def __repr__(self):
        """
        Return a string description of the model, including a description of
        the training data, training statistics, and model hyper-parameters.

        Returns
        -------
        out : string
            A description of the model.
        """

        model_fields = [
            ('Number of coefficients', 'num_coefficients'),
            ('Number of examples', 'num_examples'),
            ('Number of feature columns', 'num_features'),
            ('Number of unpacked features', 'num_unpacked_features')]

        hyperparam_fields = [
            ("L1 penalty", 'l1_penalty'),
            ("L2 penalty", 'l2_penalty')
        ]

        solver_fields = [
            ("Solver", 'solver'),
            ("Solver iterations", 'training_iterations'),
            ("Solver status", 'training_solver_status'),
            ("Training time (sec)", 'training_time')]

        training_fields = [
            ("Residual sum of squares", 'training_loss'),
            ("Training RMSE", 'training_rmse')]

        return _toolkit_repr_print(self, [model_fields, hyperparam_fields, 
                        solver_fields, training_fields], width=30)
 def __repr__(self):
     """
     Print a string description of the model when the model name is entered
     in the terminal.
     """
     (sections, section_titles) = self._get_summary_struct()
     return _toolkit_repr_print(self, sections, section_titles, width=30)
    def __repr__(self):
        """
        Print a string description of the model, when the model name is entered
        in the terminal.
        """

        model_fields = [
            ('Number of coefficients', 'num_coefficients'),
            ('Number of examples', 'num_examples'),
            ('Number of classes', 'num_classes'),
            ('Number of feature columns', 'num_features'),
            ('Number of unpacked features', 'num_unpacked_features')]

        hyperparam_fields = [
            ("Mis-classification penalty", 'penalty'),
        ]

        solver_fields = [
            ("Solver", 'solver'),
            ("Solver iterations", 'training_iterations'),
            ("Solver status", 'training_solver_status'),
            ("Training time (sec)", 'training_time')]

        training_fields = [
            ("Train Loss", 'training_loss')]

        return _toolkit_repr_print(self, [model_fields, hyperparam_fields,
                        solver_fields, training_fields], width=30)
Exemplo n.º 4
0
 def __repr__(steps):
     for name, tr in self._transformers:
         model_fields.append(
             (name, _precomputed_field(self._compact_class_repr(tr))))
     return _toolkit_repr_print(steps, [model_fields],
                                width=8,
                                section_titles=['Steps'])
 def __repr__(self):
     """
     Print a string description of the model when the model name is entered
     in the terminal.
     """
     (sections, section_titles) = self._get_summary_struct()
     return _toolkit_repr_print(self, sections, section_titles, width=30)
    def __repr__(self):
        """
        Print a string description of the model, when the model name is entered
        in the terminal.
        """

        model_fields = [
            ("Number of coefficients", "num_coefficients"),
            ("Number of examples", "num_examples"),
            ("Number of feature columns", "num_features"),
            ("Number of unpacked features", "num_unpacked_features"),
        ]

        hyperparam_fields = [("L1 penalty", "l1_penalty"), ("L2 penalty", "l2_penalty")]

        solver_fields = [
            ("Solver", "solver"),
            ("Solver iterations", "training_iterations"),
            ("Solver status", "training_solver_status"),
            ("Training time (sec)", "training_time"),
        ]

        training_fields = [("Log-likelihood", "training_loss")]

        return _toolkit_repr_print(self, [model_fields, hyperparam_fields, solver_fields, training_fields], width=30)
    def __repr__(self):

        descriptions = [(k, _precomputed_field(v)) for k, v in self._describe_fields().iteritems()]

        (sections, section_titles) = self._get_summary_struct()
        non_empty_sections = [s for s in sections if len(s) > 0]
        non_empty_section_titles = [section_titles[i] for i in range(len(sections)) if len(sections[i]) > 0]

        non_empty_section_titles.append('Queryable Fields')
        non_empty_sections.append(descriptions)

        return _toolkit_repr_print(self, non_empty_sections, non_empty_section_titles, width=40)
    def __repr__(self):
        """
        Return a string description of the model, including a description of
        the training data, training statistics, and model hyper-parameters.

        Returns
        -------
        out : string
            A description of the model.
        """
        (sections, section_titles) = self._get_summary_struct()
        return _toolkit_repr_print(self, sections, section_titles, width=30)
    def __repr__(self):
        """
        Return a string description of the model, including a description of
        the training data, training statistics, and model hyper-parameters.

        Returns
        -------
        out : string
            A description of the model.
        """
        (sections, section_titles) = self._get_summary_struct()
        return _toolkit_repr_print(self, sections, section_titles, width=30)
Exemplo n.º 10
0
    def __repr__(self):
        """
        Print a string description of the model when the model name is entered
        in the terminal.
        """
        width = 40

        sections, section_titles = self._get_summary_struct()
        accessible_fields = {
            "cluster_id": "Cluster label for each row in the input dataset."
        }

        out = _toolkit_repr_print(self, sections, section_titles, width=width)
        out2 = _summarize_accessible_fields(accessible_fields, width=width)
        return out + "\n" + out2
Exemplo n.º 11
0
    def __repr__(self):
        """
        Print a string description of the model when the model name is entered
        in the terminal.
        """
        width = 36
        key_str = "{:<{}}: {}"

        (sections, section_titles) = self._get_summary_struct()
        accessible_fields = {
            "entities": "Consolidated input records plus entity labels."}

        out = _toolkit_repr_print(self, sections, section_titles, \
                                                            width=width)
        out2 = _summarize_accessible_fields(accessible_fields, width=width)
        return out + "\n" + out2
Exemplo n.º 12
0
    def __repr__(self):
        """
        Print a string description of the model when the model name is entered
        in the terminal.
        """

        width = 40
        key_str = "{:<{}}: {}"

        sections, section_titles = self._get_summary_struct()
        accessible_fields = {
            "scores": "Anomaly score for each instance in the current dataset."}

        out = _tkutl._toolkit_repr_print(self, sections, section_titles,
                                         width=width)
        out2 = _summarize_accessible_fields(accessible_fields, width=width)
        return out + "\n" + out2
    def __repr__(self):
        """
        Return a string description of the model, including a description of
        the training data, training statistics, and model hyper-parameters.

        Returns
        -------
        out : string
            A description of the model.
        """
        accessible_fields = {
            "vocabulary": "The vocabulary of the trimmed input."
        }
        (sections, section_titles) = self._get_summary_struct()
        out = _toolkit_repr_print(self, sections, section_titles, width=30)
        out2 = _summarize_accessible_fields(accessible_fields, width=30)
        return out + "\n" + out2
    def __repr__(self):
        """
        Print a string description of the model when the model name is entered
        in the terminal.
        """

        width = 40
        key_str = "{:<{}}: {}"

        sections, section_titles = self._get_summary_struct()
        accessible_fields = {
            "scores": "Local outlier factor for each row in the input dataset.",
            "nearest_neighbors_model": "Model used internally to compute nearest neighbors."}

        out = _tkutl._toolkit_repr_print(self, sections, section_titles,
                                         width=width)
        out2 = _summarize_accessible_fields(accessible_fields, width=width)
        return out + "\n" + out2
Exemplo n.º 15
0
    def __repr__(self):
        """
        Print a string description of the model when the model name is entered
        in the terminal.
        """
        width = 36
        sections, section_titles = self._get_summary_struct()
        accessible_fields = {
            "nearest_neighbors_model":
            "Model used internally to compute nearest neighbors."
        }

        out = _tkutl._toolkit_repr_print(self,
                                         sections,
                                         section_titles,
                                         width=width)
        out2 = _summarize_accessible_fields(accessible_fields, width=width)
        return out + "\n" + out2
    def __repr__(self):
        """
        Print a string description of the model when the model name is entered
        in the terminal.
        """
        width = 36
        key_str = "{:<{}}: {}"

        (sections, section_titles) = self._get_summary_struct()

        out = _toolkit_repr_print(self, sections, section_titles, \
                                                            width=width)

        extra = []
        extra.append(key_str.format("Accessible fields", width, ""))
        extra.append(key_str.format("   entities", width,
                   "Consolidated input records plus entity labels."))
        return out + '\n' + '\n'.join(extra)
    def __repr__(self):

        descriptions = [(k, _precomputed_field(v))
                        for k, v in six.iteritems(self._describe_fields())]

        (sections, section_titles) = self._get_summary_struct()
        non_empty_sections = [s for s in sections if len(s) > 0]
        non_empty_section_titles = [
            section_titles[i] for i in range(len(sections))
            if len(sections[i]) > 0
        ]

        non_empty_section_titles.append('Queryable Fields')
        non_empty_sections.append(descriptions)

        return _toolkit_repr_print(self,
                                   non_empty_sections,
                                   non_empty_section_titles,
                                   width=40)
Exemplo n.º 18
0
    def __repr__(self):
        """
        Print a string description of the model when the model name is entered
        in the terminal.
        """

        width = 32
        key_str = "{:<{}}: {}"

        (sections, section_titles) = self._get_summary_struct()
        accessible_fields = {
            "cluster_id": "An SFrame containing the cluster assignments.",
            "cluster_info": "An SFrame containing the cluster centers."}

        out = _tkutl._toolkit_repr_print(self, sections, section_titles,
                                         width=width)
        out2 = _summarize_accessible_fields(accessible_fields, width=width)

        return out + "\n" + out2
Exemplo n.º 19
0
    def __repr__(self):
        """
        Print a string description of the model when the model name is entered
        in the terminal.
        """

        width = 32
        key_str = "{:<{}}: {}"

        (sections, section_titles) = self._get_summary_struct()

        out = _toolkit_repr_print(self, sections, section_titles, width=width)

        extra = []
        extra.append(key_str.format("Accessible fields", width, ""))
        extra.append(key_str.format("   cluster_id", width, "An SFrame containing the cluster assignments."))
        extra.append(key_str.format("   cluster_info", width, "An SFrame containing the cluster centers."))

        return out + '\n' + '\n'.join(extra)
    def __repr__(self):
        """
        Print a string description of the model, when the model name is entered
        in the terminal.
        """
        
        data_fields = [
            ('Number of examples', 'num_examples'),
            ('Number of feature columns', 'num_features'),
            ('Number of unpacked features', 'num_unpacked_features')]

        training_fields = [
            ("Number of trees", 'num_trees'),
            ("Max tree depth", 'max_depth'),
            ("Train RMSE", 'training_rmse'),
            ("Validation RMSE", 'validation_rmse'),
            ("Training time (sec)", 'training_time')]

        return _toolkit_repr_print(self, [data_fields, training_fields], width=30)
    def __repr__(self):
        """
        Print a string description of the model when the model name is entered
        in the terminal.
        """
        key_str = "{:<{}}: {}"
        width = 30

        (sections, section_titles) = self._get_summary_struct()
        out = _toolkit_repr_print(self, sections, section_titles, width=width)

        extra = []
        extra.append(key_str.format("Accessible fields", width, ""))
        extra.append(key_str.format("m['topics']",width,"An SFrame containing the topics."))
        extra.append(key_str.format("m['vocabulary']",width,"An SArray containing the words in the vocabulary."))
        extra.append(key_str.format("Useful methods", width, ""))
        extra.append(key_str.format("m.get_topics()",width,"Get the most probable words per topic."))
        extra.append(key_str.format("m.predict(new_docs)",width,"Make predictions for new documents."))

        return out + '\n' + '\n'.join(extra)
Exemplo n.º 22
0
    def __repr__(self):
        """
        Print a string description of the model when the model name is entered
        in the terminal.
        """

        width = 40
        key_str = "{:<{}}: {}"

        sections, section_titles = self._get_summary_struct()

        out = _toolkit_repr_print(self, sections, section_titles, width=width)

        extra = []
        extra.append("Accessible fields")
        extra.append("-" * len("Accessible fields"))
        extra.append(key_str.format("   cluster_id", width,
                   "Cluster label for each row in the input dataset."))

        return out + "\n" + "\n".join(extra)
Exemplo n.º 23
0
    def __repr__(self):
        """
        Print a string description of the model when the model name is entered
        in the terminal.
        """
        key_str = "{:<{}}: {}"
        width = 30

        (sections, section_titles) = self._get_summary_struct()
        out = _toolkit_repr_print(self, sections, section_titles, width=width)

        extra = []
        extra.append(key_str.format("Accessible fields", width, ""))
        extra.append(key_str.format("m['topics']",width,"An SFrame containing the topics."))
        extra.append(key_str.format("m['vocabulary']",width,"An SArray containing the words in the vocabulary."))
        extra.append(key_str.format("Useful methods", width, ""))
        extra.append(key_str.format("m.get_topics()",width,"Get the most probable words per topic."))
        extra.append(key_str.format("m.predict(new_docs)",width,"Make predictions for new documents."))

        return out + '\n' + '\n'.join(extra)
    def __repr__(self):
        """
        Print a string description of the model, when the model name is entered
        in the terminal.
        """
        data_fields = [
            ("Examples", 'num_examples'),
            ("Features", 'num_features'),
            ("Target column", 'target')]

        metric_key = 'metric'
        if not metric_key in self.list_fields():
            metric_key = 'metrics'
        metrics = self.get(metric_key).split(',')
        training_fields = []
        for m in metrics:
            training_fields.append(('Training %s' % m, 'training_%s' % m))
            training_fields.append(('Validation %s' % m, 'validation_%s' % m))
        training_fields.append(("Training time (sec)", 'training_time'))

        return _toolkit_repr_print(self, [data_fields, training_fields])
    def __repr__(self):
        """
        Print a string description of the model when the model name is entered
        in the terminal.
        """

        model_fields = [
            ("Distance", 'distance'),
            ("Method", 'method'),
            ("Number of examples", 'num_examples'),
            ("Number of feature columns", 'num_features'),
            ("Number of unpacked features", 'num_unpacked_features'),
            ("Total training time (seconds)", 'training_time')]

        ball_tree_fields = [
            ("Tree depth", 'tree_depth'),
            ("Leaf size", 'leaf_size')]

        out = [model_fields]
        if self.get('method') == 'ball tree':
            out += [ball_tree_fields]

        return _tkutl._toolkit_repr_print(self, out, width=30)
Exemplo n.º 26
0
    def __repr__(self):
        """
        Print a string description of the model when the model name is entered
        in the terminal.
        """

        width = 30
        key_str = "{:<{}}: {}"

        model_fields = [
            ('Total training time (seconds)', 'training_time'),
            ('Number of clusters', 'num_clusters'),
            ('Number of training iterations', 'training_iterations'),
            ('Number of examples', 'num_examples'),
            ('Number of feature columns', 'num_features'),
            ('Number of unpacked features', 'num_unpacked_features')]

        out = [_toolkit_repr_print(self, [model_fields], width=width)]
        out.append(key_str.format("Accessible fields", width, ""))
        out.append(key_str.format("   cluster_id", width, "An SFrame containing the cluster assignments."))
        out.append(key_str.format("   cluster_info", width, "An SFrame containing the cluster centers."))

        return '\n'.join(out)
Exemplo n.º 27
0
    def __repr__(self):

        (sections, section_titles) = self._get_summary_struct()
        return _toolkit_repr_print(self, sections, section_titles, width=30)
Exemplo n.º 28
0
 def __repr__(self):
     width = 32
     key_str = "{:<{}}: {}"
     (sections, section_titles) = self._get_summary_struct()
     out = _toolkit_repr_print(self, sections, section_titles, width=width)
     return out
Exemplo n.º 29
0
 def __repr__(self):
     width = 32
     key_str = "{:<{}}: {}"
     (sections, section_titles) = self._get_summary_struct()
     out = _toolkit_repr_print(self, sections, section_titles, width=width)
     return out
    def __repr__(self):

        (sections, section_titles) = self._get_summary_struct()
        return _toolkit_repr_print(self, sections, section_titles, width= 30)
Exemplo n.º 31
0
 def __repr__(self):
     """
     Return a string description of the transform.
     """
     (sections, section_titles) = self._get_summary_struct()
     return _toolkit_repr_print(self, sections, section_titles)
Exemplo n.º 32
0
 def __repr__(steps):
     for name, tr in self._transformers:
         model_fields.append((name,
                      _precomputed_field(self._compact_class_repr(tr))))
     return _toolkit_repr_print(steps, [model_fields], width=8,
                                    section_titles = ['Steps'])