Exemplo n.º 1
0
def plot_avg_firing_rate_spikes(spikes, tLimits, **kw):
    '''Plot population-average firing rate from PopulationSpikes.'''
    # keyword arguments
    ax = kw.pop('ax', plt.gca())
    sigmaTitle = kw.pop('sigmaTitle', False)
    dt = kw.pop('dt', .5)
    winLen = kw.pop('winLen', 2.0)
    kw['xlabel'] = False
    kw['ylabel'] = kw.get('ylabel', 'r (Hz)')

    tStart = tLimits[0]
    tEnd = tLimits[1]

    rate, times = spikes.slidingFiringRate(tStart, tEnd, dt, winLen)
    meanRate = np.mean(rate, axis=0)

    signalPlot(times, meanRate, ax, **kw)

    ax.set_ylim([0, None])
    #ax.spines['left'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    ax.xaxis.set_visible(False)
    #ax.yaxis.set_visible(False)
    ax.yaxis.set_major_locator(ti.LinearLocator(2))

    # Annotations
    if (sigmaTitle):
        ax.set_title('$\sigma$ = {0} pA'.format(int(noise_sigma)),
                     y=1.02,
                     va='bottom',
                     ha='center')

    return ax
Exemplo n.º 2
0
def plot_avg_firing_rate_spikes(spikes, tLimits, **kw):
    '''Plot population-average firing rate from PopulationSpikes.'''
    # keyword arguments
    ax           = kw.pop('ax', plt.gca())
    sigmaTitle   = kw.pop('sigmaTitle', False)
    dt           = kw.pop('dt', .5)
    winLen       = kw.pop('winLen', 2.0)
    kw['xlabel'] = False
    kw['ylabel'] = kw.get('ylabel', 'r (Hz)')

    tStart = tLimits[0]
    tEnd   = tLimits[1]

    rate, times = spikes.slidingFiringRate(tStart, tEnd, dt, winLen)
    meanRate = np.mean(rate, axis=0)

    signalPlot(times, meanRate, ax, **kw)

    ax.set_ylim([0, None])
    #ax.spines['left'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    ax.xaxis.set_visible(False)
    #ax.yaxis.set_visible(False)
    ax.yaxis.set_major_locator(ti.LinearLocator(2))

    # Annotations
    if (sigmaTitle):
        ax.set_title('$\sigma$ = {0} pA'.format(int(noise_sigma)), y=1.02,
                va='bottom', ha='center')

    return ax
Exemplo n.º 3
0
    def plot(self, *args, **kwargs):
        for n_theta_cycles in range(1, 9):
            T = n_theta_cycles / self.theta_freq * 1e3
            l, b, r, top = self.myc['bbox']

            self.fig = self._get_final_fig(self.myc['fig_size'])
            self.ax_theta = self.fig.add_subplot(3, 1, 1)

            # Only theta
            t = np.arange(0, T+self.dt, self.dt)
            theta = self.const + .5 * (1. +
                    np.cos(2*np.pi*self.theta_freq*t*1e-3 - np.pi)) * (1 - self.const)
            signalPlot(
                    t, theta,
                    ax=self.ax_theta,
                    color=self.myc['theta_color'],
                    zeroLine=False)
            self.ax_theta.axis('off')
            self.ax_theta.set_xlim([t[0], t[-1]])
            self.ax_theta.set_ylim(-.2, 1.2)
            self.ax_theta.set_title('A', x=0, y=.95, size=14, weight='bold',
                                    ha='left', va='top')

            # PAC only gamma
            self.ax_pac = self.fig.add_subplot(3, 1, 2)
            gamma = np.cos(2*np.pi*self.gamma_freq*t*1e-3 - np.pi) * theta
            signalPlot(
                    t, gamma,
                    ax=self.ax_pac,
                    color=self.myc['gamma_color'],
                    zeroLine=False)

            self.ax_pac.axis('off')
            self.ax_pac.set_xlim([t[0], t[-1]])
            self.ax_pac.set_ylim(-1.02, 1.02)
            self.ax_pac.set_title('B', x=0, y=1, size=14, weight='bold',
                                  ha='left', va='top')

            # PAC Theta + gamma
            self.ax_pac_all = self.fig.add_subplot(3, 1, 3)
            self.ax_pac_all.hold('on')

            signalPlot(
                    t, theta,
                    ax=self.ax_pac_all,
                    color=self.myc['theta_color'],
                    zeroLine=False)

            gamma = .25 * np.cos(2*np.pi*self.gamma_freq*t*1e-3 - np.pi) * theta
            signalPlot(
                    t, theta + gamma,
                    ax=self.ax_pac_all,
                    color=self.myc['gamma_color'],
                    zeroLine=False)
            bar_x = 1 - 5. / 8 / n_theta_cycles
            xScaleBar(50, x=bar_x, y=.1, ax=self.ax_pac_all, size='small')

            self.ax_pac_all.axis('off')
            self.ax_pac_all.set_xlim([t[0], t[-1]])
            self.ax_pac_all.set_ylim(-.02, 1.5)
            self.ax_pac_all.set_title('C', x=0, y=1, size=14, weight='bold',
                                      ha='left', va='top')

            self.fig.subplots_adjust(left=l, bottom=b, right=r, top=top)

            fname = self.config['output_dir'] + "/pac_example_{0}.pdf"
            self.fig.savefig(fname.format(n_theta_cycles), dpi=300,
                             transparent=True)
            plt.close(self.fig)
Exemplo n.º 4
0
    def plot(self, *args, **kwargs):
        for n_theta_cycles in range(1, 9):
            T = n_theta_cycles / self.theta_freq * 1e3
            l, b, r, top = self.myc['bbox']

            self.fig = self._get_final_fig(self.myc['fig_size'])
            self.ax_theta = self.fig.add_subplot(3, 1, 1)

            # Only theta
            t = np.arange(0, T + self.dt, self.dt)
            theta = self.const + .5 * (
                1. + np.cos(2 * np.pi * self.theta_freq * t * 1e-3 -
                            np.pi)) * (1 - self.const)
            signalPlot(t,
                       theta,
                       ax=self.ax_theta,
                       color=self.myc['theta_color'],
                       zeroLine=False)
            self.ax_theta.axis('off')
            self.ax_theta.set_xlim([t[0], t[-1]])
            self.ax_theta.set_ylim(-.2, 1.2)
            self.ax_theta.set_title('A',
                                    x=0,
                                    y=.95,
                                    size=14,
                                    weight='bold',
                                    ha='left',
                                    va='top')

            # PAC only gamma
            self.ax_pac = self.fig.add_subplot(3, 1, 2)
            gamma = np.cos(2 * np.pi * self.gamma_freq * t * 1e-3 -
                           np.pi) * theta
            signalPlot(t,
                       gamma,
                       ax=self.ax_pac,
                       color=self.myc['gamma_color'],
                       zeroLine=False)

            self.ax_pac.axis('off')
            self.ax_pac.set_xlim([t[0], t[-1]])
            self.ax_pac.set_ylim(-1.02, 1.02)
            self.ax_pac.set_title('B',
                                  x=0,
                                  y=1,
                                  size=14,
                                  weight='bold',
                                  ha='left',
                                  va='top')

            # PAC Theta + gamma
            self.ax_pac_all = self.fig.add_subplot(3, 1, 3)
            self.ax_pac_all.hold('on')

            signalPlot(t,
                       theta,
                       ax=self.ax_pac_all,
                       color=self.myc['theta_color'],
                       zeroLine=False)

            gamma = .25 * np.cos(2 * np.pi * self.gamma_freq * t * 1e-3 -
                                 np.pi) * theta
            signalPlot(t,
                       theta + gamma,
                       ax=self.ax_pac_all,
                       color=self.myc['gamma_color'],
                       zeroLine=False)
            bar_x = 1 - 5. / 8 / n_theta_cycles
            xScaleBar(50, x=bar_x, y=.1, ax=self.ax_pac_all, size='small')

            self.ax_pac_all.axis('off')
            self.ax_pac_all.set_xlim([t[0], t[-1]])
            self.ax_pac_all.set_ylim(-.02, 1.5)
            self.ax_pac_all.set_title('C',
                                      x=0,
                                      y=1,
                                      size=14,
                                      weight='bold',
                                      ha='left',
                                      va='top')

            self.fig.subplots_adjust(left=l, bottom=b, right=r, top=top)

            fname = self.config['output_dir'] + "/pac_example_{0}.pdf"
            self.fig.savefig(fname.format(n_theta_cycles),
                             dpi=300,
                             transparent=True)
            plt.close(self.fig)