def _pop_op(everything, accum, everything_max = None, everything_min = None, word = None, aword = None, one_step=False, use_noise=True): rval = proj_h[0](accum[0], one_step=one_step, use_noise=use_noise) for si in xrange(1,state['decoder_stack']): rval += proj_h[si](accum[si], one_step=one_step, use_noise=use_noise) if state['mult_out']: rval = rval * everything else: rval = rval + everything if aword and state['avg_word']: wcode = aword if one_step: if state['mult_out']: rval = rval * wcode else: rval = rval + wcode else: if not isinstance(wcode, TT.TensorVariable): wcode = wcode.out shape = wcode.shape rshape = rval.shape rval = rval.reshape([rshape[0]/shape[0], shape[0], rshape[1]]) wcode = wcode.dimshuffle('x', 0, 1) if state['mult_out']: rval = rval * wcode else: rval = rval + wcode rval = rval.reshape(rshape) if word and state['bigram']: if one_step: if state['mult_out']: rval *= proj_word(emb_t(word, use_noise=use_noise), one_step=one_step, use_noise=use_noise) else: rval += proj_word(emb_t(word, use_noise=use_noise), one_step=one_step, use_noise=use_noise) else: if isinstance(word, TT.TensorVariable): shape = word.shape ndim = word.ndim else: shape = word.shape ndim = word.out.ndim pword = proj_word(emb_t(word, use_noise=use_noise), one_step=one_step, use_noise=use_noise) shape_pword = pword.shape if ndim == 1: pword = Shift()(pword.reshape([shape[0], 1, outdim])) else: pword = Shift()(pword.reshape([shape[0], shape[1], outdim])) if state['mult_out']: rval *= pword.reshape(shape_pword) else: rval += pword.reshape(shape_pword) if state['deep_out']: rval = drop_layer(act_layer(rval), use_noise=use_noise) return rval
def build_decoder(self, c, y, c_mask=None, y_mask=None, step_num=None, mode=EVALUATION, given_init_states=None, T=1): """Create the computational graph of the RNN Decoder. A graph denoting the relation from context vector c to the target cost/samples. It works in two mode: evaluation and sampling/beamsearch. In the evaluation mode (for training pairs), it compute the graph from c to the cost from x to y. In the sampling/beamsearch mode(for sampling), it compute the graph from c to target samples y. :param c: representations produced by an encoder. (n_samples, dim) matrix if mode == sampling or (max_seq_len, batch_size, dim) matrix if mode == evaluation :param c_mask: if mode == evaluation a 0/1 matrix identifying valid positions in c :param y: if mode == evaluation target sequences, matrix of word indices of shape (max_seq_len, batch_size), where each column is a sequence if mode != evaluation a vector of previous words of shape (n_samples,) :param y_mask: if mode == evaluation a 0/1 matrix determining lengths of the target sequences, must be None otherwise :param mode: chooses on of three modes: evaluation, sampling and beam_search where evaluation means given both input and output sequences, sampling means given input and predict target :param given_init_states: for sampling and beam_search. A list of hidden states matrices for each layer, each matrix is (n_samples, dim) :param T: sampling temperature """ # Check parameter consistency if mode == Decoder.EVALUATION: assert not given_init_states else: assert not y_mask assert given_init_states if mode == Decoder.BEAM_SEARCH: assert T == 1 # For log-likelihood evaluation the representation # be replicated for conveniency. In case backward RNN is used # it is not done. # Shape if mode == evaluation # (max_seq_len, batch_size, dim) # Shape if mode != evaluation # (n_samples, dim) if not self.state['search']: if mode == Decoder.EVALUATION: c = PadLayer(y.shape[0])(c) else: assert step_num c_pos = TT.minimum(step_num, c.shape[0] - 1) # Low rank embeddings of all the input words. # Shape if mode == evaluation # (n_words, rank_n_approx), # Shape if mode != evaluation # (n_samples, rank_n_approx) approx_embeddings = self.approx_embedder(y) # Low rank embeddings are projected to contribute # to input, reset and update signals. # All the shapes if mode == evaluation: # (n_words, dim) # where: n_words = max_seq_len * batch_size # All the shape if mode != evaluation: # (n_samples, dim) input_signals = [] reset_signals = [] update_signals = [] for level in range(self.num_levels): # Contributions directly from input words. input_signals.append(self.input_embedders[level](approx_embeddings)) update_signals.append(self.update_embedders[level](approx_embeddings)) reset_signals.append(self.reset_embedders[level](approx_embeddings)) # Contributions from the encoded source sentence. if not self.state['search']: current_c = c if mode == Decoder.EVALUATION else c[c_pos] input_signals[level] += self.decode_inputers[level](current_c) update_signals[level] += self.decode_updaters[level](current_c) reset_signals[level] += self.decode_reseters[level](current_c) # Hidden layers' initial states. # Shapes if mode == evaluation: # (batch_size, dim) # Shape if mode != evaluation: # (n_samples, dim) init_states = given_init_states if not init_states: init_states = [] for level in range(self.num_levels): init_c = c[0, :, -self.state['dim']:] init_states.append(self.initializers[level](init_c)) # Hidden layers' states. # Shapes if mode == evaluation: # (seq_len, batch_size, dim) # Shapes if mode != evaluation: # (n_samples, dim) hidden_layers = [] contexts = [] # Default value for alignment must be smth computable alignment = TT.zeros((1,)) for level in range(self.num_levels): if level > 0: input_signals[level] += self.inputers[level](hidden_layers[level - 1]) update_signals[level] += self.updaters[level](hidden_layers[level - 1]) reset_signals[level] += self.reseters[level](hidden_layers[level - 1]) add_kwargs = (dict(state_before=init_states[level]) if mode != Decoder.EVALUATION else dict(init_state=init_states[level], batch_size=y.shape[1] if y.ndim == 2 else 1, nsteps=y.shape[0])) if self.state['search']: add_kwargs['c'] = c add_kwargs['c_mask'] = c_mask add_kwargs['return_alignment'] = self.compute_alignment if mode != Decoder.EVALUATION: add_kwargs['step_num'] = step_num result = self.transitions[level]( input_signals[level], mask=y_mask, gater_below=none_if_zero(update_signals[level]), reseter_below=none_if_zero(reset_signals[level]), one_step=mode != Decoder.EVALUATION, use_noise=mode == Decoder.EVALUATION, **add_kwargs) if self.state['search']: if self.compute_alignment: #This implicitly wraps each element of result.out with a Layer to keep track of the parameters. #It is equivalent to h=result[0], ctx=result[1] etc. h, ctx, alignment = result if mode == Decoder.EVALUATION: alignment = alignment.out else: #This implicitly wraps each element of result.out with a Layer to keep track of the parameters. #It is equivalent to h=result[0], ctx=result[1] h, ctx = result else: h = result if mode == Decoder.EVALUATION: ctx = c else: ctx = ReplicateLayer(given_init_states[0].shape[0])(c[c_pos]).out hidden_layers.append(h) contexts.append(ctx) # In hidden_layers we do no have the initial state, but we need it. # Instead of it we have the last one, which we do not need. # So what we do is discard the last one and prepend the initial one. if mode == Decoder.EVALUATION: for level in range(self.num_levels): hidden_layers[level].out = TT.concatenate([ TT.shape_padleft(init_states[level].out), hidden_layers[level].out])[:-1] # The output representation to be fed in softmax. # Shape if mode == evaluation # (n_words, dim_r) # Shape if mode != evaluation # (n_samples, dim_r) # ... where dim_r depends on 'deep_out' option. readout = self.repr_readout(contexts[0]) for level in range(self.num_levels): if mode != Decoder.EVALUATION: read_from = init_states[level] else: read_from = hidden_layers[level] read_from_var = read_from if type(read_from) == theano.tensor.TensorVariable else read_from.out if read_from_var.ndim == 3: read_from_var = read_from_var[:,:,:self.state['dim']] else: read_from_var = read_from_var[:,:self.state['dim']] if type(read_from) != theano.tensor.TensorVariable: read_from.out = read_from_var else: read_from = read_from_var readout += self.hidden_readouts[level](read_from) if self.state['bigram']: if mode != Decoder.EVALUATION: check_first_word = (y > 0 if self.state['check_first_word'] else TT.ones((y.shape[0]), dtype="float32")) # padright is necessary as we want to multiply each row with a certain scalar readout += TT.shape_padright(check_first_word) * self.prev_word_readout(approx_embeddings).out else: if y.ndim == 1: readout += Shift()(self.prev_word_readout(approx_embeddings).reshape( (y.shape[0], 1, self.state['dim']))) else: # This place needs explanation. When prev_word_readout is applied to # approx_embeddings the resulting shape is # (n_batches * sequence_length, repr_dimensionality). We first # transform it into 3D tensor to shift forward in time. Then # reshape it back. readout += Shift()(self.prev_word_readout(approx_embeddings).reshape( (y.shape[0], y.shape[1], self.state['dim']))).reshape( readout.out.shape) for fun in self.output_nonlinearities: readout = fun(readout) if mode == Decoder.SAMPLING: sample = self.output_layer.get_sample( state_below=readout, temp=T) # Current SoftmaxLayer.get_cost is stupid, # that's why we have to reshape a lot. self.output_layer.get_cost( state_below=readout.out, temp=T, target=sample) log_prob = self.output_layer.cost_per_sample return [sample] + [log_prob] + hidden_layers elif mode == Decoder.BEAM_SEARCH: return self.output_layer( state_below=readout.out, temp=T).out elif mode == Decoder.EVALUATION:#return cost expression w.r.t x and y from the output layer return (self.output_layer.train(#see Layer.train at /Groundhog/layers/basic.py. #The actual output_layer for evaluation is the CostLayer/SoftmaxLayer at costlayers.py #The cost expression is constructed there in the SoftmaxLayer class state_below=readout, target=y, mask=y_mask, reg=None),#reg is extra regularation expression for the cost alignment ) else: raise Exception("Unknown mode for build_decoder")
def _pop_op(everything, accum, everything_max=None, everything_min=None, word=None, aword=None, one_step=False, use_noise=True): rval = proj_h[0](accum[0], one_step=one_step, use_noise=use_noise) for si in xrange(1, state['decoder_stack']): rval += proj_h[si](accum[si], one_step=one_step, use_noise=use_noise) if state['mult_out']: rval = rval * everything else: rval = rval + everything if aword and state['avg_word']: wcode = aword if one_step: if state['mult_out']: rval = rval * wcode else: rval = rval + wcode else: if not isinstance(wcode, TT.TensorVariable): wcode = wcode.out shape = wcode.shape rshape = rval.shape rval = rval.reshape( [rshape[0] / shape[0], shape[0], rshape[1]]) wcode = wcode.dimshuffle('x', 0, 1) if state['mult_out']: rval = rval * wcode else: rval = rval + wcode rval = rval.reshape(rshape) if word and state['bigram']: if one_step: if state['mult_out']: rval *= proj_word(emb_t(word, use_noise=use_noise), one_step=one_step, use_noise=use_noise) else: rval += proj_word(emb_t(word, use_noise=use_noise), one_step=one_step, use_noise=use_noise) else: if isinstance(word, TT.TensorVariable): shape = word.shape ndim = word.ndim else: shape = word.shape ndim = word.out.ndim pword = proj_word(emb_t(word, use_noise=use_noise), one_step=one_step, use_noise=use_noise) shape_pword = pword.shape if ndim == 1: pword = Shift()(pword.reshape([shape[0], 1, outdim])) else: pword = Shift()(pword.reshape([shape[0], shape[1], outdim])) if state['mult_out']: rval *= pword.reshape(shape_pword) else: rval += pword.reshape(shape_pword) if state['deep_out']: rval = drop_layer(act_layer(rval), use_noise=use_noise) return rval
def jobman(state, channel): # load dataset state['null_sym_source'] = 15000 state['null_sym_target'] = 15000 state['n_sym_source'] = state['null_sym_source'] + 1 state['n_sym_target'] = state['null_sym_target'] + 1 state['nouts'] = state['n_sym_target'] state['nins'] = state['n_sym_source'] rng = numpy.random.RandomState(state['seed']) if state['loopIters'] > 0: train_data, valid_data, test_data = get_data(state) else: train_data = None valid_data = None test_data = None ########### Training graph ##################### ## 1. Inputs if state['bs'] == 1: x = TT.lvector('x') x_mask = TT.vector('x_mask') y = TT.lvector('y') y0 = y y_mask = TT.vector('y_mask') else: x = TT.lmatrix('x') x_mask = TT.matrix('x_mask') y = TT.lmatrix('y') y0 = y y_mask = TT.matrix('y_mask') # 2. Layers and Operators bs = state['bs'] embdim = state['dim_mlp'] # Source Sentence emb = MultiLayer(rng, n_in=state['nins'], n_hids=[state['rank_n_approx']], activation=[state['rank_n_activ']], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='emb') emb_words = [] if state['rec_gating']: gater_words = [] if state['rec_reseting']: reseter_words = [] for si in xrange(state['encoder_stack']): emb_words.append( MultiLayer(rng, n_in=state['rank_n_approx'], n_hids=[embdim], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='emb_words_%d' % si)) if state['rec_gating']: gater_words.append( MultiLayer(rng, n_in=state['rank_n_approx'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='gater_words_%d' % si)) if state['rec_reseting']: reseter_words.append( MultiLayer(rng, n_in=state['rank_n_approx'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='reseter_words_%d' % si)) add_rec_step = [] rec_proj = [] if state['rec_gating']: rec_proj_gater = [] if state['rec_reseting']: rec_proj_reseter = [] for si in xrange(state['encoder_stack']): if si > 0: rec_proj.append( MultiLayer(rng, n_in=state['dim'], n_hids=[embdim], activation=['lambda x:x'], init_fn=state['rec_weight_init_fn'], weight_noise=state['weight_noise'], scale=state['rec_weight_scale'], name='rec_proj_%d' % si)) if state['rec_gating']: rec_proj_gater.append( MultiLayer(rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='rec_proj_gater_%d' % si)) if state['rec_reseting']: rec_proj_reseter.append( MultiLayer(rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='rec_proj_reseter_%d' % si)) add_rec_step.append( eval(state['rec_layer'])(rng, n_hids=state['dim'], activation=state['activ'], bias_scale=state['bias'], scale=state['rec_weight_scale'], init_fn=state['rec_weight_init_fn'], weight_noise=state['weight_noise_rec'], dropout=state['dropout_rec'], gating=state['rec_gating'], gater_activation=state['rec_gater'], reseting=state['rec_reseting'], reseter_activation=state['rec_reseter'], name='add_h_%d' % si)) def _add_op(words_embeddings, words_mask=None, prev_val=None, si=0, state_below=None, gater_below=None, reseter_below=None, one_step=False, bs=1, init_state=None, use_noise=True): seqlen = words_embeddings.out.shape[0] // bs rval = words_embeddings gater = None reseter = None if state['rec_gating']: gater = gater_below if state['rec_reseting']: reseter = reseter_below if si > 0: rval += rec_proj[si - 1](state_below, one_step=one_step, use_noise=use_noise) if state['rec_gating']: projg = rec_proj_gater[si - 1](state_below, one_step=one_step, use_noise=use_noise) if gater: gater += projg else: gater = projg if state['rec_reseting']: projg = rec_proj_reseter[si - 1](state_below, one_step=one_step, use_noise=use_noise) if reseter: reseter += projg else: reseter = projg if not one_step: rval = add_rec_step[si](rval, nsteps=seqlen, batch_size=bs, mask=words_mask, gater_below=gater, reseter_below=reseter, one_step=one_step, init_state=init_state, use_noise=use_noise) else: rval = add_rec_step[si](rval, mask=words_mask, state_before=prev_val, gater_below=gater, reseter_below=reseter, one_step=one_step, init_state=init_state, use_noise=use_noise) return rval add_op = Operator(_add_op) # Target Sentence emb_t = MultiLayer(rng, n_in=state['nouts'], n_hids=[state['rank_n_approx']], activation=[state['rank_n_activ']], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='emb_t') emb_words_t = [] if state['rec_gating']: gater_words_t = [] if state['rec_reseting']: reseter_words_t = [] for si in xrange(state['decoder_stack']): emb_words_t.append( MultiLayer(rng, n_in=state['rank_n_approx'], n_hids=[embdim], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='emb_words_t_%d' % si)) if state['rec_gating']: gater_words_t.append( MultiLayer(rng, n_in=state['rank_n_approx'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='gater_words_t_%d' % si)) if state['rec_reseting']: reseter_words_t.append( MultiLayer(rng, n_in=state['rank_n_approx'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='reseter_words_t_%d' % si)) proj_everything_t = [] if state['rec_gating']: gater_everything_t = [] if state['rec_reseting']: reseter_everything_t = [] for si in xrange(state['decoder_stack']): proj_everything_t.append( MultiLayer(rng, n_in=state['dim'], n_hids=[embdim], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='proj_everything_t_%d' % si, learn_bias=False)) if state['rec_gating']: gater_everything_t.append( MultiLayer(rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='gater_everything_t_%d' % si, learn_bias=False)) if state['rec_reseting']: reseter_everything_t.append( MultiLayer(rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='reseter_everything_t_%d' % si, learn_bias=False)) add_rec_step_t = [] rec_proj_t = [] if state['rec_gating']: rec_proj_t_gater = [] if state['rec_reseting']: rec_proj_t_reseter = [] for si in xrange(state['decoder_stack']): if si > 0: rec_proj_t.append( MultiLayer(rng, n_in=state['dim'], n_hids=[embdim], activation=['lambda x:x'], init_fn=state['rec_weight_init_fn'], weight_noise=state['weight_noise'], scale=state['rec_weight_scale'], name='rec_proj_%d' % si)) if state['rec_gating']: rec_proj_t_gater.append( MultiLayer(rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='rec_proj_t_gater_%d' % si)) if state['rec_reseting']: rec_proj_t_reseter.append( MultiLayer(rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='rec_proj_t_reseter_%d' % si)) add_rec_step_t.append( eval(state['rec_layer'])(rng, n_hids=state['dim'], activation=state['activ'], bias_scale=state['bias'], scale=state['rec_weight_scale'], init_fn=state['rec_weight_init_fn'], weight_noise=state['weight_noise_rec'], dropout=state['dropout_rec'], gating=state['rec_gating'], gater_activation=state['rec_gater'], reseting=state['rec_reseting'], reseter_activation=state['rec_reseter'], name='add_h_t_%d' % si)) if state['encoder_stack'] > 1: encoder_proj = [] for si in xrange(state['encoder_stack']): encoder_proj.append( MultiLayer(rng, n_in=state['dim'], n_hids=[state['dim'] * state['maxout_part']], activation=['lambda x: x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='encoder_proj_%d' % si, learn_bias=(si == 0))) encoder_act_layer = UnaryOp(activation=eval(state['unary_activ']), indim=indim, pieces=pieces, rng=rng) def _add_t_op(words_embeddings, everything=None, words_mask=None, prev_val=None, one_step=False, bs=1, init_state=None, use_noise=True, gater_below=None, reseter_below=None, si=0, state_below=None): seqlen = words_embeddings.out.shape[0] // bs rval = words_embeddings gater = None if state['rec_gating']: gater = gater_below reseter = None if state['rec_reseting']: reseter = reseter_below if si > 0: if isinstance(state_below, list): state_below = state_below[-1] rval += rec_proj_t[si - 1](state_below, one_step=one_step, use_noise=use_noise) if state['rec_gating']: projg = rec_proj_t_gater[si - 1](state_below, one_step=one_step, use_noise=use_noise) if gater: gater += projg else: gater = projg if state['rec_reseting']: projg = rec_proj_t_reseter[si - 1](state_below, one_step=one_step, use_noise=use_noise) if reseter: reseter += projg else: reseter = projg if everything: rval = rval + proj_everything_t[si](everything) if state['rec_gating']: everyg = gater_everything_t[si](everything, one_step=one_step, use_noise=use_noise) if gater: gater += everyg else: gater = everyg if state['rec_reseting']: everyg = reseter_everything_t[si](everything, one_step=one_step, use_noise=use_noise) if reseter: reseter += everyg else: reseter = everyg if not one_step: rval = add_rec_step_t[si](rval, nsteps=seqlen, batch_size=bs, mask=words_mask, one_step=one_step, init_state=init_state, gater_below=gater, reseter_below=reseter, use_noise=use_noise) else: rval = add_rec_step_t[si](rval, mask=words_mask, state_before=prev_val, one_step=one_step, gater_below=gater, reseter_below=reseter, use_noise=use_noise) return rval add_t_op = Operator(_add_t_op) outdim = state['dim_mlp'] if not state['deep_out']: outdim = state['rank_n_approx'] if state['bias_code']: bias_code = [] for si in xrange(state['decoder_stack']): bias_code.append( MultiLayer(rng, n_in=state['dim'], n_hids=[state['dim']], activation=[state['activ']], bias_scale=[state['bias']], scale=state['weight_scale'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], name='bias_code_%d' % si)) if state['avg_word']: word_code_nin = state['rank_n_approx'] word_code = MultiLayer(rng, n_in=word_code_nin, n_hids=[outdim], activation='lambda x:x', bias_scale=[state['bias_mlp'] / 3], scale=state['weight_scale'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], learn_bias=False, name='word_code') proj_code = MultiLayer(rng, n_in=state['dim'], n_hids=[outdim], activation='lambda x: x', bias_scale=[state['bias_mlp'] / 3], scale=state['weight_scale'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], learn_bias=False, name='proj_code') proj_h = [] for si in xrange(state['decoder_stack']): proj_h.append( MultiLayer(rng, n_in=state['dim'], n_hids=[outdim], activation='lambda x: x', bias_scale=[state['bias_mlp'] / 3], scale=state['weight_scale'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], name='proj_h_%d' % si)) if state['bigram']: proj_word = MultiLayer(rng, n_in=state['rank_n_approx'], n_hids=[outdim], activation=['lambda x:x'], bias_scale=[state['bias_mlp'] / 3], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='emb_words_lm') if state['deep_out']: indim = 0 pieces = 0 act_layer = UnaryOp(activation=eval(state['unary_activ'])) drop_layer = DropOp(rng=rng, dropout=state['dropout']) if state['deep_out']: indim = state['dim_mlp'] / state['maxout_part'] rank_n_approx = state['rank_n_approx'] rank_n_activ = state['rank_n_activ'] else: indim = state['rank_n_approx'] rank_n_approx = 0 rank_n_activ = None output_layer = SoftmaxLayer(rng, indim, state['nouts'], state['weight_scale'], -1, rank_n_approx=rank_n_approx, rank_n_activ=rank_n_activ, weight_noise=state['weight_noise'], init_fn=state['weight_init_fn'], name='out') def _pop_op(everything, accum, everything_max=None, everything_min=None, word=None, aword=None, one_step=False, use_noise=True): rval = proj_h[0](accum[0], one_step=one_step, use_noise=use_noise) for si in xrange(1, state['decoder_stack']): rval += proj_h[si](accum[si], one_step=one_step, use_noise=use_noise) if state['mult_out']: rval = rval * everything else: rval = rval + everything if aword and state['avg_word']: wcode = aword if one_step: if state['mult_out']: rval = rval * wcode else: rval = rval + wcode else: if not isinstance(wcode, TT.TensorVariable): wcode = wcode.out shape = wcode.shape rshape = rval.shape rval = rval.reshape( [rshape[0] / shape[0], shape[0], rshape[1]]) wcode = wcode.dimshuffle('x', 0, 1) if state['mult_out']: rval = rval * wcode else: rval = rval + wcode rval = rval.reshape(rshape) if word and state['bigram']: if one_step: if state['mult_out']: rval *= proj_word(emb_t(word, use_noise=use_noise), one_step=one_step, use_noise=use_noise) else: rval += proj_word(emb_t(word, use_noise=use_noise), one_step=one_step, use_noise=use_noise) else: if isinstance(word, TT.TensorVariable): shape = word.shape ndim = word.ndim else: shape = word.shape ndim = word.out.ndim pword = proj_word(emb_t(word, use_noise=use_noise), one_step=one_step, use_noise=use_noise) shape_pword = pword.shape if ndim == 1: pword = Shift()(pword.reshape([shape[0], 1, outdim])) else: pword = Shift()(pword.reshape([shape[0], shape[1], outdim])) if state['mult_out']: rval *= pword.reshape(shape_pword) else: rval += pword.reshape(shape_pword) if state['deep_out']: rval = drop_layer(act_layer(rval), use_noise=use_noise) return rval pop_op = Operator(_pop_op) # 3. Constructing the model gater_below = None if state['rec_gating']: gater_below = gater_words[0](emb(x)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words[0](emb(x)) encoder_acts = [ add_op(emb_words[0](emb(x)), x_mask, bs=x_mask.shape[1], si=0, gater_below=gater_below, reseter_below=reseter_below) ] if state['encoder_stack'] > 1: everything = encoder_proj[0](last(encoder_acts[-1])) for si in xrange(1, state['encoder_stack']): gater_below = None if state['rec_gating']: gater_below = gater_words[si](emb(x)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words[si](emb(x)) encoder_acts.append( add_op(emb_words[si](emb(x)), x_mask, bs=x_mask.shape[1], si=si, state_below=encoder_acts[-1], gater_below=gater_below, reseter_below=reseter_below)) if state['encoder_stack'] > 1: everything += encoder_proj[si](last(encoder_acts[-1])) if state['encoder_stack'] <= 1: encoder = encoder_acts[-1] everything = LastState(ntimes=True, n=y.shape[0])(encoder) else: everything = encoder_act_layer(everything) everything = everything.reshape( [1, everything.shape[0], everything.shape[1]]) everything = LastState(ntimes=True, n=y.shape[0])(everything) if state['bias_code']: init_state = [bc(everything[-1]) for bc in bias_code] else: init_state = [None for bc in bias_code] if state['avg_word']: shape = x.shape pword = emb(x).out.reshape( [shape[0], shape[1], state['rank_n_approx']]) pword = pword * x_mask.dimshuffle(0, 1, 'x') aword = pword.sum(0) / TT.maximum(1., x_mask.sum(0).dimshuffle(0, 'x')) aword = word_code(aword, use_noise=False) else: aword = None gater_below = None if state['rec_gating']: gater_below = gater_words_t[0](emb_t(y0)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words_t[0](emb_t(y0)) has_said = [ add_t_op(emb_words_t[0](emb_t(y0)), everything, y_mask, bs=y_mask.shape[1], gater_below=gater_below, reseter_below=reseter_below, init_state=init_state[0], si=0) ] for si in xrange(1, state['decoder_stack']): gater_below = None if state['rec_gating']: gater_below = gater_words_t[si](emb_t(y0)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words_t[si](emb_t(y0)) has_said.append( add_t_op(emb_words_t[si](emb_t(y0)), everything, y_mask, bs=y_mask.shape[1], state_below=has_said[-1], gater_below=gater_below, reseter_below=reseter_below, init_state=init_state[si], si=si)) if has_said[0].out.ndim < 3: for si in xrange(state['decoder_stack']): shape_hs = has_said[si].shape if y0.ndim == 1: shape = y0.shape has_said[si] = Shift()(has_said[si].reshape( [shape[0], 1, state['dim_mlp']])) else: shape = y0.shape has_said[si] = Shift()(has_said[si].reshape( [shape[0], shape[1], state['dim_mlp']])) has_said[si].out = TT.set_subtensor(has_said[si].out[0, :, :], init_state[si]) has_said[si] = has_said[si].reshape(shape_hs) else: for si in xrange(state['decoder_stack']): has_said[si] = Shift()(has_said[si]) has_said[si].out = TT.set_subtensor(has_said[si].out[0, :, :], init_state[si]) model = pop_op(proj_code(everything), has_said, word=y0, aword=aword) nll = output_layer.train( state_below=model, target=y0, mask=y_mask, reg=None) / TT.cast( y.shape[0] * y.shape[1], 'float32') valid_fn = None noise_fn = None x = TT.lvector(name='x') n_steps = TT.iscalar('nsteps') temp = TT.scalar('temp') gater_below = None if state['rec_gating']: gater_below = gater_words[0](emb(x)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words[0](emb(x)) encoder_acts = [ add_op(emb_words[0](emb(x), use_noise=False), si=0, use_noise=False, gater_below=gater_below, reseter_below=reseter_below) ] if state['encoder_stack'] > 1: everything = encoder_proj[0](last(encoder_acts[-1]), use_noise=False) for si in xrange(1, state['encoder_stack']): gater_below = None if state['rec_gating']: gater_below = gater_words[si](emb(x)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words[si](emb(x)) encoder_acts.append( add_op(emb_words[si](emb(x), use_noise=False), si=si, state_below=encoder_acts[-1], use_noise=False, gater_below=gater_below, reseter_below=reseter_below)) if state['encoder_stack'] > 1: everything += encoder_proj[si](last(encoder_acts[-1]), use_noise=False) if state['encoder_stack'] <= 1: encoder = encoder_acts[-1] everything = last(encoder) else: everything = encoder_act_layer(everything) init_state = [] for si in xrange(state['decoder_stack']): if state['bias_code']: init_state.append( TT.reshape(bias_code[si](everything, use_noise=False), [1, state['dim']])) else: init_state.append(TT.alloc(numpy.float32(0), 1, state['dim'])) if state['avg_word']: aword = emb(x, use_noise=False).out.mean(0) aword = word_code(aword, use_noise=False) else: aword = None def sample_fn(*args): aidx = 0 word_tm1 = args[aidx] aidx += 1 prob_tm1 = args[aidx] has_said_tm1 = [] for si in xrange(state['decoder_stack']): aidx += 1 has_said_tm1.append(args[aidx]) aidx += 1 ctx = args[aidx] if state['avg_word']: aidx += 1 awrd = args[aidx] val = pop_op(proj_code(ctx), has_said_tm1, word=word_tm1, aword=awrd, one_step=True, use_noise=False) sample = output_layer.get_sample(state_below=val, temp=temp) logp = output_layer.get_cost(state_below=val.out.reshape( [1, TT.cast(output_layer.n_in, 'int64')]), temp=temp, target=sample.reshape([1, 1]), use_noise=False) gater_below = None if state['rec_gating']: gater_below = gater_words_t[0](emb_t(sample)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words_t[0](emb_t(sample)) has_said_t = [ add_t_op(emb_words_t[0](emb_t(sample)), ctx, prev_val=has_said_tm1[0], gater_below=gater_below, reseter_below=reseter_below, one_step=True, use_noise=True, si=0) ] for si in xrange(1, state['decoder_stack']): gater_below = None if state['rec_gating']: gater_below = gater_words_t[si](emb_t(sample)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words_t[si](emb_t(sample)) has_said_t.append( add_t_op(emb_words_t[si](emb_t(sample)), ctx, prev_val=has_said_tm1[si], gater_below=gater_below, reseter_below=reseter_below, one_step=True, use_noise=True, si=si, state_below=has_said_t[-1])) for si in xrange(state['decoder_stack']): if isinstance(has_said_t[si], list): has_said_t[si] = has_said_t[si][-1] rval = [sample, TT.cast(logp, 'float32')] + has_said_t return rval sampler_params = [everything] if state['avg_word']: sampler_params.append(aword) states = [TT.alloc(numpy.int64(0), n_steps)] states.append(TT.alloc(numpy.float32(0), n_steps)) states += init_state outputs, updates = scan(sample_fn, states=states, params=sampler_params, n_steps=n_steps, name='sampler_scan') samples = outputs[0] probs = outputs[1] sample_fn = theano.function([n_steps, temp, x], [samples, probs.sum()], updates=updates, profile=False, name='sample_fn') model = LM_Model(cost_layer=nll, weight_noise_amount=state['weight_noise_amount'], valid_fn=valid_fn, sample_fn=sample_fn, clean_before_noise_fn=False, noise_fn=noise_fn, indx_word=state['indx_word_target'], indx_word_src=state['indx_word'], character_level=False, rng=rng) if state['loopIters'] > 0: algo = SGD(model, state, train_data) else: algo = None def hook_fn(): if not hasattr(model, 'word_indxs'): model.load_dict() if not hasattr(model, 'word_indxs_src'): model.word_indxs_src = model.word_indxs old_offset = train_data.offset if state['sample_reset']: train_data.reset() ns = 0 for sidx in xrange(state['sample_n']): while True: batch = train_data.next() if batch: break x = batch['x'] y = batch['y'] #xbow = batch['x_bow'] masks = batch['x_mask'] if x.ndim > 1: for idx in xrange(x.shape[1]): ns += 1 if ns > state['sample_max']: break print 'Input: ', for k in xrange(x[:, idx].shape[0]): print model.word_indxs_src[x[:, idx][k]], if model.word_indxs_src[x[:, idx][k]] == '<eol>': break print '' print 'Target: ', for k in xrange(y[:, idx].shape[0]): print model.word_indxs[y[:, idx][k]], if model.word_indxs[y[:, idx][k]] == '<eol>': break print '' senlen = len(x[:, idx]) if len(numpy.where(masks[:, idx] == 0)[0]) > 0: senlen = numpy.where(masks[:, idx] == 0)[0][0] if senlen < 1: continue xx = x[:senlen, idx] #xx = xx.reshape([xx.shape[0], 1]) model.get_samples(state['seqlen'] + 1, 1, xx) else: ns += 1 model.get_samples(state['seqlen'] + 1, 1, x) if ns > state['sample_max']: break train_data.offset = old_offset return main = MainLoop(train_data, valid_data, None, model, algo, state, channel, reset=state['reset'], hooks=hook_fn) if state['reload']: main.load() if state['loopIters'] > 0: main.main() if state['sampler_test']: # This is a test script: we only sample if not hasattr(model, 'word_indxs'): model.load_dict() if not hasattr(model, 'word_indxs_src'): model.word_indxs_src = model.word_indxs indx_word = pkl.load(open(state['word_indx'], 'rb')) try: while True: try: seqin = raw_input('Input Sequence: ') n_samples = int(raw_input('How many samples? ')) alpha = float(raw_input('Inverse Temperature? ')) seqin = seqin.lower() seqin = seqin.split() seqlen = len(seqin) seq = numpy.zeros(seqlen + 1, dtype='int64') for idx, sx in enumerate(seqin): try: seq[idx] = indx_word[sx] except: seq[idx] = indx_word[state['oov']] seq[-1] = state['null_sym_source'] except Exception: print 'Something wrong with your input! Try again!' continue sentences = [] all_probs = [] for sidx in xrange(n_samples): #import ipdb; ipdb.set_trace() [values, probs] = model.sample_fn(seqlen * 3, alpha, seq) sen = [] for k in xrange(values.shape[0]): if model.word_indxs[values[k]] == '<eol>': break sen.append(model.word_indxs[values[k]]) sentences.append(" ".join(sen)) all_probs.append(-probs) sprobs = numpy.argsort(all_probs) for pidx in sprobs: print pidx, "(%f):" % (-all_probs[pidx]), sentences[pidx] print except KeyboardInterrupt: print 'Interrupted' pass
def jobman(state, channel): # load dataset state['null_sym_source'] = 15000 state['null_sym_target'] = 15000 state['n_sym_source'] = state['null_sym_source'] + 1 state['n_sym_target'] = state['null_sym_target'] + 1 state['nouts'] = state['n_sym_target'] state['nins'] = state['n_sym_source'] rng = numpy.random.RandomState(state['seed']) if state['loopIters'] > 0: train_data, valid_data, test_data = get_data(state) else: train_data = None valid_data = None test_data = None ########### Training graph ##################### ## 1. Inputs if state['bs'] == 1: x = TT.lvector('x') x_mask = TT.vector('x_mask') y = TT.lvector('y') y0 = y y_mask = TT.vector('y_mask') else: x = TT.lmatrix('x') x_mask = TT.matrix('x_mask') y = TT.lmatrix('y') y0 = y y_mask = TT.matrix('y_mask') # 2. Layers and Operators bs = state['bs'] embdim = state['dim_mlp'] # Source Sentence emb = MultiLayer( rng, n_in=state['nins'], n_hids=[state['rank_n_approx']], activation=[state['rank_n_activ']], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='emb') emb_words = [] if state['rec_gating']: gater_words = [] if state['rec_reseting']: reseter_words = [] for si in xrange(state['encoder_stack']): emb_words.append(MultiLayer( rng, n_in=state['rank_n_approx'], n_hids=[embdim], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='emb_words_%d'%si)) if state['rec_gating']: gater_words.append(MultiLayer( rng, n_in=state['rank_n_approx'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias = False, name='gater_words_%d'%si)) if state['rec_reseting']: reseter_words.append(MultiLayer( rng, n_in=state['rank_n_approx'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias = False, name='reseter_words_%d'%si)) add_rec_step = [] rec_proj = [] if state['rec_gating']: rec_proj_gater = [] if state['rec_reseting']: rec_proj_reseter = [] for si in xrange(state['encoder_stack']): if si > 0: rec_proj.append(MultiLayer( rng, n_in=state['dim'], n_hids=[embdim], activation=['lambda x:x'], init_fn=state['rec_weight_init_fn'], weight_noise=state['weight_noise'], scale=state['rec_weight_scale'], name='rec_proj_%d'%si)) if state['rec_gating']: rec_proj_gater.append(MultiLayer( rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias = False, name='rec_proj_gater_%d'%si)) if state['rec_reseting']: rec_proj_reseter.append(MultiLayer( rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias = False, name='rec_proj_reseter_%d'%si)) add_rec_step.append(eval(state['rec_layer'])( rng, n_hids=state['dim'], activation = state['activ'], bias_scale = state['bias'], scale=state['rec_weight_scale'], init_fn=state['rec_weight_init_fn'], weight_noise=state['weight_noise_rec'], dropout=state['dropout_rec'], gating=state['rec_gating'], gater_activation=state['rec_gater'], reseting=state['rec_reseting'], reseter_activation=state['rec_reseter'], name='add_h_%d'%si)) def _add_op(words_embeddings, words_mask=None, prev_val=None, si = 0, state_below = None, gater_below = None, reseter_below = None, one_step=False, bs=1, init_state=None, use_noise=True): seqlen = words_embeddings.out.shape[0]//bs rval = words_embeddings gater = None reseter = None if state['rec_gating']: gater = gater_below if state['rec_reseting']: reseter = reseter_below if si > 0: rval += rec_proj[si-1](state_below, one_step=one_step, use_noise=use_noise) if state['rec_gating']: projg = rec_proj_gater[si-1](state_below, one_step=one_step, use_noise = use_noise) if gater: gater += projg else: gater = projg if state['rec_reseting']: projg = rec_proj_reseter[si-1](state_below, one_step=one_step, use_noise = use_noise) if reseter: reseter += projg else: reseter = projg if not one_step: rval= add_rec_step[si]( rval, nsteps=seqlen, batch_size=bs, mask=words_mask, gater_below = gater, reseter_below = reseter, one_step=one_step, init_state=init_state, use_noise = use_noise) else: rval= add_rec_step[si]( rval, mask=words_mask, state_before=prev_val, gater_below = gater, reseter_below = reseter, one_step=one_step, init_state=init_state, use_noise = use_noise) return rval add_op = Operator(_add_op) # Target Sentence emb_t = MultiLayer( rng, n_in=state['nouts'], n_hids=[state['rank_n_approx']], activation=[state['rank_n_activ']], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='emb_t') emb_words_t = [] if state['rec_gating']: gater_words_t = [] if state['rec_reseting']: reseter_words_t = [] for si in xrange(state['decoder_stack']): emb_words_t.append(MultiLayer( rng, n_in=state['rank_n_approx'], n_hids=[embdim], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='emb_words_t_%d'%si)) if state['rec_gating']: gater_words_t.append(MultiLayer( rng, n_in=state['rank_n_approx'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='gater_words_t_%d'%si)) if state['rec_reseting']: reseter_words_t.append(MultiLayer( rng, n_in=state['rank_n_approx'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='reseter_words_t_%d'%si)) proj_everything_t = [] if state['rec_gating']: gater_everything_t = [] if state['rec_reseting']: reseter_everything_t = [] for si in xrange(state['decoder_stack']): proj_everything_t.append(MultiLayer( rng, n_in=state['dim'], n_hids=[embdim], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='proj_everything_t_%d'%si, learn_bias = False)) if state['rec_gating']: gater_everything_t.append(MultiLayer( rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='gater_everything_t_%d'%si, learn_bias = False)) if state['rec_reseting']: reseter_everything_t.append(MultiLayer( rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='reseter_everything_t_%d'%si, learn_bias = False)) add_rec_step_t = [] rec_proj_t = [] if state['rec_gating']: rec_proj_t_gater = [] if state['rec_reseting']: rec_proj_t_reseter = [] for si in xrange(state['decoder_stack']): if si > 0: rec_proj_t.append(MultiLayer( rng, n_in=state['dim'], n_hids=[embdim], activation=['lambda x:x'], init_fn=state['rec_weight_init_fn'], weight_noise=state['weight_noise'], scale=state['rec_weight_scale'], name='rec_proj_%d'%si)) if state['rec_gating']: rec_proj_t_gater.append(MultiLayer( rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='rec_proj_t_gater_%d'%si)) if state['rec_reseting']: rec_proj_t_reseter.append(MultiLayer( rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='rec_proj_t_reseter_%d'%si)) add_rec_step_t.append(eval(state['rec_layer'])( rng, n_hids=state['dim'], activation = state['activ'], bias_scale = state['bias'], scale=state['rec_weight_scale'], init_fn=state['rec_weight_init_fn'], weight_noise=state['weight_noise_rec'], dropout=state['dropout_rec'], gating=state['rec_gating'], gater_activation=state['rec_gater'], reseting=state['rec_reseting'], reseter_activation=state['rec_reseter'], name='add_h_t_%d'%si)) if state['encoder_stack'] > 1: encoder_proj = [] for si in xrange(state['encoder_stack']): encoder_proj.append(MultiLayer( rng, n_in=state['dim'], n_hids=[state['dim'] * state['maxout_part']], activation=['lambda x: x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='encoder_proj_%d'%si, learn_bias = (si == 0))) encoder_act_layer = UnaryOp(activation=eval(state['unary_activ']), indim = indim, pieces = pieces, rng=rng) def _add_t_op(words_embeddings, everything = None, words_mask=None, prev_val=None,one_step=False, bs=1, init_state=None, use_noise=True, gater_below = None, reseter_below = None, si = 0, state_below = None): seqlen = words_embeddings.out.shape[0]//bs rval = words_embeddings gater = None if state['rec_gating']: gater = gater_below reseter = None if state['rec_reseting']: reseter = reseter_below if si > 0: if isinstance(state_below, list): state_below = state_below[-1] rval += rec_proj_t[si-1](state_below, one_step=one_step, use_noise=use_noise) if state['rec_gating']: projg = rec_proj_t_gater[si-1](state_below, one_step=one_step, use_noise = use_noise) if gater: gater += projg else: gater = projg if state['rec_reseting']: projg = rec_proj_t_reseter[si-1](state_below, one_step=one_step, use_noise = use_noise) if reseter: reseter += projg else: reseter = projg if everything: rval = rval + proj_everything_t[si](everything) if state['rec_gating']: everyg = gater_everything_t[si](everything, one_step=one_step, use_noise=use_noise) if gater: gater += everyg else: gater = everyg if state['rec_reseting']: everyg = reseter_everything_t[si](everything, one_step=one_step, use_noise=use_noise) if reseter: reseter += everyg else: reseter = everyg if not one_step: rval = add_rec_step_t[si]( rval, nsteps=seqlen, batch_size=bs, mask=words_mask, one_step=one_step, init_state=init_state, gater_below = gater, reseter_below = reseter, use_noise = use_noise) else: rval = add_rec_step_t[si]( rval, mask=words_mask, state_before=prev_val, one_step=one_step, gater_below = gater, reseter_below = reseter, use_noise = use_noise) return rval add_t_op = Operator(_add_t_op) outdim = state['dim_mlp'] if not state['deep_out']: outdim = state['rank_n_approx'] if state['bias_code']: bias_code = [] for si in xrange(state['decoder_stack']): bias_code.append(MultiLayer( rng, n_in=state['dim'], n_hids=[state['dim']], activation = [state['activ']], bias_scale = [state['bias']], scale=state['weight_scale'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], name='bias_code_%d'%si)) if state['avg_word']: word_code_nin = state['rank_n_approx'] word_code = MultiLayer( rng, n_in=word_code_nin, n_hids=[outdim], activation = 'lambda x:x', bias_scale = [state['bias_mlp']/3], scale=state['weight_scale'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], learn_bias = False, name='word_code') proj_code = MultiLayer( rng, n_in=state['dim'], n_hids=[outdim], activation = 'lambda x: x', bias_scale = [state['bias_mlp']/3], scale=state['weight_scale'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], learn_bias = False, name='proj_code') proj_h = [] for si in xrange(state['decoder_stack']): proj_h.append(MultiLayer( rng, n_in=state['dim'], n_hids=[outdim], activation = 'lambda x: x', bias_scale = [state['bias_mlp']/3], scale=state['weight_scale'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], name='proj_h_%d'%si)) if state['bigram']: proj_word = MultiLayer( rng, n_in=state['rank_n_approx'], n_hids=[outdim], activation=['lambda x:x'], bias_scale = [state['bias_mlp']/3], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias = False, name='emb_words_lm') if state['deep_out']: indim = 0 pieces = 0 act_layer = UnaryOp(activation=eval(state['unary_activ'])) drop_layer = DropOp(rng=rng, dropout=state['dropout']) if state['deep_out']: indim = state['dim_mlp'] / state['maxout_part'] rank_n_approx = state['rank_n_approx'] rank_n_activ = state['rank_n_activ'] else: indim = state['rank_n_approx'] rank_n_approx = 0 rank_n_activ = None output_layer = SoftmaxLayer( rng, indim, state['nouts'], state['weight_scale'], -1, rank_n_approx = rank_n_approx, rank_n_activ = rank_n_activ, weight_noise=state['weight_noise'], init_fn=state['weight_init_fn'], name='out') def _pop_op(everything, accum, everything_max = None, everything_min = None, word = None, aword = None, one_step=False, use_noise=True): rval = proj_h[0](accum[0], one_step=one_step, use_noise=use_noise) for si in xrange(1,state['decoder_stack']): rval += proj_h[si](accum[si], one_step=one_step, use_noise=use_noise) if state['mult_out']: rval = rval * everything else: rval = rval + everything if aword and state['avg_word']: wcode = aword if one_step: if state['mult_out']: rval = rval * wcode else: rval = rval + wcode else: if not isinstance(wcode, TT.TensorVariable): wcode = wcode.out shape = wcode.shape rshape = rval.shape rval = rval.reshape([rshape[0]/shape[0], shape[0], rshape[1]]) wcode = wcode.dimshuffle('x', 0, 1) if state['mult_out']: rval = rval * wcode else: rval = rval + wcode rval = rval.reshape(rshape) if word and state['bigram']: if one_step: if state['mult_out']: rval *= proj_word(emb_t(word, use_noise=use_noise), one_step=one_step, use_noise=use_noise) else: rval += proj_word(emb_t(word, use_noise=use_noise), one_step=one_step, use_noise=use_noise) else: if isinstance(word, TT.TensorVariable): shape = word.shape ndim = word.ndim else: shape = word.shape ndim = word.out.ndim pword = proj_word(emb_t(word, use_noise=use_noise), one_step=one_step, use_noise=use_noise) shape_pword = pword.shape if ndim == 1: pword = Shift()(pword.reshape([shape[0], 1, outdim])) else: pword = Shift()(pword.reshape([shape[0], shape[1], outdim])) if state['mult_out']: rval *= pword.reshape(shape_pword) else: rval += pword.reshape(shape_pword) if state['deep_out']: rval = drop_layer(act_layer(rval), use_noise=use_noise) return rval pop_op = Operator(_pop_op) # 3. Constructing the model gater_below = None if state['rec_gating']: gater_below = gater_words[0](emb(x)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words[0](emb(x)) encoder_acts = [add_op(emb_words[0](emb(x)), x_mask, bs=x_mask.shape[1], si=0, gater_below=gater_below, reseter_below=reseter_below)] if state['encoder_stack'] > 1: everything = encoder_proj[0](last(encoder_acts[-1])) for si in xrange(1,state['encoder_stack']): gater_below = None if state['rec_gating']: gater_below = gater_words[si](emb(x)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words[si](emb(x)) encoder_acts.append(add_op(emb_words[si](emb(x)), x_mask, bs=x_mask.shape[1], si=si, state_below=encoder_acts[-1], gater_below=gater_below, reseter_below=reseter_below)) if state['encoder_stack'] > 1: everything += encoder_proj[si](last(encoder_acts[-1])) if state['encoder_stack'] <= 1: encoder = encoder_acts[-1] everything = LastState(ntimes=True,n=y.shape[0])(encoder) else: everything = encoder_act_layer(everything) everything = everything.reshape([1, everything.shape[0], everything.shape[1]]) everything = LastState(ntimes=True,n=y.shape[0])(everything) if state['bias_code']: init_state = [bc(everything[-1]) for bc in bias_code] else: init_state = [None for bc in bias_code] if state['avg_word']: shape = x.shape pword = emb(x).out.reshape([shape[0], shape[1], state['rank_n_approx']]) pword = pword * x_mask.dimshuffle(0, 1, 'x') aword = pword.sum(0) / TT.maximum(1., x_mask.sum(0).dimshuffle(0, 'x')) aword = word_code(aword, use_noise=False) else: aword = None gater_below = None if state['rec_gating']: gater_below = gater_words_t[0](emb_t(y0)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words_t[0](emb_t(y0)) has_said = [add_t_op(emb_words_t[0](emb_t(y0)), everything, y_mask, bs=y_mask.shape[1], gater_below = gater_below, reseter_below = reseter_below, init_state=init_state[0], si=0)] for si in xrange(1,state['decoder_stack']): gater_below = None if state['rec_gating']: gater_below = gater_words_t[si](emb_t(y0)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words_t[si](emb_t(y0)) has_said.append(add_t_op(emb_words_t[si](emb_t(y0)), everything, y_mask, bs=y_mask.shape[1], state_below = has_said[-1], gater_below = gater_below, reseter_below = reseter_below, init_state=init_state[si], si=si)) if has_said[0].out.ndim < 3: for si in xrange(state['decoder_stack']): shape_hs = has_said[si].shape if y0.ndim == 1: shape = y0.shape has_said[si] = Shift()(has_said[si].reshape([shape[0], 1, state['dim_mlp']])) else: shape = y0.shape has_said[si] = Shift()(has_said[si].reshape([shape[0], shape[1], state['dim_mlp']])) has_said[si].out = TT.set_subtensor(has_said[si].out[0, :, :], init_state[si]) has_said[si] = has_said[si].reshape(shape_hs) else: for si in xrange(state['decoder_stack']): has_said[si] = Shift()(has_said[si]) has_said[si].out = TT.set_subtensor(has_said[si].out[0, :, :], init_state[si]) model = pop_op(proj_code(everything), has_said, word=y0, aword = aword) nll = output_layer.train(state_below=model, target=y0, mask=y_mask, reg=None) / TT.cast(y.shape[0]*y.shape[1], 'float32') valid_fn = None noise_fn = None x = TT.lvector(name='x') n_steps = TT.iscalar('nsteps') temp = TT.scalar('temp') gater_below = None if state['rec_gating']: gater_below = gater_words[0](emb(x)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words[0](emb(x)) encoder_acts = [add_op(emb_words[0](emb(x),use_noise=False), si=0, use_noise=False, gater_below=gater_below, reseter_below=reseter_below)] if state['encoder_stack'] > 1: everything = encoder_proj[0](last(encoder_acts[-1]), use_noise=False) for si in xrange(1,state['encoder_stack']): gater_below = None if state['rec_gating']: gater_below = gater_words[si](emb(x)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words[si](emb(x)) encoder_acts.append(add_op(emb_words[si](emb(x),use_noise=False), si=si, state_below=encoder_acts[-1], use_noise=False, gater_below = gater_below, reseter_below = reseter_below)) if state['encoder_stack'] > 1: everything += encoder_proj[si](last(encoder_acts[-1]), use_noise=False) if state['encoder_stack'] <= 1: encoder = encoder_acts[-1] everything = last(encoder) else: everything = encoder_act_layer(everything) init_state = [] for si in xrange(state['decoder_stack']): if state['bias_code']: init_state.append(TT.reshape(bias_code[si](everything, use_noise=False), [1, state['dim']])) else: init_state.append(TT.alloc(numpy.float32(0), 1, state['dim'])) if state['avg_word']: aword = emb(x,use_noise=False).out.mean(0) aword = word_code(aword, use_noise=False) else: aword = None def sample_fn(*args): aidx = 0; word_tm1 = args[aidx] aidx += 1; prob_tm1 = args[aidx] has_said_tm1 = [] for si in xrange(state['decoder_stack']): aidx += 1; has_said_tm1.append(args[aidx]) aidx += 1; ctx = args[aidx] if state['avg_word']: aidx += 1; awrd = args[aidx] val = pop_op(proj_code(ctx), has_said_tm1, word=word_tm1, aword=awrd, one_step=True, use_noise=False) sample = output_layer.get_sample(state_below=val, temp=temp) logp = output_layer.get_cost( state_below=val.out.reshape([1, TT.cast(output_layer.n_in, 'int64')]), temp=temp, target=sample.reshape([1,1]), use_noise=False) gater_below = None if state['rec_gating']: gater_below = gater_words_t[0](emb_t(sample)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words_t[0](emb_t(sample)) has_said_t = [add_t_op(emb_words_t[0](emb_t(sample)), ctx, prev_val=has_said_tm1[0], gater_below=gater_below, reseter_below=reseter_below, one_step=True, use_noise=True, si=0)] for si in xrange(1, state['decoder_stack']): gater_below = None if state['rec_gating']: gater_below = gater_words_t[si](emb_t(sample)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words_t[si](emb_t(sample)) has_said_t.append(add_t_op(emb_words_t[si](emb_t(sample)), ctx, prev_val=has_said_tm1[si], gater_below=gater_below, reseter_below=reseter_below, one_step=True, use_noise=True, si=si, state_below=has_said_t[-1])) for si in xrange(state['decoder_stack']): if isinstance(has_said_t[si], list): has_said_t[si] = has_said_t[si][-1] rval = [sample, TT.cast(logp, 'float32')] + has_said_t return rval sampler_params = [everything] if state['avg_word']: sampler_params.append(aword) states = [TT.alloc(numpy.int64(0), n_steps)] states.append(TT.alloc(numpy.float32(0), n_steps)) states += init_state outputs, updates = scan(sample_fn, states = states, params = sampler_params, n_steps= n_steps, name='sampler_scan' ) samples = outputs[0] probs = outputs[1] sample_fn = theano.function( [n_steps, temp, x], [samples, probs.sum()], updates=updates, profile=False, name='sample_fn') model = LM_Model( cost_layer = nll, weight_noise_amount=state['weight_noise_amount'], valid_fn = valid_fn, sample_fn = sample_fn, clean_before_noise_fn = False, noise_fn = noise_fn, indx_word=state['indx_word_target'], indx_word_src=state['indx_word'], character_level = False, rng = rng) if state['loopIters'] > 0: algo = SGD(model, state, train_data) else: algo = None def hook_fn(): if not hasattr(model, 'word_indxs'): model.load_dict() if not hasattr(model, 'word_indxs_src'): model.word_indxs_src = model.word_indxs old_offset = train_data.offset if state['sample_reset']: train_data.reset() ns = 0 for sidx in xrange(state['sample_n']): while True: batch = train_data.next() if batch: break x = batch['x'] y = batch['y'] #xbow = batch['x_bow'] masks = batch['x_mask'] if x.ndim > 1: for idx in xrange(x.shape[1]): ns += 1 if ns > state['sample_max']: break print 'Input: ', for k in xrange(x[:,idx].shape[0]): print model.word_indxs_src[x[:,idx][k]], if model.word_indxs_src[x[:,idx][k]] == '<eol>': break print '' print 'Target: ', for k in xrange(y[:,idx].shape[0]): print model.word_indxs[y[:,idx][k]], if model.word_indxs[y[:,idx][k]] == '<eol>': break print '' senlen = len(x[:,idx]) if len(numpy.where(masks[:,idx]==0)[0]) > 0: senlen = numpy.where(masks[:,idx]==0)[0][0] if senlen < 1: continue xx = x[:senlen, idx] #xx = xx.reshape([xx.shape[0], 1]) model.get_samples(state['seqlen']+1, 1, xx) else: ns += 1 model.get_samples(state['seqlen']+1, 1, x) if ns > state['sample_max']: break train_data.offset = old_offset return main = MainLoop(train_data, valid_data, None, model, algo, state, channel, reset = state['reset'], hooks = hook_fn) if state['reload']: main.load() if state['loopIters'] > 0: main.main() if state['sampler_test']: # This is a test script: we only sample if not hasattr(model, 'word_indxs'): model.load_dict() if not hasattr(model, 'word_indxs_src'): model.word_indxs_src = model.word_indxs indx_word=pkl.load(open(state['word_indx'],'rb')) try: while True: try: seqin = raw_input('Input Sequence: ') n_samples = int(raw_input('How many samples? ')) alpha = float(raw_input('Inverse Temperature? ')) seqin = seqin.lower() seqin = seqin.split() seqlen = len(seqin) seq = numpy.zeros(seqlen+1, dtype='int64') for idx,sx in enumerate(seqin): try: seq[idx] = indx_word[sx] except: seq[idx] = indx_word[state['oov']] seq[-1] = state['null_sym_source'] except Exception: print 'Something wrong with your input! Try again!' continue sentences = [] all_probs = [] for sidx in xrange(n_samples): #import ipdb; ipdb.set_trace() [values, probs] = model.sample_fn(seqlen * 3, alpha, seq) sen = [] for k in xrange(values.shape[0]): if model.word_indxs[values[k]] == '<eol>': break sen.append(model.word_indxs[values[k]]) sentences.append(" ".join(sen)) all_probs.append(-probs) sprobs = numpy.argsort(all_probs) for pidx in sprobs: print pidx,"(%f):"%(-all_probs[pidx]),sentences[pidx] print except KeyboardInterrupt: print 'Interrupted' pass
def do_experiment(state, channel): logging.basicConfig(level=logging.DEBUG, format="%(asctime)s: %(name)s: %(levelname)s: %(message)s") logger.debug("Starting state: {}".format(state)) def maxout(x): shape = x.shape if x.ndim == 1: shape1 = TT.cast(shape[0] / state['maxout_part'], 'int64') shape2 = TT.cast(state['maxout_part'], 'int64') x = x.reshape([shape1, shape2]) x = x.max(1) else: shape1 = TT.cast(shape[1] / state['maxout_part'], 'int64') shape2 = TT.cast(state['maxout_part'], 'int64') x = x.reshape([shape[0], shape1, shape2]) x = x.max(2) return x logger.info("Start loading") rng = numpy.random.RandomState(state['seed']) train_data, valid_data, test_data = get_data(state) logger.info("Build layers") if state['bs'] == 1: x = TT.lvector('x') x_mask = TT.vector('x_mask') y = TT.lvector('y') y0 = y y_mask = TT.vector('y_mask') else: x = TT.lmatrix('x') x_mask = TT.matrix('x_mask') y = TT.lmatrix('y') y0 = y y_mask = TT.matrix('y_mask') scoring_inputs = [x, x_mask, y, y_mask] bs = state['bs'] # Dimensionality of word embedings. # The same as state['dim'] and in fact equals the number of hidden units. embdim = state['dim_mlp'] logger.info("Source sentence") # Low-rank embeddings emb = MultiLayer( rng, n_in=state['nins'], n_hids=[state['rank_n_approx']], activation=[state['rank_n_activ']], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='emb') emb_words = [] if state['rec_gating']: gater_words = [] if state['rec_reseting']: reseter_words = [] # si always stands for the number in stack of RNNs (which is actually 1) for si in xrange(state['encoder_stack']): # In paper it is multiplication by W emb_words.append(MultiLayer( rng, n_in=state['rank_n_approx'], n_hids=[embdim], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='emb_words_%d'%si)) # In paper it is multiplication by W_z if state['rec_gating']: gater_words.append(MultiLayer( rng, n_in=state['rank_n_approx'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias = False, name='gater_words_%d'%si)) # In paper it is multiplication by W_r if state['rec_reseting']: reseter_words.append(MultiLayer( rng, n_in=state['rank_n_approx'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias = False, name='reseter_words_%d'%si)) add_rec_step = [] rec_proj = [] if state['rec_gating']: rec_proj_gater = [] if state['rec_reseting']: rec_proj_reseter = [] for si in xrange(state['encoder_stack']): if si > 0: rec_proj.append(MultiLayer( rng, n_in=state['dim'], n_hids=[embdim], activation=['lambda x:x'], init_fn=state['rec_weight_init_fn'], weight_noise=state['weight_noise'], scale=state['rec_weight_scale'], name='rec_proj_%d'%si)) if state['rec_gating']: rec_proj_gater.append(MultiLayer( rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='rec_proj_gater_%d'%si)) if state['rec_reseting']: rec_proj_reseter.append(MultiLayer( rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='rec_proj_reseter_%d'%si)) # This should be U from paper add_rec_step.append(eval(state['rec_layer'])( rng, n_hids=state['dim'], activation = state['activ'], bias_scale = state['bias'], scale=state['rec_weight_scale'], init_fn=state['rec_weight_init_fn'], weight_noise=state['weight_noise_rec'], dropout=state['dropout_rec'], gating=state['rec_gating'], gater_activation=state['rec_gater'], reseting=state['rec_reseting'], reseter_activation=state['rec_reseter'], name='add_h_%d'%si)) def _add_op(words_embeddings, words_mask=None, prev_val=None, si = 0, state_below = None, gater_below = None, reseter_below = None, one_step=False, bs=1, init_state=None, use_noise=True): seqlen = words_embeddings.out.shape[0]//bs rval = words_embeddings gater = None reseter = None if state['rec_gating']: gater = gater_below if state['rec_reseting']: reseter = reseter_below if si > 0: rval += rec_proj[si-1](state_below, one_step=one_step, use_noise=use_noise) if state['rec_gating']: projg = rec_proj_gater[si-1](state_below, one_step=one_step, use_noise = use_noise) if gater: gater += projg else: gater = projg if state['rec_reseting']: projg = rec_proj_reseter[si-1](state_below, one_step=one_step, use_noise = use_noise) if reseter: reseter += projg else: reseter = projg if not one_step: rval= add_rec_step[si]( rval, nsteps=seqlen, batch_size=bs, mask=words_mask, gater_below = gater, reseter_below = reseter, one_step=one_step, init_state=init_state, use_noise = use_noise) else: #Here we link the Encoder part rval= add_rec_step[si]( rval, mask=words_mask, state_before=prev_val, gater_below = gater, reseter_below = reseter, one_step=one_step, init_state=init_state, use_noise = use_noise) return rval add_op = Operator(_add_op) logger.info("Target sequence") emb_t = MultiLayer( rng, n_in=state['nouts'], n_hids=[state['rank_n_approx']], activation=[state['rank_n_activ']], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='emb_t') emb_words_t = [] if state['rec_gating']: gater_words_t = [] if state['rec_reseting']: reseter_words_t = [] for si in xrange(state['decoder_stack']): emb_words_t.append(MultiLayer( rng, n_in=state['rank_n_approx'], n_hids=[embdim], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='emb_words_t_%d'%si)) if state['rec_gating']: gater_words_t.append(MultiLayer( rng, n_in=state['rank_n_approx'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='gater_words_t_%d'%si)) if state['rec_reseting']: reseter_words_t.append(MultiLayer( rng, n_in=state['rank_n_approx'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='reseter_words_t_%d'%si)) proj_everything_t = [] if state['rec_gating']: gater_everything_t = [] if state['rec_reseting']: reseter_everything_t = [] for si in xrange(state['decoder_stack']): # This stands for the matrix C from the text proj_everything_t.append(MultiLayer( rng, n_in=state['dim'], n_hids=[embdim], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='proj_everything_t_%d'%si, learn_bias = False)) if state['rec_gating']: gater_everything_t.append(MultiLayer( rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='gater_everything_t_%d'%si, learn_bias = False)) if state['rec_reseting']: reseter_everything_t.append(MultiLayer( rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='reseter_everything_t_%d'%si, learn_bias = False)) add_rec_step_t = [] rec_proj_t = [] if state['rec_gating']: rec_proj_t_gater = [] if state['rec_reseting']: rec_proj_t_reseter = [] for si in xrange(state['decoder_stack']): if si > 0: rec_proj_t.append(MultiLayer( rng, n_in=state['dim'], n_hids=[embdim], activation=['lambda x:x'], init_fn=state['rec_weight_init_fn'], weight_noise=state['weight_noise'], scale=state['rec_weight_scale'], name='rec_proj_%d'%si)) if state['rec_gating']: rec_proj_t_gater.append(MultiLayer( rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='rec_proj_t_gater_%d'%si)) if state['rec_reseting']: rec_proj_t_reseter.append(MultiLayer( rng, n_in=state['dim'], n_hids=[state['dim']], activation=['lambda x:x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias=False, name='rec_proj_t_reseter_%d'%si)) # This one stands for gating, resetting and applying non-linearity in Decoder add_rec_step_t.append(eval(state['rec_layer'])( rng, n_hids=state['dim'], activation = state['activ'], bias_scale = state['bias'], scale=state['rec_weight_scale'], init_fn=state['rec_weight_init_fn'], weight_noise=state['weight_noise_rec'], dropout=state['dropout_rec'], gating=state['rec_gating'], gater_activation=state['rec_gater'], reseting=state['rec_reseting'], reseter_activation=state['rec_reseter'], name='add_h_t_%d'%si)) if state['encoder_stack'] > 1: encoder_proj = [] for si in xrange(state['encoder_stack']): encoder_proj.append(MultiLayer( rng, n_in=state['dim'], n_hids=[state['dim'] * state['maxout_part']], activation=['lambda x: x'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], name='encoder_proj_%d'%si, learn_bias = (si == 0))) encoder_act_layer = UnaryOp(activation=eval(state['unary_activ']), indim=indim, pieces=pieces, rng=rng) # Actually add target opp def _add_t_op(words_embeddings, everything = None, words_mask=None, prev_val=None,one_step=False, bs=1, init_state=None, use_noise=True, gater_below = None, reseter_below = None, si = 0, state_below = None): seqlen = words_embeddings.out.shape[0]//bs rval = words_embeddings gater = None if state['rec_gating']: gater = gater_below reseter = None if state['rec_reseting']: reseter = reseter_below if si > 0: if isinstance(state_below, list): state_below = state_below[-1] rval += rec_proj_t[si-1](state_below, one_step=one_step, use_noise=use_noise) if state['rec_gating']: projg = rec_proj_t_gater[si-1](state_below, one_step=one_step, use_noise = use_noise) if gater: gater += projg else: gater = projg if state['rec_reseting']: projg = rec_proj_t_reseter[si-1](state_below, one_step=one_step, use_noise = use_noise) if reseter: reseter += projg else: reseter = projg if everything: rval = rval + proj_everything_t[si](everything) if state['rec_gating']: everyg = gater_everything_t[si](everything, one_step=one_step, use_noise=use_noise) if gater: gater += everyg else: gater = everyg if state['rec_reseting']: everyg = reseter_everything_t[si](everything, one_step=one_step, use_noise=use_noise) if reseter: reseter += everyg else: reseter = everyg if not one_step: rval = add_rec_step_t[si]( rval, nsteps=seqlen, batch_size=bs, mask=words_mask, one_step=one_step, init_state=init_state, gater_below=gater, reseter_below=reseter, use_noise=use_noise) else: # Here we link the Decoder part rval = add_rec_step_t[si]( rval, mask=words_mask, state_before=prev_val, one_step=one_step, gater_below=gater, reseter_below=reseter, use_noise=use_noise) return rval add_t_op = Operator(_add_t_op) outdim = state['dim_mlp'] if not state['deep_out']: outdim = state['rank_n_approx'] if state['bias_code']: bias_code = [] for si in xrange(state['decoder_stack']): bias_code.append(MultiLayer( rng, n_in=state['dim'], n_hids=[state['dim']], activation = [state['activ']], bias_scale = [state['bias']], scale=state['weight_scale'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], name='bias_code_%d'%si)) if state['avg_word']: word_code_nin = state['rank_n_approx'] word_code = MultiLayer( rng, n_in=word_code_nin, n_hids=[outdim], activation = 'lambda x:x', bias_scale = [state['bias_mlp']/3], scale=state['weight_scale'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], learn_bias = False, name='word_code') proj_code = MultiLayer( rng, n_in=state['dim'], n_hids=[outdim], activation = 'lambda x: x', bias_scale = [state['bias_mlp']/3], scale=state['weight_scale'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], learn_bias = False, name='proj_code') proj_h = [] for si in xrange(state['decoder_stack']): proj_h.append(MultiLayer( rng, n_in=state['dim'], n_hids=[outdim], activation = 'lambda x: x', bias_scale = [state['bias_mlp']/3], scale=state['weight_scale'], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], name='proj_h_%d'%si)) if state['bigram']: proj_word = MultiLayer( rng, n_in=state['rank_n_approx'], n_hids=[outdim], activation=['lambda x:x'], bias_scale = [state['bias_mlp']/3], init_fn=state['weight_init_fn'], weight_noise=state['weight_noise'], scale=state['weight_scale'], learn_bias = False, name='emb_words_lm') if state['deep_out']: indim = 0 pieces = 0 act_layer = UnaryOp(activation=eval(state['unary_activ'])) drop_layer = DropOp(rng=rng, dropout=state['dropout']) if state['deep_out']: indim = state['dim_mlp'] / state['maxout_part'] rank_n_approx = state['rank_n_approx'] rank_n_activ = state['rank_n_activ'] else: indim = state['rank_n_approx'] rank_n_approx = 0 rank_n_activ = None output_layer = SoftmaxLayer( rng, indim, state['nouts'], state['weight_scale'], -1, rank_n_approx = rank_n_approx, rank_n_activ = rank_n_activ, weight_noise=state['weight_noise'], init_fn=state['weight_init_fn'], name='out') def _pop_op(everything, accum, everything_max = None, everything_min = None, word = None, aword = None, one_step=False, use_noise=True): rval = proj_h[0](accum[0], one_step=one_step, use_noise=use_noise) for si in xrange(1,state['decoder_stack']): rval += proj_h[si](accum[si], one_step=one_step, use_noise=use_noise) if state['mult_out']: rval = rval * everything else: rval = rval + everything if aword and state['avg_word']: wcode = aword if one_step: if state['mult_out']: rval = rval * wcode else: rval = rval + wcode else: if not isinstance(wcode, TT.TensorVariable): wcode = wcode.out shape = wcode.shape rshape = rval.shape rval = rval.reshape([rshape[0]/shape[0], shape[0], rshape[1]]) wcode = wcode.dimshuffle('x', 0, 1) if state['mult_out']: rval = rval * wcode else: rval = rval + wcode rval = rval.reshape(rshape) if word and state['bigram']: if one_step: if state['mult_out']: rval *= proj_word(emb_t(word, use_noise=use_noise), one_step=one_step, use_noise=use_noise) else: rval += proj_word(emb_t(word, use_noise=use_noise), one_step=one_step, use_noise=use_noise) else: if isinstance(word, TT.TensorVariable): shape = word.shape ndim = word.ndim else: shape = word.shape ndim = word.out.ndim pword = proj_word(emb_t(word, use_noise=use_noise), one_step=one_step, use_noise=use_noise) shape_pword = pword.shape if ndim == 1: pword = Shift()(pword.reshape([shape[0], 1, outdim])) else: pword = Shift()(pword.reshape([shape[0], shape[1], outdim])) if state['mult_out']: rval *= pword.reshape(shape_pword) else: rval += pword.reshape(shape_pword) if state['deep_out']: rval = drop_layer(act_layer(rval), use_noise=use_noise) return rval pop_op = Operator(_pop_op) logger.info("Construct the model") gater_below = None if state['rec_gating']: gater_below = gater_words[0](emb(x)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words[0](emb(x)) encoder_acts = [add_op(emb_words[0](emb(x)), x_mask, bs=x_mask.shape[1], si=0, gater_below=gater_below, reseter_below=reseter_below)] if state['encoder_stack'] > 1: everything = encoder_proj[0](last(encoder_acts[-1])) for si in xrange(1,state['encoder_stack']): gater_below = None if state['rec_gating']: gater_below = gater_words[si](emb(x)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words[si](emb(x)) encoder_acts.append(add_op(emb_words[si](emb(x)), x_mask, bs=x_mask.shape[1], si=si, state_below=encoder_acts[-1], gater_below=gater_below, reseter_below=reseter_below)) if state['encoder_stack'] > 1: everything += encoder_proj[si](last(encoder_acts[-1])) if state['encoder_stack'] <= 1: encoder = encoder_acts[-1] everything = LastState(ntimes=True,n=y.shape[0])(encoder) else: everything = encoder_act_layer(everything) everything = everything.reshape([1, everything.shape[0], everything.shape[1]]) everything = LastState(ntimes=True,n=y.shape[0])(everything) if state['bias_code']: init_state = [bc(everything[-1]) for bc in bias_code] else: init_state = [None for bc in bias_code] if state['avg_word']: shape = x.shape pword = emb(x).out.reshape([shape[0], shape[1], state['rank_n_approx']]) pword = pword * x_mask.dimshuffle(0, 1, 'x') aword = pword.sum(0) / TT.maximum(1., x_mask.sum(0).dimshuffle(0, 'x')) aword = word_code(aword, use_noise=False) else: aword = None gater_below = None if state['rec_gating']: gater_below = gater_words_t[0](emb_t(y0)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words_t[0](emb_t(y0)) has_said = [add_t_op(emb_words_t[0](emb_t(y0)), everything, y_mask, bs=y_mask.shape[1], gater_below = gater_below, reseter_below = reseter_below, init_state=init_state[0], si=0)] for si in xrange(1,state['decoder_stack']): gater_below = None if state['rec_gating']: gater_below = gater_words_t[si](emb_t(y0)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words_t[si](emb_t(y0)) has_said.append(add_t_op(emb_words_t[si](emb_t(y0)), everything, y_mask, bs=y_mask.shape[1], state_below = has_said[-1], gater_below = gater_below, reseter_below = reseter_below, init_state=init_state[si], si=si)) # has_said are hidden layer states if has_said[0].out.ndim < 3: for si in xrange(state['decoder_stack']): shape_hs = has_said[si].shape if y0.ndim == 1: shape = y0.shape has_said[si] = Shift()(has_said[si].reshape([shape[0], 1, state['dim_mlp']])) else: shape = y0.shape has_said[si] = Shift()(has_said[si].reshape([shape[0], shape[1], state['dim_mlp']])) has_said[si] = TT.set_subtensor(has_said[si][0, :, :], init_state[si]) has_said[si] = has_said[si].reshape(shape_hs) else: for si in xrange(state['decoder_stack']): has_said[si] = Shift()(has_said[si]) has_said[si].out = TT.set_subtensor(has_said[si][0, :, :], init_state[si]) model = pop_op(proj_code(everything), has_said, word=y0, aword = aword) nll = output_layer.train(state_below=model, target=y0, mask=y_mask, reg=None) / TT.cast(y.shape[0]*y.shape[1], 'float32') valid_fn = None noise_fn = None x = TT.lvector(name='x') n_steps = TT.iscalar('nsteps') temp = TT.scalar('temp') gater_below = None if state['rec_gating']: gater_below = gater_words[0](emb(x)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words[0](emb(x)) encoder_acts = [add_op(emb_words[0](emb(x),use_noise=False), si=0, use_noise=False, gater_below=gater_below, reseter_below=reseter_below)] if state['encoder_stack'] > 1: everything = encoder_proj[0](last(encoder_acts[-1]), use_noise=False) for si in xrange(1,state['encoder_stack']): gater_below = None if state['rec_gating']: gater_below = gater_words[si](emb(x)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words[si](emb(x)) encoder_acts.append(add_op(emb_words[si](emb(x),use_noise=False), si=si, state_below=encoder_acts[-1], use_noise=False, gater_below = gater_below, reseter_below = reseter_below)) if state['encoder_stack'] > 1: everything += encoder_proj[si](last(encoder_acts[-1]), use_noise=False) if state['encoder_stack'] <= 1: encoder = encoder_acts[-1] everything = last(encoder) else: everything = encoder_act_layer(everything) init_state = [] for si in xrange(state['decoder_stack']): if state['bias_code']: init_state.append(TT.reshape(bias_code[si](everything, use_noise=False), [1, state['dim']])) else: init_state.append(TT.alloc(numpy.float32(0), 1, state['dim'])) if state['avg_word']: aword = emb(x,use_noise=False).out.mean(0) aword = word_code(aword, use_noise=False) else: aword = None def sample_fn(*args): aidx = 0; word_tm1 = args[aidx] aidx += 1; prob_tm1 = args[aidx] has_said_tm1 = [] for si in xrange(state['decoder_stack']): aidx += 1; has_said_tm1.append(args[aidx]) aidx += 1; ctx = args[aidx] if state['avg_word']: aidx += 1; awrd = args[aidx] else: awrd = None val = pop_op(proj_code(ctx), has_said_tm1, word=word_tm1, aword=awrd, one_step=True, use_noise=False) sample = output_layer.get_sample(state_below=val, temp=temp) logp = output_layer.get_cost( state_below=val.out.reshape([1, TT.cast(output_layer.n_in, 'int64')]), temp=temp, target=sample.reshape([1,1]), use_noise=False) gater_below = None if state['rec_gating']: gater_below = gater_words_t[0](emb_t(sample)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words_t[0](emb_t(sample)) has_said_t = [add_t_op(emb_words_t[0](emb_t(sample)), ctx, prev_val=has_said_tm1[0], gater_below=gater_below, reseter_below=reseter_below, one_step=True, use_noise=True, si=0)] for si in xrange(1, state['decoder_stack']): gater_below = None if state['rec_gating']: gater_below = gater_words_t[si](emb_t(sample)) reseter_below = None if state['rec_reseting']: reseter_below = reseter_words_t[si](emb_t(sample)) has_said_t.append(add_t_op(emb_words_t[si](emb_t(sample)), ctx, prev_val=has_said_tm1[si], gater_below=gater_below, reseter_below=reseter_below, one_step=True, use_noise=True, si=si, state_below=has_said_t[-1])) for si in xrange(state['decoder_stack']): if isinstance(has_said_t[si], list): has_said_t[si] = has_said_t[si][-1] rval = [sample, TT.cast(logp, 'float32')] + has_said_t return rval sampler_params = [everything] if state['avg_word']: sampler_params.append(aword) states = [TT.alloc(numpy.int64(0), n_steps)] states.append(TT.alloc(numpy.float32(0), n_steps)) states += init_state outputs, updates = scan(sample_fn, states = states, params = sampler_params, n_steps= n_steps, name='sampler_scan' ) samples = outputs[0] probs = outputs[1] sample_fn = theano.function( [n_steps, temp, x], [samples, probs.sum()], updates=updates, profile=False, name='sample_fn') model = LM_Model( cost_layer=nll, weight_noise_amount=state['weight_noise_amount'], valid_fn=valid_fn, sample_fn=sample_fn, clean_before_noise_fn = False, noise_fn=noise_fn, indx_word=state['indx_word_target'], indx_word_src=state['indx_word'], character_level=False, rng=rng) algo = SGD(model, state, train_data) def hook_fn(): if not hasattr(model, 'word_indxs'): model.load_dict() if not hasattr(model, 'word_indxs_src'): model.word_indxs_src = model.word_indxs old_offset = train_data.offset if state['sample_reset']: train_data.reset() ns = 0 for sidx in xrange(state['sample_n']): while True: batch = train_data.next() if batch: break x = batch['x'] y = batch['y'] #xbow = batch['x_bow'] masks = batch['x_mask'] if x.ndim > 1: for idx in xrange(x.shape[1]): ns += 1 if ns > state['sample_max']: break print 'Input: ', for k in xrange(x[:,idx].shape[0]): print model.word_indxs_src[x[:,idx][k]], if model.word_indxs_src[x[:,idx][k]] == '<eol>': break print '' print 'Target: ', for k in xrange(y[:,idx].shape[0]): print model.word_indxs[y[:,idx][k]], if model.word_indxs[y[:,idx][k]] == '<eol>': break print '' senlen = len(x[:,idx]) if len(numpy.where(masks[:,idx]==0)[0]) > 0: senlen = numpy.where(masks[:,idx]==0)[0][0] if senlen < 1: continue xx = x[:senlen, idx] #xx = xx.reshape([xx.shape[0], 1]) model.get_samples(state['seqlen']+1, 1, xx) else: ns += 1 model.get_samples(state['seqlen']+1, 1, x) if ns > state['sample_max']: break train_data.offset = old_offset return main = MainLoop(train_data, valid_data, None, model, algo, state, channel, reset = state['reset'], hooks = hook_fn) if state['reload']: main.load() main.main() if state["scoring"]: score_file = open(state["score_file"], "w") logger.info("Compiling score function") score_fn = theano.function(scoring_inputs, [-nll.cost_per_sample]) count = 0 n_samples = 0 logger.info('Scoring phrases') for batch in train_data: if batch == None: continue if batch['x'].shape[0] <= 0 or \ batch['x_mask'].shape[0] <= 0 or \ batch['y'].shape[0] <= 0 or \ batch['y_mask'].shape[0] <= 0: logger.error('Wrong batch!!!') continue st = time.time() [scores] = score_fn(batch['x'], batch['x_mask'], batch['y'], batch['y_mask']) up_time = time.time() - st for s in scores: print >>score_file, "{:.5f}".format(float(s)) n_samples += batch['x'].shape[1] count += 1 if state['flush_scores'] >= 1 and count % state['flush_scores'] == 0: score_file.flush() logger.debug("Scores flushed") logger.debug("{} batches, {} samples, {} per sample; example scores: {}".format( count, n_samples, up_time/scores.shape[0], scores[:5])) logger.info("Done") score_file.flush() score_file.close() if state['sampler_test']: # This is a test script: we only sample if not hasattr(model, 'word_indxs'): model.load_dict() if not hasattr(model, 'word_indxs_src'): model.word_indxs_src = model.word_indxs indx_word=pkl.load(open(state['word_indx'],'rb')) try: while True: try: seqin = raw_input('Input Sequence: ') n_samples = int(raw_input('How many samples? ')) alpha = float(raw_input('Inverse Temperature? ')) seqin = seqin.lower() seqin = seqin.split() seqlen = len(seqin) seq = numpy.zeros(seqlen+1, dtype='int64') for idx,sx in enumerate(seqin): try: seq[idx] = indx_word[sx] except: seq[idx] = indx_word[state['oov']] seq[-1] = state['null_sym_source'] except Exception: print 'Something wrong with your input! Try again!' continue sentences = [] all_probs = [] for sidx in xrange(n_samples): #import ipdb; ipdb.set_trace() [values, probs] = model.sample_fn(seqlen * 3, alpha, seq) sen = [] for k in xrange(values.shape[0]): if model.word_indxs[values[k]] == '<eol>': break sen.append(model.word_indxs[values[k]]) sentences.append(" ".join(sen)) all_probs.append(-probs) sprobs = numpy.argsort(all_probs) for pidx in sprobs: print pidx,"(%f):"%(-all_probs[pidx]),sentences[pidx] print except KeyboardInterrupt: print 'Interrupted' pass