Exemplo n.º 1
0
    def show_all_metrics(self):
        if self.__is_zipkin:
            start_time = time.time()

            start_timestamp = my_time.to_unix_time_millis(
                self.__start_date_time_str)
            end_timestamp = my_time.to_unix_time_millis(
                self.__end_date_time_str)

            self.view.display_time(
                'start_time:',
                my_time.from_timestamp_to_datetime(start_timestamp),
                start_timestamp)
            self.view.display_time(
                'end_time:', my_time.from_timestamp_to_datetime(end_timestamp),
                end_timestamp)

            timestamps = my_time.timestamp_millis_split(
                start_timestamp, end_timestamp)

            service_names = zipkin.get_services()

            timestamps = my_list.tuple_list(timestamps)

            print(len(timestamps))

            for timestamp_tuple in timestamps:
                cl.process_all_metrics_in_time(service_names,
                                               timestamp_tuple[0],
                                               timestamp_tuple[1])

            self.view.display_message(
                'Time processing',
                'finish in {} seconds'.format(time.time() - start_time))
Exemplo n.º 2
0
def service_call_count(dependencies, start_timestamp, end_timestamp):
    graph_processor.generate_graph_from_zipkin(dependencies, start_timestamp,
                                               end_timestamp)
    service_in_edge_call_count = graph_processor.in_edges_call_count()

    time_series_db.send_numeric_metrics(
        'call_count_in', service_in_edge_call_count,
        int((start_timestamp + end_timestamp) / 2))

    service_out_edge_call_count = graph_processor.out_edges_call_count()

    time_series_db.send_numeric_metrics(
        'call_count_out', service_out_edge_call_count,
        int((start_timestamp + end_timestamp) / 2))

    service_edge_call_count = my_dict.merge_dicts(service_in_edge_call_count,
                                                  service_out_edge_call_count)

    time_series_db.send_numeric_metrics(
        'call_count', service_edge_call_count,
        int((start_timestamp + end_timestamp) / 2))

    sorted_service_edge_call_count = my_dict.sort(service_edge_call_count)
    most_popular_service = list(sorted_service_edge_call_count.keys())[0]
    return [
        'Most popular service from {} to {} (Call Count)'.format(
            my_time.from_timestamp_to_datetime(start_timestamp),
            my_time.from_timestamp_to_datetime(end_timestamp)),
        most_popular_service
    ]
Exemplo n.º 3
0
    def show_morphology_analysis_in_time(self):
        if self.__is_zipkin:
            start_time = time.time()

            start_timestamp = my_time.to_unix_time_millis(
                self.__start_date_time_str)
            end_timestamp = my_time.to_unix_time_millis(
                self.__end_date_time_str)

            self.view.display_time(
                'start_time:',
                my_time.from_timestamp_to_datetime(start_timestamp),
                start_timestamp)
            self.view.display_time(
                'end_time:', my_time.from_timestamp_to_datetime(end_timestamp),
                end_timestamp)

            timestamps = my_time.timestamp_millis_split(
                start_timestamp, end_timestamp)
            timestamps = my_list.tuple_list(timestamps)

            for timestamp_1, timestamp_2 in timestamps:
                dependencies = zipkin.get_dependencies(end_ts=timestamp_2,
                                                       lookback=timestamp_2 -
                                                       timestamp_1)

                message = cl.service_morphology(dependencies, timestamp_1,
                                                timestamp_2)
                self.view.display_message(message[0], message[1])

            self.view.display_message(
                'Time processing',
                'finish in {} seconds'.format(time.time() - start_time))
Exemplo n.º 4
0
    def show_service_status_codes_analysis(self):
        if self.__is_zipkin:
            start_time = time.time()

            start_timestamp = my_time.to_unix_time_millis(
                self.__start_date_time_str)
            end_timestamp = my_time.to_unix_time_millis(
                self.__end_date_time_str)

            self.view.display_time(
                'start_time:',
                my_time.from_timestamp_to_datetime(start_timestamp),
                start_timestamp)
            self.view.display_time(
                'end_time:', my_time.from_timestamp_to_datetime(end_timestamp),
                end_timestamp)

            service_names = zipkin.get_services()

            for service_name in service_names:
                traces = zipkin.get_traces(service_name=service_name,
                                           end_ts=end_timestamp,
                                           lookback=end_timestamp -
                                           start_timestamp)

                message = cl.service_status_codes(service_name, traces,
                                                  start_timestamp,
                                                  end_timestamp)
                self.view.display_message(message[0], message[1])

            self.view.display_message(
                'Time processing',
                'finish in {} seconds'.format(time.time() - start_time))
Exemplo n.º 5
0
    def show_most_popular_service_call_count(self):
        if self.__is_zipkin:
            start_time = time.time()

            start_timestamp = my_time.to_unix_time_millis(
                self.__start_date_time_str)
            end_timestamp = my_time.to_unix_time_millis(
                self.__end_date_time_str)

            self.view.display_time(
                'start_time:',
                my_time.from_timestamp_to_datetime(start_timestamp),
                start_timestamp)
            self.view.display_time(
                'end_time:', my_time.from_timestamp_to_datetime(end_timestamp),
                end_timestamp)

            dependencies = zipkin.get_dependencies(end_ts=end_timestamp,
                                                   lookback=end_timestamp -
                                                   start_timestamp)

            message = cl.service_call_count(dependencies, start_timestamp,
                                            end_timestamp)
            self.view.display_message(message[0], message[1])

            self.view.display_message(
                'Time processing',
                'finish in {} seconds'.format(time.time() - start_time))
Exemplo n.º 6
0
def service_neighbours(dependencies, start_timestamp, end_timestamp):
    graph_processor.generate_graph_from_zipkin(dependencies, start_timestamp,
                                               end_timestamp)
    return [
        'All service neighbors from {} to {}'.format(
            my_time.from_timestamp_to_datetime(start_timestamp),
            my_time.from_timestamp_to_datetime(end_timestamp)),
        graph_processor.neighbors()
    ]
Exemplo n.º 7
0
def service_morphology(dependencies, start_timestamp, end_timestamp,
                       previous_graph):
    current_graph = graph_processor.generate_graph_from_zipkin(
        dependencies, start_timestamp, end_timestamp)
    current_graph.name = '{}_{}'.format(start_timestamp, end_timestamp)

    graph_db.insert_graph(start_timestamp, end_timestamp,
                          list(current_graph.edges(data=True)),
                          graph_db.graph_db)

    if previous_graph:
        graph_diff = graph_processor.graphs_difference(previous_graph,
                                                       current_graph)

        graph_db.insert_graph(start_timestamp, end_timestamp,
                              list(graph_diff.edges(data=True)),
                              graph_db.graph_diff_db)

        graph_variance = graph_processor.graphs_variance(
            previous_graph, current_graph)

        time_series_db.send_numeric_metric(
            ['graph_gain_variance'], graph_variance.get('gain'),
            int((start_timestamp + end_timestamp) / 2))
        time_series_db.send_numeric_metric(
            ['graph_loss_variance'], graph_variance.get('loss'),
            int((start_timestamp + end_timestamp) / 2))
        time_series_db.send_numeric_metric(
            ['graph_variance'],
            graph_variance.get('gain') - graph_variance.get('loss'),
            int((start_timestamp + end_timestamp) / 2))

        message = [
            'System Morphology from {} to {}'.format(
                my_time.from_timestamp_to_datetime(start_timestamp),
                my_time.from_timestamp_to_datetime(end_timestamp)),
            '\nprevious_graph.Nodes:{}\nprevious_graph.Edges:{}'
            '\nprevious_graph.NodesLen:{}\nprevious_graph.EdgesLen:{}'
            '\ncurrent_graph.Nodes:{}\ncurrent_graph.Edges:{}'
            '\ncurrent_graph.NodesLen:{}\ncurrent_graph.EdgesLen:{}'
            '\ngraph_diff.Nodes:{}\ngraph_diff.Edges:{}'
            '\ngraph_diff.NodesLen:{}\ngraph_diff.EdgesLen:{}'.format(
                previous_graph.nodes, previous_graph.edges(data=True),
                len(previous_graph.nodes),
                len(previous_graph.edges), current_graph.nodes,
                current_graph.edges(data=True), len(current_graph.nodes),
                len(current_graph.edges), graph_diff.nodes,
                graph_diff.edges(data=True), len(graph_diff.nodes),
                len(graph_diff.edges))
        ]
    else:
        previous_graph = current_graph.copy()
        message = ['NO PREVIOUS GRAPH!', '']

    return message, previous_graph
Exemplo n.º 8
0
def process_all_metrics_in_time(service_names, timestamp_1, timestamp_2):
    global g_previous_graph

    message = list()

    dependencies = zipkin.get_dependencies(end_ts=timestamp_2,
                                           lookback=timestamp_2 - timestamp_1)

    if not dependencies:
        message.append([
            'No services from {} to {}'.format(
                my_time.from_timestamp_to_datetime(timestamp_1),
                my_time.from_timestamp_to_datetime(timestamp_2)),
            'Can\'t perform calculation!'
        ])
    else:
        message.append(
            service_neighbours(dependencies, timestamp_1, timestamp_2))
        message.append(service_degree(dependencies, timestamp_1, timestamp_2))
        message.append(
            service_call_count(dependencies, timestamp_1, timestamp_2))
        message, g_previous_graph = service_morphology(dependencies,
                                                       timestamp_1,
                                                       timestamp_2,
                                                       g_previous_graph)
        message.append(message)

    for service_name in service_names:
        traces = zipkin.get_traces(service_name=service_name,
                                   end_ts=timestamp_2,
                                   lookback=timestamp_2 - timestamp_1)

        if not traces:
            message.append([
                'No traces found from {} to {} for service {}'.format(
                    my_time.from_timestamp_to_datetime(timestamp_1),
                    my_time.from_timestamp_to_datetime(timestamp_2),
                    service_name), '\nCan\'t calculate service status codes'
            ])
        else:
            span_trees = my_trace.generate_span_trees(traces)
            trace_metrics_data = my_trace.extract_metrics(span_trees)

            message.append(
                service_status_codes(service_name, traces, timestamp_1,
                                     timestamp_2))
            # trace_quality_analysis(service_name, trace_metrics_data)
            message.append(
                service_response_time_analysis(service_name,
                                               trace_metrics_data, timestamp_1,
                                               timestamp_2))

    print(message)
Exemplo n.º 9
0
def service_status_codes(service_name, traces, start_timestamp, end_timestamp):
    status_codes = my_trace.get_status_codes(traces)
    status_codes_percentage = my_dict.calc_percentage(status_codes)

    time_series_db.send_numeric_metrics(
        'status_code.{}'.format(service_name), status_codes_percentage,
        int((start_timestamp + end_timestamp) / 2))

    return [
        'Status Codes from {} to {}'.format(
            my_time.from_timestamp_to_datetime(start_timestamp),
            my_time.from_timestamp_to_datetime(end_timestamp)),
        '\nservice_name: {}'
        '\nstatus_codes: {}'
        '\nstatus_codes_percentage: {}'.format(
            service_name, my_dict.sort(status_codes),
            my_dict.sort(status_codes_percentage))
    ]
Exemplo n.º 10
0
def trace_quality_analysis(traces, service_name: str, timestamp_1,
                           timestamp_2):
    span_trees = my_trace.generate_span_trees(traces)
    trace_metrics_data = my_trace.extract_metrics(span_trees)

    x_values = list(trace_metrics_data.coverability_count.keys())
    y_values = my_dict.filter(trace_metrics_data.coverability_count,
                              'value').values()

    my_files.save_dict(
        os.path.join(my_files.TRACE_COV_PROJECT_DIRECTORY,
                     service_name + '.csv'), dict(zip(x_values, y_values)))

    return [
        'Trace quality analysis from {} to {} for service {} completed.'.
        format(my_time.from_timestamp_to_datetime(timestamp_1),
               my_time.from_timestamp_to_datetime(timestamp_2),
               service_name), 'OK!'
    ]
Exemplo n.º 11
0
def service_response_time_analysis(service_name: str, trace_metrics_data,
                                   start_timestamp, end_timestamp):
    if trace_metrics_data.response_time_avg is not -1:
        response_time_avg = trace_metrics_data.response_time_avg

        time_series_db.send_numeric_metric(
            ['response_time_avg', service_name], response_time_avg,
            int((start_timestamp + end_timestamp) / 2))

        return [
            'Response time analysis from {} to {} for service {}\nAVG: {}'.
            format(my_time.from_timestamp_to_datetime(start_timestamp),
                   my_time.from_timestamp_to_datetime(end_timestamp),
                   service_name, response_time_avg), 'Analysis completed!'
        ]
    else:
        return [
            'No data found from {} to {} for service {}'.format(
                my_time.from_timestamp_to_datetime(start_timestamp),
                my_time.from_timestamp_to_datetime(end_timestamp),
                service_name), '\nCan\'t perform response time analysis'
        ]
Exemplo n.º 12
0
def service_degree(dependencies, start_timestamp, end_timestamp):
    graph_processor.generate_graph_from_zipkin(dependencies, start_timestamp,
                                               end_timestamp)
    service_degrees = graph_processor.degrees()
    service_in_degrees = graph_processor.degrees('in')
    service_out_degrees = graph_processor.degrees('out')

    time_series_db.send_numeric_metrics(
        'degree', service_degrees, int((start_timestamp + end_timestamp) / 2))
    time_series_db.send_numeric_metrics(
        'degree_in', service_in_degrees,
        int((start_timestamp + end_timestamp) / 2))
    time_series_db.send_numeric_metrics(
        'degree_out', service_out_degrees,
        int((start_timestamp + end_timestamp) / 2))

    most_popular_service = service_degrees[0]
    return [
        'Most popular service from {} to {} (Degrees)'.format(
            my_time.from_timestamp_to_datetime(start_timestamp),
            my_time.from_timestamp_to_datetime(end_timestamp)),
        most_popular_service
    ]
Exemplo n.º 13
0
    def test_from_timestamp_to_datetime(self):
        """ Test from_timestamp_to_datetime function. """
        self.assertEqual(my_time.from_timestamp_to_datetime(self.__unix_timestamp, 's')._repr_base, self.__date_time)

        self.assertEqual(my_time.from_timestamp_to_datetime(self.__unix_timestamp_millis)._repr_base, self.__date_time)