Exemplo n.º 1
0
def eval_throughput(duration,
                    request_url,
                    batch_size=1,
                    dataset='test',
                    use_graphpipe=False,
                    emnist_folder_path='emnist_data/'):
    """
    Performs a Throughput test running sequential queries against webservice
    counting the number of requests performed within duration

    Args:
        duration (int): number of seconds for running test queries
        request_url (str): URL of model service used for classification
        batch_size (int): no. of examples per batch
        dataset (str): `train` or `test` data to pick evaluation examples from
        use_graphpipe (bool): use graphpipe client to execute queries (uses
                                flatbuffers instead)
        emnist_folder_path (str): folder containing EMNIST data

    Returns:
        num_reqs (int): total number of requests performed
        reqs_per_second (float): thoughput as the number of requests performed
                                 per second

    """
    x_train, _, x_test, _, _ = load_emnist(emnist_folder_path)
    if dataset == 'train':
        data = x_train
    else:
        data = x_test
    data = data.reshape(-1, 1, 28 * 28) / 255

    num_reqs = 0
    _logger.info("Throughput Evaluation on URL {} for {} seconds ...".format(
        request_url, duration))

    if not use_graphpipe:
        end_time = time.time() + duration
        while time.time() <= end_time:
            batch = data[num_reqs:(num_reqs + batch_size)].reshape(-1, 28 * 28)
            test_img_payload = \
                {"instances": batch.tolist()}
            test_img_payload = json.dumps(test_img_payload)
            test_img_softmax_pred = requests.post(request_url,
                                                  data=test_img_payload)
            test_img_softmax_pred.json()['predictions']
            num_reqs += batch_size
    else:
        end_time = time.time() + duration
        while time.time() <= end_time:
            remote.execute(request_url, data[num_reqs:(num_reqs + batch_size)])
            num_reqs += batch_size

    reqs_per_second = num_reqs / duration

    _logger.info(("Throughput Summary:\nURL: {}\nDuration: {} [s]\n" +
                  "Total Requests: {}\nRequests/Second: {:.2f}").format(
                      request_url, duration, num_reqs, reqs_per_second))

    return num_reqs, reqs_per_second
Exemplo n.º 2
0
    def predict(self, data):
        """
        Calculate the prediction of the data.
        Args:
            data(numpy.ndarray): input data with shape (size,
            height, width, channels).
        Return:
            numpy.ndarray: predictions of the data with shape (batch_size,
                num_of_classes).
        """
        scaled_data = self._process_input(data)

        predict = remote.execute(self._remote_url, scaled_data)

        predict = np.squeeze(predict, axis=0)

        return predict
Exemplo n.º 3
0
def main(image_path):

    print("image_path:{}".format(image_path))

    data = np.array(Image.open(image_path))
    data = data.reshape([1] + list(data.shape))
    data = np.rollaxis(data, 3, 1).astype(np.float32)  # channels first
    #print(data.shape)

    pred = remote.execute("http://127.0.0.1:9000", data)

    print(pred.shape)

    pred = np.squeeze(pred, axis=0)

    print(pred.shape)

    print("{}".format(np.argmax(pred, axis=1)))
Exemplo n.º 4
0
def evaluate(boards):

    x = np.concatenate([parse_board(board)[np.newaxis, :] for board in boards])
    weights, values = remote.execute(MODEL, x)
    for i in range(len(weights)):
        weight = weights[i]
        value = values[i][0]
        move = int(x[i].sum())
        player = move % 2
        print("Move {}: {} to play".format(move, "O" if player else "X"))
        print_board(x[i])
        print_weights(weight)
        if player:
            value = -value
        if value > 0:
            print("Evaluation: X wins {:02.0f}%".format(value * 100))
        else:
            print("Evaluation: O wins {:02.0f}%".format(value * -100))
        print()
Exemplo n.º 5
0
 def predict(self, formatted_data, batch_size=None):
     y = remote.execute(self.graph_pipe_url, formatted_data)
     self.result = y
Exemplo n.º 6
0
from io import BytesIO
from PIL import Image, ImageOps
import numpy as np
import requests

from graphpipe import remote

data = np.array(Image.open("mug227.png"))
data = data.reshape([1] + list(data.shape))
data = np.rollaxis(data, 3, 1).astype(np.float32)  # channels first
print(data.shape)

pred = remote.execute("http://127.0.0.1:9000", data)
print("Expected 504 (Coffee mug), got: %s", np.argmax(pred, axis=1))
Exemplo n.º 7
0
#!/usr/bin/env python
"""
Serves a simple model with model_server.py and makes a request to it
"""

import subprocess
import time

import numpy as np

from graphpipe import remote

# create a simple protobuf model that squares its input
process = subprocess.Popen(["./tf_graph.py"])
process.wait()

port = "4242"
process = subprocess.Popen(
    ["./model_server.py", "--port", port, "--model", "tf_graph.pb"])
# make sure the process has time to start
time.sleep(3)

# send a request
x = np.array(0.42)
y = remote.execute("http://127.0.0.1:" + port, x)
# print the response
print(y)

# kill the server
process.kill()
Exemplo n.º 8
0
import argparse

import numpy as np

from graphpipe import remote

SHAPE = (10, 1, 2, 3, 4)


def get_sample_data():
    return np.random.rand(*SHAPE)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("--url",
                        default="http://127.0.0.1:10000",
                        help="Url",
                        type=str)
    args = parser.parse_args()
    X = get_sample_data()
    pred = remote.execute(args.url, X)
    assert (pred.shape == SHAPE)
    assert (np.allclose(X, pred))

    print('Hooray!  We got our data back with shape: %s' % str(SHAPE))
Exemplo n.º 9
0
def eval_serving_performance(n_examples,
                             n_print_examples,
                             request_url,
                             seed=42,
                             dataset='test',
                             use_graphpipe=False,
                             emnist_folder_path='emnist_data/'):
    """
    Fires queries against a model service, evaluates the result in terms
    of classification accuracy and processing time, and prints examples

    Args:
        n_examples (int): number of queries
        n_print_examples (int): number of examples to print img and classification
        request_url (str): URL of model service used for classification
        seed (int): seed for NumPy random number generator
        dataset (str): `train` or `test` data to pick evaluation examples from
        use_graphpipe (bool): use graphpipe client to execute queries (uses
                                flatbuffers instead)
        emnist_folder_path (str): folder containing EMNIST data

    Returns:
        durations ([int]): list of ms every request took
    """
    x_train, y_train, x_test, y_test, _ = load_emnist(emnist_folder_path)
    mapping = get_emnist_mapping()

    acc = 0
    durations = []

    if dataset == 'train':
        x_eval, y_eval = x_train, y_train
    else:
        x_eval, y_eval = x_test, y_test

    np.random.seed(seed)
    eval_img_indices = np.random.choice(np.arange(x_eval.shape[0]),
                                        n_examples,
                                        replace=False)

    for idx, test_img_idx in enumerate(eval_img_indices):
        test_img_flatten = x_eval[test_img_idx].reshape(1, 784) / 255

        if not use_graphpipe:
            start = time.time()
            test_img_payload = {'instances': test_img_flatten.tolist()}
            test_img_payload = json.dumps(test_img_payload)
            test_img_softmax_pred = requests.post(request_url,
                                                  data=test_img_payload)
            test_img_softmax_pred = test_img_softmax_pred.json()['predictions']
        else:
            start = time.time()
            test_img_softmax_pred = remote.execute(request_url,
                                                   test_img_flatten)

        durations.append(int((time.time() - start) * 1000000) / 1000)
        test_img_class_pred = np.argmax(test_img_softmax_pred)
        acc += (test_img_class_pred == y_eval[test_img_idx][0])

        # print the first 10 images with their true and predicted label
        if idx < n_print_examples:
            show_img(test_img_idx,
                     x_train,
                     y_train,
                     x_test,
                     y_test,
                     mapping,
                     mode=dataset)
            print("Predicted Label: {}".format(mapping[test_img_class_pred]))

    print("Accuracy on {} test images: {:.2%}".format(n_examples,
                                                      acc / n_examples))

    return durations
Exemplo n.º 10
0
}
keypoints_symmetry = metadata['keypoints_symmetry']
kps_left, kps_right = list(keypoints_symmetry[0]), list(keypoints_symmetry[1])
joints_left, joints_right = list([4, 5, 6, 11, 12,
                                  13]), list([1, 2, 3, 14, 15, 16])

pad = (243 - 1) // 2
batch_2d = np.expand_dims(np.pad(data, ((pad, pad), (0, 0), (0, 0)), 'edge'),
                          axis=0)
batch_2d = np.concatenate((batch_2d, batch_2d), axis=0)
batch_2d[1, :, :, 0] *= -1
batch_2d[1, :, kps_left + kps_right] = batch_2d[1, :, kps_right + kps_left]
batch_2d = batch_2d.astype(np.float32)

# link server
predicted_3d_pos = remote.execute("http://127.0.0.1:9000", batch_2d)

# post processing
predicted_3d_pos = np.copy(predicted_3d_pos)
predicted_3d_pos[1, :, :, 0] *= -1
predicted_3d_pos[1, :, joints_left +
                 joints_right] = predicted_3d_pos[1, :,
                                                  joints_right + joints_left]
prediction = np.mean(predicted_3d_pos, axis=0, keepdims=True)[0]

rot = params.rot()
prediction = camera_to_world(prediction, R=rot, t=0)

# We don't have the trajectory, but at least we can rebase the height
prediction[:, :, 2] -= np.min(prediction[:, :, 2])
anim_output = {'Reconstruction': prediction}