Exemplo n.º 1
0
def evaluate_baseline(num_lda_models):
    #try:
    #with open("topic_models.pkl", "rb") as f:
    #    models, dictionary = pickle.load(f)
    #except:
    print('In evaluate baseline: model not found. Building it.', flush=True)
    build_model(num_lda_models)
    with open("topic_models_top.pkl", "rb") as f:
        models, dictionary = pickle.load(f)
    try:
        with open("classifier.pkl", "rb") as f:
            p_class, p_label = pickle.load(f)
    except:
        bayes_EM(models, dictionary)
    tp = defaultdict(int)
    fp = defaultdict(int)
    tn = defaultdict(int)
    fn = defaultdict(int)
    for assignment, questions in ground_truth.get_groundTruth().items():
        for question, ground in questions.items():
            with open('questions/' + assignment + "/" + question,
                      encoding='utf8') as f:
                try:
                    txt1 = f.read()
                except:
                    continue
                txt1 = process([txt1])
                results = {}
                for file in os.listdir("topics/"):
                    with open("topics/" + file, encoding='utf8') as doc2:
                        txt = doc2.read()
                        # print("hey")
                        txt = process([txt])
                        # print(txt)
                        # print("ho")
                        kl = 0
                        for lda in models:
                            p = lda[dictionary.doc2bow(txt1[0])]
                            # print(p)
                            q = lda[dictionary.doc2bow(txt[0])]
                            # print(q)
                            for y, w1 in p:
                                for x, w0 in q:
                                    if x == y:
                                        kl += w0 * w1
                        results[file] = kl
                tops = sorted(results, key=results.get,
                              reverse=True)[:len(ground)]
                for label in labels:
                    if label in tops and label in ground:
                        tp[label] += 1
                    elif label in tops and label not in ground:
                        fp[label] += 1
                    elif label in ground and label not in tops:
                        fn[label] += 1
                    else:
                        tn[label] += 1

    precision_dict = defaultdict(int)
    recall_dict = defaultdict(int)
    f1_dict = defaultdict(int)
    for label in labels:
        if tp[label] == 0:
            print(label, flush=True)
            continue
        precision_dict[label] = tp[label] / (fp[label] + tp[label])
        recall_dict[label] = tp[label] / (fn[label] + tp[label])
        f1_dict[label] = 2 * (precision_dict[label] * recall_dict[label]) / (
            precision_dict[label] + recall_dict[label])

    macro_precision = sum(precision_dict.values()) / 5
    macro_recall = sum(recall_dict.values()) / 5
    macro_f1 = sum(f1_dict.values()) / 5
    micro_precision = sum(tp.values()) / (sum(tp.values()) + sum(fp.values()))
    micro_recall = sum(tp.values()) / (sum(tp.values()) + sum(fn.values()))
    micro_f1 = 2 * (micro_precision * micro_recall) / (micro_recall +
                                                       micro_precision)

    print("### PER-CLASS METRICS ###", flush=True)
    print("PRECIS  RECALL  F1    ", flush=True)
    for label in labels:
        print(
            f"{precision_dict[label]:6.4f}  {recall_dict[label]:6.4f}  {f1_dict[label]:6.4f}  {label.upper()}",
            flush=True)

    print()
    print("### AVERAGED METRICS ###", flush=True)
    print()
    print("MICRO AVERAGED", flush=True)
    print("PRECIS  RECALL  F1    ", flush=True)
    print(f"{micro_precision:6.4f}  {micro_recall:6.4f}  {micro_f1:6.4f}",
          flush=True)
    print()
    print("MACRO AVERAGED", flush=True)
    print("PRECIS  RECALL  F1    ", flush=True)
    print(f"{macro_precision:6.4f}  {macro_recall:6.4f}  {macro_f1:6.4f}",
          flush=True)
Exemplo n.º 2
0
def evaluate_bayes():
    try:
        with open("topic_models.pkl", "rb") as f:
            models, dictionary = pickle.load(f)
    except:
        print('heyo!')
        build_model()
        with open("topic_models.pkl", "rb") as f:
            models, dictionary = pickle.load(f)
    try:
        with open("classifier.pkl", "rb") as f:
            p_class, p_label = pickle.load(f)
    except:
        bayes_EM(models, dictionary)
        with open("classifier.pkl", "rb") as f:
            p_class, p_label = pickle.load(f)
    tp = defaultdict(int)
    fp = defaultdict(int)
    tn = defaultdict(int)
    fn = defaultdict(int)
    # for assignment, questions in ground_truth.get_groundTruth().items():
    #     for question, ground in questions.items():
    for assignment, question in test_set:
        with open('questions/' + assignment + "/" + question) as f:
            try:
                txt = f.read()
            except:
                continue
            results = predict(txt, models, dictionary, p_class, p_label)
            ground = list(ground_truth.get_groundTruth()[assignment][question])
            print(ground)
            tops = sorted(results, key=results.get, reverse=True)[:len(ground)]
            print(tops)
            print()
            for label in labels:
                if label in tops and label in ground:
                    tp[label] += 1
                elif label in tops and label not in ground:
                    fp[label] += 1
                elif label in ground and label not in tops:
                    fn[label] += 1
                else:
                    tn[label] += 1

    precision_dict = defaultdict(int)
    recall_dict = defaultdict(int)
    f1_dict = defaultdict(int)
    for label in labels:
        if tp[label] == 0:
            print(label)
            continue
        precision_dict[label] = tp[label] / (fp[label] + tp[label])
        recall_dict[label] = tp[label] / (fn[label] + tp[label])
        f1_dict[label] = 2 * (precision_dict[label] * recall_dict[label]) / (
            precision_dict[label] + recall_dict[label])

    macro_precision = sum(precision_dict.values()) / 5
    macro_recall = sum(recall_dict.values()) / 5
    macro_f1 = sum(f1_dict.values()) / 5
    micro_precision = sum(tp.values()) / (sum(tp.values()) + sum(fp.values()))
    micro_recall = sum(tp.values()) / (sum(tp.values()) + sum(fn.values()))
    micro_f1 = 2 * (micro_precision * micro_recall) / (micro_recall +
                                                       micro_precision)

    print("### PER-CLASS METRICS ###")
    print("PRECIS  RECALL  F1    ")
    for label in labels:
        print(
            f"{precision_dict[label]:6.4f}  {recall_dict[label]:6.4f}  {f1_dict[label]:6.4f}  {label.upper()}"
        )

    print()
    print("### AVERAGED METRICS ###")
    print()
    print("MICRO AVERAGED")
    print("PRECIS  RECALL  F1    ")
    print(f"{micro_precision:6.4f}  {micro_recall:6.4f}  {micro_f1:6.4f}")
    print()
    print("MACRO AVERAGED")
    print("PRECIS  RECALL  F1    ")
    print(f"{macro_precision:6.4f}  {macro_recall:6.4f}  {macro_f1:6.4f}")
Exemplo n.º 3
0
def evaluate_bayes(num_topics):
    #try:
    #    with open("topic_models.pkl", "rb") as f:
    #        models, dictionary = pickle.load(f)
    #except:
    print('In evaluate bayes: model not found. Building it.', flush=True)
    build_model(num_topics)
    with open("topic_models_top.pkl", "rb") as f:
        models, dictionary = pickle.load(f)
    try:
        with open("classifier.pkl", "rb") as f:
            p_class, p_label = pickle.load(f)
    except:
        print('In evaluate bayes: classifier not found. Building it',
              flush=True)
        bayes_EM(models, dictionary)
        with open("classifier.pkl", "rb") as f:
            p_class, p_label = pickle.load(f)
    tp = defaultdict(int)
    fp = defaultdict(int)
    tn = defaultdict(int)
    fn = defaultdict(int)
    for assignment, questions in ground_truth.get_groundTruth().items():
        for question, ground in questions.items():
            with open('questions/' + assignment + "/" + question,
                      encoding='utf8') as f:
                try:
                    txt = f.read()
                except:
                    continue
                results = predict(txt, models, dictionary, p_class, p_label)
                tops = sorted(results, key=results.get,
                              reverse=True)[:len(ground)]
                for label in labels:
                    if label in tops and label in ground:
                        tp[label] += 1
                    elif label in tops and label not in ground:
                        fp[label] += 1
                    elif label in ground and label not in tops:
                        fn[label] += 1
                    else:
                        tn[label] += 1

    precision_dict = defaultdict(int)
    recall_dict = defaultdict(int)
    f1_dict = defaultdict(int)
    for label in labels:
        if tp[label] == 0:
            print(label, flush=True)
            continue
        precision_dict[label] = tp[label] / (fp[label] + tp[label])
        recall_dict[label] = tp[label] / (fn[label] + tp[label])
        f1_dict[label] = 2 * (precision_dict[label] * recall_dict[label]) / (
            precision_dict[label] + recall_dict[label])

    macro_precision = sum(precision_dict.values()) / 5
    macro_recall = sum(recall_dict.values()) / 5
    macro_f1 = sum(f1_dict.values()) / 5
    micro_precision = sum(tp.values()) / (sum(tp.values()) + sum(fp.values()))
    micro_recall = sum(tp.values()) / (sum(tp.values()) + sum(fn.values()))
    micro_f1 = 2 * (micro_precision * micro_recall) / (micro_recall +
                                                       micro_precision)

    print("### PER-CLASS METRICS ###", flush=True)
    print("PRECIS  RECALL  F1    ", flush=True)
    for label in labels:
        print(
            f"{precision_dict[label]:6.4f}  {recall_dict[label]:6.4f}  {f1_dict[label]:6.4f}  {label.upper()}",
            flush=True)

    print()
    print("### AVERAGED METRICS ###", flush=True)
    print()
    print("MICRO AVERAGED", flush=True)
    print("PRECIS  RECALL  F1    ", flush=True)
    print(f"{micro_precision:6.4f}  {micro_recall:6.4f}  {micro_f1:6.4f}",
          flush=True)
    print()
    print("MACRO AVERAGED", flush=True)
    print("PRECIS  RECALL  F1    ", flush=True)
    print(f"{macro_precision:6.4f}  {macro_recall:6.4f}  {macro_f1:6.4f}",
          flush=True)
Exemplo n.º 4
0
from collections import defaultdict

import spacy
import math
import pickle
import random

from nltk.corpus import stopwords
import nltk
from gensim.corpora import Dictionary
from gensim.models.ldamodel import LdaModel

train_set = []
test_set = []
dataset = []
for assignment, questions in ground_truth.get_groundTruth().items():
    for each in questions.keys():
        dataset.append((assignment, each))

train_num = 2
for i in range(train_num):
    choice = random.choice(dataset)
    while choice == ("a3", "p2"):
        choice = random.choice(dataset)
    train_set.append(choice)
    dataset.remove(choice)
test_set = dataset
print(test_set)

nltk.download("wordnet")
nltk.download("stopwords")