Exemplo n.º 1
0
    def test_hierarchical(self):
        # most of leiden is tested in unit / integration tests in graspologic-native.
        # All we're trying to test through these unit tests are the python conversions
        # prior to calling, so type and value validation and that we got a result
        edges = _create_edge_list()
        results = hierarchical_leiden(edges, random_seed=1234)

        total_nodes = len([item for item in results if item.level == 0])

        partitions = HierarchicalCluster.final_hierarchical_clustering(results)
        self.assertEqual(total_nodes, len(partitions))
Exemplo n.º 2
0
    def test_isolate_nodes_in_nx_graph_are_not_returned(self):
        self.assertEqual(
            10,
            len(self.graph.nodes),
            "the input graph contains all nodes including isolate",
        )

        with pytest.warns(UserWarning, match="isolate"):
            partitions = leiden(self.graph)

        self.assert_isolate_not_in_result(partitions)

        with pytest.warns(UserWarning, match="isolate"):
            hierarchical_partitions = hierarchical_leiden(self.graph)

        self.assert_isolate_not_in_hierarchical_result(hierarchical_partitions)
Exemplo n.º 3
0
    def test_isolate_nodes_in_csr_matrix_are_not_returned(self):
        sparse_adj_matrix = nx.to_scipy_sparse_matrix(self.graph)

        self.assertEqual(
            10,
            sparse_adj_matrix.shape[0],
            "the input csr contains all nodes including isolate",
        )

        with pytest.warns(UserWarning, match="isolate"):
            partitions = leiden(sparse_adj_matrix)

        self.assert_isolate_not_in_result(partitions)

        with pytest.warns(UserWarning, match="isolate"):
            hierarchical_partitions = hierarchical_leiden(sparse_adj_matrix)

        self.assert_isolate_not_in_hierarchical_result(hierarchical_partitions)
Exemplo n.º 4
0
    def test_isolate_nodes_in_ndarray_are_not_returned(self):
        ndarray_adj_matrix = nx.to_numpy_array(self.graph)

        self.assertEqual(
            10,
            ndarray_adj_matrix.shape[0],
            "the input array contains all nodes including isolate",
        )

        with pytest.warns(UserWarning, match="isolate"):
            partitions = leiden(ndarray_adj_matrix)

        self.assert_isolate_not_in_result(partitions)

        with pytest.warns(UserWarning, match="isolate"):
            hierarchical_partitions = hierarchical_leiden(ndarray_adj_matrix)

        self.assert_isolate_not_in_hierarchical_result(hierarchical_partitions)
Exemplo n.º 5
0
    def test_correct_types(self):
        # both leiden and hierarchical_leiden require the same types and mostly the same value range restrictions
        good_args = {
            "starting_communities": {
                "1": 2
            },
            "extra_forced_iterations": 0,
            "resolution": 1.0,
            "randomness": 0.001,
            "use_modularity": True,
            "random_seed": None,
            "is_weighted": True,
            "weight_default": 1.0,
            "check_directed": True,
        }

        graph = nx.Graph()
        graph.add_edge("1", "2", weight=3.0)
        graph.add_edge("2", "3", weight=4.0)

        leiden(graph=graph, **good_args)
        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["starting_communities"] = 123
            leiden(graph=graph, **args)

        args = good_args.copy()
        args["starting_communities"] = None
        leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["extra_forced_iterations"] = 1234.003
            leiden(graph=graph, **args)

        with self.assertRaises(ValueError):
            args = good_args.copy()
            args["extra_forced_iterations"] = -4003
            leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["resolution"] = "leiden"
            leiden(graph=graph, **args)

        with self.assertRaises(ValueError):
            args = good_args.copy()
            args["resolution"] = 0
            leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["randomness"] = "leiden"
            leiden(graph=graph, **args)

        with self.assertRaises(ValueError):
            args = good_args.copy()
            args["randomness"] = 0
            leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["use_modularity"] = 1234
            leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["trials"] = "hotdog"
            leiden(graph=graph, **args)

        with self.assertRaises(ValueError):
            args = good_args.copy()
            args["trials"] = 0
            leiden(graph=graph, **args)

        args = good_args.copy()
        args["random_seed"] = 1234
        leiden(graph=graph, **args)
        args["random_seed"] = None
        leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["random_seed"] = "leiden"
            leiden(graph=graph, **args)

        with self.assertRaises(ValueError):
            args = good_args.copy()
            args["random_seed"] = -1
            leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["is_weighted"] = "leiden"
            leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["weight_default"] = "leiden"
            leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["check_directed"] = "leiden"
            leiden(graph=graph, **args)

        # one extra parameter hierarchical needs
        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["max_cluster_size"] = "leiden"
            hierarchical_leiden(graph=graph, **args)

        with self.assertRaises(ValueError):
            args = good_args.copy()
            args["max_cluster_size"] = 0
            hierarchical_leiden(graph=graph, **args)

        as_csr = nx.to_scipy_sparse_matrix(graph)
        partitions = leiden(graph=as_csr, **good_args)
        node_ids = partitions.keys()
        for node_id in node_ids:
            self.assertTrue(
                isinstance(node_id, (np.int32, np.intc)),
                f"{node_id} has {type(node_id)} should be an np.int32/np.intc",
            )
Exemplo n.º 6
0
    def test_correct_types(self):
        # both leiden and hierarchical_leiden require the same types and mostly the same value range restrictions
        good_args = {
            "starting_communities": {"1": 2},
            "extra_forced_iterations": 0,
            "resolution": 1.0,
            "randomness": 0.001,
            "use_modularity": True,
            "random_seed": None,
            "is_weighted": True,
            "weight_default": 1.0,
            "check_directed": True,
        }

        graph = nx.Graph()
        graph.add_edge("1", "2", weight=3.0)
        graph.add_edge("2", "3", weight=4.0)

        leiden(graph=graph, **good_args)
        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["starting_communities"] = 123
            leiden(graph=graph, **args)

        args = good_args.copy()
        args["starting_communities"] = None
        leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["extra_forced_iterations"] = 1234.003
            leiden(graph=graph, **args)

        with self.assertRaises(ValueError):
            args = good_args.copy()
            args["extra_forced_iterations"] = -4003
            leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["resolution"] = "leiden"
            leiden(graph=graph, **args)

        with self.assertRaises(ValueError):
            args = good_args.copy()
            args["resolution"] = 0
            leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["randomness"] = "leiden"
            leiden(graph=graph, **args)

        with self.assertRaises(ValueError):
            args = good_args.copy()
            args["randomness"] = 0
            leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["use_modularity"] = 1234
            leiden(graph=graph, **args)

        args = good_args.copy()
        args["random_seed"] = 1234
        leiden(graph=graph, **args)
        args["random_seed"] = None
        leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["random_seed"] = "leiden"
            leiden(graph=graph, **args)

        with self.assertRaises(ValueError):
            args = good_args.copy()
            args["random_seed"] = -1
            leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["is_weighted"] = "leiden"
            leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["weight_default"] = "leiden"
            leiden(graph=graph, **args)

        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["check_directed"] = "leiden"
            leiden(graph=graph, **args)

        # one extra parameter hierarchical needs
        with self.assertRaises(TypeError):
            args = good_args.copy()
            args["max_cluster_size"] = "leiden"
            hierarchical_leiden(graph=graph, **args)

        with self.assertRaises(ValueError):
            args = good_args.copy()
            args["max_cluster_size"] = 0
            hierarchical_leiden(graph=graph, **args)