        idx_train = asintarr(idx_train)
        idx_unlabeled = asintarr(idx_unlabeled)

        if self_training_labels is None:
            surrogate = DenseGCN(adj,
                                 x,
                                 labels,
                                 device='GPU',
                                 norm_x=None,
                                 seed=None)
            surrogate.build(16, activations='relu' if use_relu else None)
            his = surrogate.train(idx_train,
                                  verbose=0,
                                  epochs=200,
                                  save_best=False)
            self_training_labels = surrogate.predict(idx_unlabeled).argmax(1)

        self.ll_ratio = None
        # mettack can also conduct feature attack
        self.allow_feature_attack = True

        with tf.device(self.device):
            self.idx_train = astensor(idx_train, dtype=self.intx)
            self.idx_unlabeled = astensor(idx_unlabeled, dtype=self.intx)
            self.labels_train = astensor(self.labels[idx_train],
                                         dtype=self.floatx)
            self.self_training_labels = astensor(self_training_labels,
                                                 dtype=self.floatx)
            self.tf_adj = astensor(adj.A, dtype=self.floatx)
            self.tf_x = astensor(x, dtype=self.floatx)
            self.build(hidden_layers=hidden_layers)
            self.use_relu = use_relu
            self.loss_fn = SparseCategoricalCrossentropy(from_logits=True)

            self.adj_changes = tf.Variable(tf.zeros_like(self.tf_adj))
            self.x_changes = tf.Variable(tf.zeros_like(self.tf_x))
Exemplo n.º 4
0
    def __init__(self,
                 adj,
                 x,
                 labels,
                 idx_train,
                 surrogate=None,
                 surrogate_args={},
                 seed=None,
                 name=None,
                 device='CPU:0',
                 **kwargs):

        super().__init__(adj=adj,
                         x=x,
                         labels=labels,
                         seed=seed,
                         name=name,
                         device=device,
                         **kwargs)
        adj, x = self.adj, self.x

        if surrogate is None:
            surrogate = train_a_surrogate(self, 'DenseGCN', idx_train,
                                          **surrogate_args)
        elif not isinstance(surrogate, DenseGCN):
            raise RuntimeError(
                "surrogate model should be the instance of `graphgallery.nn.DenseGCN`."
            )

        idx_attack = asintarr(idx_train)

        with tf.device(self.device):
            self.idx_attack = astensor(idx_attack)
            self.labels_attack = astensor(labels[idx_attack])
            self.tf_adj = astensor(self.adj.A)
            self.tf_x = astensor(x)
            self.complementary = tf.ones_like(self.tf_adj) - tf.eye(
                self.n_nodes) - 2. * self.tf_adj
            self.loss_fn = sparse_categorical_crossentropy
            self.adj_changes = tf.Variable(
                tf.zeros(adj.shape, dtype=self.floatx))
            self.surrogate = surrogate

            # used for CW_loss=True
            self.label_matrix = tf.gather(tf.eye(self.n_classes),
                                          self.labels_attack)
Exemplo n.º 5
0
    def __init__(self,
                 adj,
                 x,
                 labels,
                 idx_train,
                 idx_unlabeled=None,
                 surrogate=None,
                 surrogate_args={},
                 seed=None,
                 name=None,
                 device='CPU:0',
                 **kwargs):

        super().__init__(adj=adj,
                         x=x,
                         labels=labels,
                         seed=seed,
                         name=name,
                         device=device,
                         **kwargs)

        adj, x = self.adj, self.x

        if surrogate is None:
            surrogate = train_a_surrogate(self, 'DenseGCN', idx_train,
                                          **surrogate_args)
        elif not isinstance(surrogate, DenseGCN):
            raise RuntimeError(
                "surrogate model should be the instance of `graphgallery.nn.DenseGCN`."
            )

        # poisoning attack in DeepRobust
        if idx_unlabeled is None:
            idx_attack = idx_train
            labels_attack = labels[idx_train]
        else:  # Evasion attack in original paper
            idx_unlabeled = asintarr(idx_unlabeled)
            self_training_labels = self.estimate_self_training_labels(
                surrogate, idx_unlabeled)
            idx_attack = np.hstack([idx_train, idx_unlabeled])
            labels_attack = np.hstack(
                [labels[idx_train], self_training_labels])

        with tf.device(self.device):
            self.idx_attack = astensor(idx_attack)
            self.labels_attack = astensor(labels_attack)
            self.tf_adj = astensor(self.adj.A)
            self.tf_x = astensor(x)
            self.complementary = tf.ones_like(self.tf_adj) - tf.eye(
                self.n_nodes) - 2. * self.tf_adj
            self.loss_fn = SparseCategoricalCrossentropy()
            self.adj_changes = tf.Variable(
                tf.zeros(adj.shape, dtype=self.floatx))
            self.surrogate = surrogate

            # used for `CW_loss=True`
            self.label_matrix = tf.gather(tf.eye(self.n_classes),
                                          self.labels_attack)
            self.range_idx = tf.range(idx_attack.size, dtype=self.intx)
            self.indices_real = tf.stack([self.range_idx, self.labels_attack],
                                         axis=1)