Exemplo n.º 1
0
def div_operator(discr, dd_vol, dd_faces, v, flux):
    r"""Compute a DG divergence of vector-valued function *v* with flux given by *flux*.

    Parameters
    ----------
    discr: grudge.eager.EagerDGDiscretization
        the discretization to use
    dd_vol: grudge.dof_desc.DOFDesc
        the degree-of-freedom tag associated with the volume discrezation.
        This determines the type of quadrature to be used.
    dd_faces: grudge.dof_desc.DOFDesc
        the degree-of-freedom tag associated with the surface discrezation.
        This determines the type of quadrature to be used.
    v: numpy.ndarray
        obj array of :class:`~meshmode.dof_array.DOFArray` (or container of such)
        representing the vector-valued functions for which divergence is to be
        calculated
    flux: numpy.ndarray
        the boundary flux for each function in v

    Returns
    -------
    meshmode.dof_array.DOFArray or numpy.ndarray
        the dg divergence operator applied to vector-valued function(s) *v*.
    """
    return -discr.inverse_mass(
        op.weak_local_div(discr, dd_vol, v) -
        op.face_mass(discr, dd_faces, flux))
Exemplo n.º 2
0
def wave_operator(dcoll, c, w):
    u = w[0]
    v = w[1:]

    dir_u = op.project(dcoll, "vol", BTAG_ALL, u)
    dir_v = op.project(dcoll, "vol", BTAG_ALL, v)
    dir_bval = flat_obj_array(dir_u, dir_v)
    dir_bc = flat_obj_array(-dir_u, dir_v)

    dd_quad = DOFDesc("vol", DISCR_TAG_QUAD)
    c_quad = op.project(dcoll, "vol", dd_quad, c)
    w_quad = op.project(dcoll, "vol", dd_quad, w)
    u_quad = w_quad[0]
    v_quad = w_quad[1:]

    dd_allfaces_quad = DOFDesc("all_faces", DISCR_TAG_QUAD)

    return (op.inverse_mass(
        dcoll,
        flat_obj_array(-op.weak_local_div(dcoll, dd_quad, c_quad * v_quad),
                       -op.weak_local_grad(dcoll, dd_quad, c_quad * u_quad))
        +  # noqa: W504
        op.face_mass(
            dcoll, dd_allfaces_quad,
            wave_flux(dcoll, c=c, w_tpair=op.interior_trace_pair(dcoll, w)) +
            wave_flux(dcoll,
                      c=c,
                      w_tpair=TracePair(
                          BTAG_ALL, interior=dir_bval, exterior=dir_bc)))))
Exemplo n.º 3
0
    def operator(self, t, u):
        from grudge.dof_desc import DOFDesc, DD_VOLUME, DTAG_VOLUME_ALL
        from meshmode.discretization.connection import FACE_RESTR_ALL

        face_dd = DOFDesc(FACE_RESTR_ALL, self.quad_tag)
        quad_dd = DOFDesc(DTAG_VOLUME_ALL, self.quad_tag)

        dcoll = self.dcoll

        def flux(tpair):
            return op.project(dcoll, tpair.dd, face_dd, self.flux(tpair))

        def to_quad(arg):
            return op.project(dcoll, DD_VOLUME, quad_dd, arg)

        quad_v = to_quad(self.v)
        quad_u = to_quad(u)

        return (op.inverse_mass(
            dcoll,
            sum(
                op.weak_local_d_dx(dcoll, quad_dd, d, quad_u * quad_v[d])
                for d in range(dcoll.ambient_dim)) - op.face_mass(
                    dcoll, face_dd,
                    sum(
                        flux(quad_tpair) for quad_tpair in to_quad_int_tpairs(
                            dcoll, u, self.quad_tag)))))
Exemplo n.º 4
0
def grad_operator(discr, dd_vol, dd_faces, u, flux):
    r"""Compute a DG gradient for the input *u* with flux given by *flux*.

    Parameters
    ----------
    discr: grudge.eager.EagerDGDiscretization
        the discretization to use
    dd_vol: grudge.dof_desc.DOFDesc
        the degree-of-freedom tag associated with the volume discrezation.
        This determines the type of quadrature to be used.
    dd_faces: grudge.dof_desc.DOFDesc
        the degree-of-freedom tag associated with the surface discrezation.
        This determines the type of quadrature to be used.
    u: meshmode.dof_array.DOFArray or numpy.ndarray
        the function (or container of functions) for which gradient is to be
        calculated
    flux: numpy.ndarray
        the boundary flux across the faces of the element for each component
        of *u*

    Returns
    -------
    meshmode.dof_array.DOFArray or numpy.ndarray
        the dg gradient operator applied to *u*
    """
    return -discr.inverse_mass(
        op.weak_local_grad(discr, dd_vol, u) -
        op.face_mass(discr, dd_faces, flux))
Exemplo n.º 5
0
    def operator(self, t, w):
        dcoll = self.dcoll
        u = w[0]
        v = w[1:]
        actx = u.array_context

        # boundary conditions -------------------------------------------------

        # dirichlet BCs -------------------------------------------------------
        dir_u = op.project(dcoll, "vol", self.dirichlet_tag, u)
        dir_v = op.project(dcoll, "vol", self.dirichlet_tag, v)
        if self.dirichlet_bc_f:
            # FIXME
            from warnings import warn
            warn("Inhomogeneous Dirichlet conditions on the wave equation "
                 "are still having issues.")

            dir_g = self.dirichlet_bc_f
            dir_bc = flat_obj_array(2 * dir_g - dir_u, dir_v)
        else:
            dir_bc = flat_obj_array(-dir_u, dir_v)

        # neumann BCs ---------------------------------------------------------
        neu_u = op.project(dcoll, "vol", self.neumann_tag, u)
        neu_v = op.project(dcoll, "vol", self.neumann_tag, v)
        neu_bc = flat_obj_array(neu_u, -neu_v)

        # radiation BCs -------------------------------------------------------
        rad_normal = thaw(dcoll.normal(dd=self.radiation_tag), actx)

        rad_u = op.project(dcoll, "vol", self.radiation_tag, u)
        rad_v = op.project(dcoll, "vol", self.radiation_tag, v)

        rad_bc = flat_obj_array(
            0.5 * (rad_u - self.sign * np.dot(rad_normal, rad_v)),
            0.5 * rad_normal * (np.dot(rad_normal, rad_v) - self.sign * rad_u))

        # entire operator -----------------------------------------------------
        def flux(tpair):
            return op.project(dcoll, tpair.dd, "all_faces", self.flux(tpair))

        result = (op.inverse_mass(
            dcoll,
            flat_obj_array(-self.c * op.weak_local_div(dcoll, v),
                           -self.c * op.weak_local_grad(dcoll, u)) -
            op.face_mass(
                dcoll,
                sum(
                    flux(tpair)
                    for tpair in op.interior_trace_pairs(dcoll, w)) +
                flux(op.bv_trace_pair(dcoll, self.dirichlet_tag, w, dir_bc)) +
                flux(op.bv_trace_pair(dcoll, self.neumann_tag, w, neu_bc)) +
                flux(op.bv_trace_pair(dcoll, self.radiation_tag, w, rad_bc)))))

        result[0] = result[0] + self.source_f(actx, dcoll, t)

        return result
Exemplo n.º 6
0
    def operator(self, t, u):
        from grudge.dof_desc import DOFDesc, DD_VOLUME, DTAG_VOLUME_ALL
        from meshmode.mesh import BTAG_ALL
        from meshmode.discretization.connection import FACE_RESTR_ALL

        face_dd = DOFDesc(FACE_RESTR_ALL, self.quad_tag)
        boundary_dd = DOFDesc(BTAG_ALL, self.quad_tag)
        quad_dd = DOFDesc(DTAG_VOLUME_ALL, self.quad_tag)

        dcoll = self.dcoll

        def flux(tpair):
            return op.project(dcoll, tpair.dd, face_dd, self.flux(tpair))

        def to_quad(arg):
            return op.project(dcoll, DD_VOLUME, quad_dd, arg)

        if self.inflow_u is not None:
            inflow_flux = flux(
                op.bv_trace_pair(dcoll,
                                 boundary_dd,
                                 interior=u,
                                 exterior=self.inflow_u(t)))
        else:
            inflow_flux = 0

        quad_v = to_quad(self.v)
        quad_u = to_quad(u)

        return (op.inverse_mass(
            dcoll,
            sum(
                op.weak_local_d_dx(dcoll, quad_dd, d, quad_u * quad_v[d])
                for d in range(dcoll.ambient_dim)) -
            op.face_mass(
                dcoll, face_dd,
                sum(
                    flux(quad_tpair) for quad_tpair in to_quad_int_tpairs(
                        dcoll, u, self.quad_tag)) + inflow_flux

                # FIXME: Add support for inflow/outflow tags
                # + flux(op.bv_trace_pair(dcoll,
                #                         self.inflow_tag,
                #                         interior=u,
                #                         exterior=bc_in))
                # + flux(op.bv_trace_pair(dcoll,
                #                         self.outflow_tag,
                #                         interior=u,
                #                         exterior=bc_out))
            )))
Exemplo n.º 7
0
def wave_operator(dcoll, c, w):
    u = w[0]
    v = w[1:]

    dir_u = op.project(dcoll, "vol", BTAG_ALL, u)
    dir_v = op.project(dcoll, "vol", BTAG_ALL, v)
    dir_bval = flat_obj_array(dir_u, dir_v)
    dir_bc = flat_obj_array(-dir_u, dir_v)

    return (op.inverse_mass(
        dcoll,
        flat_obj_array(-c * op.weak_local_div(dcoll, v),
                       -c * op.weak_local_grad(dcoll, u)) +  # noqa: W504
        op.face_mass(
            dcoll,
            wave_flux(dcoll, c=c, w_tpair=op.interior_trace_pair(dcoll, w)) +
            wave_flux(dcoll,
                      c=c,
                      w_tpair=TracePair(
                          BTAG_ALL, interior=dir_bval, exterior=dir_bc)))))
Exemplo n.º 8
0
def wave_operator(dcoll, c, w):
    u = w[0]
    v = w[1:]

    dir_u = op.project(dcoll, "vol", BTAG_ALL, u)
    dir_v = op.project(dcoll, "vol", BTAG_ALL, v)
    dir_bval = flat_obj_array(dir_u, dir_v)
    dir_bc = flat_obj_array(-dir_u, dir_v)

    dd_quad = DOFDesc("vol", DISCR_TAG_QUAD)
    c_quad = op.project(dcoll, "vol", dd_quad, c)
    w_quad = op.project(dcoll, "vol", dd_quad, w)
    u_quad = w_quad[0]
    v_quad = w_quad[1:]

    dd_allfaces_quad = DOFDesc("all_faces", DISCR_TAG_QUAD)

    return (
        op.inverse_mass(
            dcoll,
            flat_obj_array(
                -op.weak_local_div(dcoll, dd_quad, c_quad*v_quad),
                -op.weak_local_grad(dcoll, dd_quad, c_quad*u_quad) \
                # pylint: disable=invalid-unary-operand-type
            ) + op.face_mass(
                dcoll,
                dd_allfaces_quad,
                wave_flux(
                    dcoll, c=c,
                    w_tpair=op.bdry_trace_pair(dcoll,
                                               BTAG_ALL,
                                               interior=dir_bval,
                                               exterior=dir_bc)
                ) + sum(
                    wave_flux(dcoll, c=c, w_tpair=tpair)
                    for tpair in op.interior_trace_pairs(dcoll, w)
                )
            )
        )
    )
Exemplo n.º 9
0
Arquivo: em.py Projeto: sll2/grudge
    def operator(self, t, w):
        """The full operator template - the high level description of
        the Maxwell operator.

        Combines the relevant operator templates for spatial
        derivatives, flux, boundary conditions etc.
        """
        from grudge.tools import count_subset

        elec_components = count_subset(self.get_eh_subset()[0:3])
        mag_components = count_subset(self.get_eh_subset()[3:6])

        if self.fixed_material:
            # need to check this
            material_divisor = ([self.epsilon] * elec_components +
                                [self.mu] * mag_components)

        tags_and_bcs = [
            (self.pec_tag, self.pec_bc(w)),
            (self.pmc_tag, self.pmc_bc(w)),
            (self.absorb_tag, self.absorbing_bc(w)),
            (self.incident_tag, self.incident_bc(w)),
        ]

        dcoll = self.dcoll

        def flux(pair):
            return op.project(dcoll, pair.dd, "all_faces", self.flux(pair))

        return (-self.local_derivatives(w) - op.inverse_mass(
            dcoll,
            op.face_mass(
                dcoll,
                sum(
                    flux(tpair)
                    for tpair in op.interior_trace_pairs(dcoll, w)) + sum(
                        flux(op.bv_trace_pair(dcoll, tag, w, bc))
                        for tag, bc in tags_and_bcs)))) / material_divisor
Exemplo n.º 10
0
def wave_operator(dcoll, c, w):
    u = w.u
    v = w.v

    dir_w = op.project(dcoll, "vol", BTAG_ALL, w)
    dir_u = dir_w.u
    dir_v = dir_w.v
    dir_bval = WaveState(u=dir_u, v=dir_v)
    dir_bc = WaveState(u=-dir_u, v=dir_v)

    return (op.inverse_mass(
        dcoll,
        WaveState(u=-c * op.weak_local_div(dcoll, v),
                  v=-c * op.weak_local_grad(dcoll, u)) +
        op.face_mass(
            dcoll,
            wave_flux(dcoll,
                      c=c,
                      w_tpair=op.bdry_trace_pair(
                          dcoll, BTAG_ALL, interior=dir_bval, exterior=dir_bc))
            + sum(
                wave_flux(dcoll, c=c, w_tpair=tpair)
                for tpair in op.interior_trace_pairs(dcoll, w)))))
Exemplo n.º 11
0
    def operator(self, t, u):
        from meshmode.mesh import BTAG_ALL

        dcoll = self.dcoll

        def flux(tpair):
            return op.project(dcoll, tpair.dd, "all_faces", self.flux(tpair))

        if self.inflow_u is not None:
            inflow_flux = flux(
                op.bv_trace_pair(dcoll,
                                 BTAG_ALL,
                                 interior=u,
                                 exterior=self.inflow_u(t)))
        else:
            inflow_flux = 0

        return (op.inverse_mass(
            dcoll,
            np.dot(self.v, op.weak_local_grad(dcoll, u)) - op.face_mass(
                dcoll,
                sum(
                    flux(tpair)
                    for tpair in op.interior_trace_pairs(dcoll, u)) +
                inflow_flux

                # FIXME: Add support for inflow/outflow tags
                # + flux(op.bv_trace_pair(dcoll,
                #                         self.inflow_tag,
                #                         interior=u,
                #                         exterior=bc_in))
                # + flux(op.bv_trace_pair(dcoll,
                #                         self.outflow_tag,
                #                         interior=u,
                #                         exterior=bc_out))
            )))
Exemplo n.º 12
0
                                  dd=right_bndry,
                                  interior=uh,
                                  exterior=op.project(dcoll, "vol",
                                                      right_bndry, uh))
    # extract the trace pairs on the interior faces
    interior_tpair = op.interior_trace_pair(dcoll,
                                            uh)
    Su = op.weak_local_grad(dcoll, uh)

    lift = op.face_mass(dcoll,
                        # left boundary weak-flux terms
                        op.project(dcoll,
                                   left_bndry, "all_faces",
                                   flux(dcoll, lbnd_tpair))
                        # right boundary weak-flux terms
                        + op.project(dcoll,
                                     right_bndry, "all_faces",
                                     flux(dcoll, rbnd_tpair))
                        # interior weak-flux terms
                        + op.project(dcoll,
                                     FACE_RESTR_INTERIOR, "all_faces",
                                     flux(dcoll, interior_tpair)))

    duh_by_dt = op.inverse_mass(dcoll,
                                np.dot([2 * np.pi], Su) - lift)

    # forward euler time step
    uh = uh + dt * duh_by_dt
    t += dt
# ENDEXAMPLE
Exemplo n.º 13
0
 def face_mass(self, *args):
     return op.face_mass(self, *args)
Exemplo n.º 14
0
def test_surface_divergence_theorem(actx_factory, mesh_name, visualize=False):
    r"""Check the surface divergence theorem.

        .. math::

            \int_Sigma \phi \nabla_i f_i =
            \int_\Sigma \nabla_i \phi f_i +
            \int_\Sigma \kappa \phi f_i n_i +
            \int_{\partial \Sigma} \phi f_i m_i

        where :math:`n_i` is the surface normal and :class:`m_i` is the
        face normal (which should be orthogonal to both the surface normal
        and the face tangent).
    """
    actx = actx_factory()

    # {{{ cases

    if mesh_name == "2-1-ellipse":
        from mesh_data import EllipseMeshBuilder
        builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
    elif mesh_name == "spheroid":
        from mesh_data import SpheroidMeshBuilder
        builder = SpheroidMeshBuilder()
    elif mesh_name == "circle":
        from mesh_data import EllipseMeshBuilder
        builder = EllipseMeshBuilder(radius=1.0, aspect_ratio=1.0)
    elif mesh_name == "starfish":
        from mesh_data import StarfishMeshBuilder
        builder = StarfishMeshBuilder()
    elif mesh_name == "sphere":
        from mesh_data import SphereMeshBuilder
        builder = SphereMeshBuilder(radius=1.0, mesh_order=16)
    else:
        raise ValueError("unknown mesh name: %s" % mesh_name)

    # }}}

    # {{{ convergence

    def f(x):
        return flat_obj_array(
            actx.np.sin(3 * x[1]) + actx.np.cos(3 * x[0]) + 1.0,
            actx.np.sin(2 * x[0]) + actx.np.cos(x[1]),
            3.0 * actx.np.cos(x[0] / 2) + actx.np.cos(x[1]),
        )[:ambient_dim]

    from pytools.convergence import EOCRecorder
    eoc_global = EOCRecorder()
    eoc_local = EOCRecorder()

    theta = np.pi / 3.33
    ambient_dim = builder.ambient_dim
    if ambient_dim == 2:
        mesh_rotation = np.array([
            [np.cos(theta), -np.sin(theta)],
            [np.sin(theta), np.cos(theta)],
        ])
    else:
        mesh_rotation = np.array([
            [1.0, 0.0, 0.0],
            [0.0, np.cos(theta), -np.sin(theta)],
            [0.0, np.sin(theta), np.cos(theta)],
        ])

    mesh_offset = np.array([0.33, -0.21, 0.0])[:ambient_dim]

    for i, resolution in enumerate(builder.resolutions):
        from meshmode.mesh.processing import affine_map
        from meshmode.discretization.connection import FACE_RESTR_ALL

        mesh = builder.get_mesh(resolution, builder.mesh_order)
        mesh = affine_map(mesh, A=mesh_rotation, b=mesh_offset)

        from meshmode.discretization.poly_element import \
                QuadratureSimplexGroupFactory

        qtag = dof_desc.DISCR_TAG_QUAD
        dcoll = DiscretizationCollection(actx,
                                         mesh,
                                         order=builder.order,
                                         discr_tag_to_group_factory={
                                             qtag:
                                             QuadratureSimplexGroupFactory(
                                                 2 * builder.order)
                                         })

        volume = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
        logger.info("ndofs:     %d", volume.ndofs)
        logger.info("nelements: %d", volume.mesh.nelements)

        dd = dof_desc.DD_VOLUME
        dq = dd.with_discr_tag(qtag)
        df = dof_desc.as_dofdesc(FACE_RESTR_ALL)
        ambient_dim = dcoll.ambient_dim

        # variables
        f_num = f(thaw(dcoll.nodes(dd=dd), actx))
        f_quad_num = f(thaw(dcoll.nodes(dd=dq), actx))

        from grudge.geometry import normal, summed_curvature

        kappa = summed_curvature(actx, dcoll, dd=dq)
        normal = normal(actx, dcoll, dd=dq)
        face_normal = thaw(dcoll.normal(df), actx)
        face_f = op.project(dcoll, dd, df, f_num)

        # operators
        stiff = op.mass(
            dcoll,
            sum(
                op.local_d_dx(dcoll, i, f_num_i)
                for i, f_num_i in enumerate(f_num)))
        stiff_t = sum(
            op.weak_local_d_dx(dcoll, i, f_num_i)
            for i, f_num_i in enumerate(f_num))
        kterm = op.mass(dcoll, dq, kappa * f_quad_num.dot(normal))
        flux = op.face_mass(dcoll, face_f.dot(face_normal))

        # sum everything up
        op_global = op.nodal_sum(dcoll, dd, stiff - (stiff_t + kterm))
        op_local = op.elementwise_sum(dcoll, dd,
                                      stiff - (stiff_t + kterm + flux))

        err_global = abs(op_global)
        err_local = op.norm(dcoll, op_local, np.inf)
        logger.info("errors: global %.5e local %.5e", err_global, err_local)

        # compute max element size
        from grudge.dt_utils import h_max_from_volume

        h_max = h_max_from_volume(dcoll)

        eoc_global.add_data_point(h_max, actx.to_numpy(err_global))
        eoc_local.add_data_point(h_max, err_local)

        if visualize:
            from grudge.shortcuts import make_visualizer
            vis = make_visualizer(dcoll)

            filename = f"surface_divergence_theorem_{mesh_name}_{i:04d}.vtu"
            vis.write_vtk_file(filename, [("r", actx.np.log10(op_local))],
                               overwrite=True)

    # }}}

    order = min(builder.order, builder.mesh_order) - 0.5
    logger.info("\n%s", str(eoc_global))
    logger.info("\n%s", str(eoc_local))

    assert eoc_global.max_error() < 1.0e-12 \
            or eoc_global.order_estimate() > order - 0.5

    assert eoc_local.max_error() < 1.0e-12 \
            or eoc_local.order_estimate() > order - 0.5
Exemplo n.º 15
0
def test_gradient(actx_factory,
                  form,
                  dim,
                  order,
                  vectorize,
                  nested,
                  visualize=False):
    actx = actx_factory()

    from pytools.convergence import EOCRecorder
    eoc_rec = EOCRecorder()

    for n in [4, 6, 8]:
        mesh = mgen.generate_regular_rect_mesh(a=(-1, ) * dim,
                                               b=(1, ) * dim,
                                               nelements_per_axis=(n, ) * dim)

        dcoll = DiscretizationCollection(actx, mesh, order=order)

        def f(x):
            result = dcoll.zeros(actx) + 1
            for i in range(dim - 1):
                result = result * actx.np.sin(np.pi * x[i])
            result = result * actx.np.cos(np.pi / 2 * x[dim - 1])
            return result

        def grad_f(x):
            result = make_obj_array(
                [dcoll.zeros(actx) + 1 for _ in range(dim)])
            for i in range(dim - 1):
                for j in range(i):
                    result[i] = result[i] * actx.np.sin(np.pi * x[j])
                result[i] = result[i] * np.pi * actx.np.cos(np.pi * x[i])
                for j in range(i + 1, dim - 1):
                    result[i] = result[i] * actx.np.sin(np.pi * x[j])
                result[i] = result[i] * actx.np.cos(np.pi / 2 * x[dim - 1])
            for j in range(dim - 1):
                result[dim - 1] = result[dim - 1] * actx.np.sin(np.pi * x[j])
            result[dim -
                   1] = result[dim - 1] * (-np.pi / 2 *
                                           actx.np.sin(np.pi / 2 * x[dim - 1]))
            return result

        x = thaw(dcoll.nodes(), actx)

        if vectorize:
            u = make_obj_array([(i + 1) * f(x) for i in range(dim)])
        else:
            u = f(x)

        def get_flux(u_tpair):
            dd = u_tpair.dd
            dd_allfaces = dd.with_dtag("all_faces")
            normal = thaw(dcoll.normal(dd), actx)
            u_avg = u_tpair.avg
            if vectorize:
                if nested:
                    flux = make_obj_array(
                        [u_avg_i * normal for u_avg_i in u_avg])
                else:
                    flux = np.outer(u_avg, normal)
            else:
                flux = u_avg * normal
            return op.project(dcoll, dd, dd_allfaces, flux)

        dd_allfaces = DOFDesc("all_faces")

        if form == "strong":
            grad_u = (
                op.local_grad(dcoll, u, nested=nested)
                # No flux terms because u doesn't have inter-el jumps
            )
        elif form == "weak":
            grad_u = op.inverse_mass(
                dcoll,
                -op.weak_local_grad(dcoll, u, nested=nested)  # pylint: disable=E1130
                +  # noqa: W504
                op.face_mass(
                    dcoll,
                    dd_allfaces,
                    # Note: no boundary flux terms here because u_ext == u_int == 0
                    sum(
                        get_flux(utpair)
                        for utpair in op.interior_trace_pairs(dcoll, u))))
        else:
            raise ValueError("Invalid form argument.")

        if vectorize:
            expected_grad_u = make_obj_array([(i + 1) * grad_f(x)
                                              for i in range(dim)])
            if not nested:
                expected_grad_u = np.stack(expected_grad_u, axis=0)
        else:
            expected_grad_u = grad_f(x)

        if visualize:
            from grudge.shortcuts import make_visualizer
            vis = make_visualizer(dcoll,
                                  vis_order=order if dim == 3 else dim + 3)

            filename = (
                f"test_gradient_{form}_{dim}_{order}"
                f"{'_vec' if vectorize else ''}{'_nested' if nested else ''}.vtu"
            )
            vis.write_vtk_file(filename, [
                ("u", u),
                ("grad_u", grad_u),
                ("expected_grad_u", expected_grad_u),
            ],
                               overwrite=True)

        rel_linf_err = actx.to_numpy(
            op.norm(dcoll, grad_u - expected_grad_u, np.inf) /
            op.norm(dcoll, expected_grad_u, np.inf))
        eoc_rec.add_data_point(1. / n, rel_linf_err)

    print("L^inf error:")
    print(eoc_rec)
    assert (eoc_rec.order_estimate() >= order - 0.5
            or eoc_rec.max_error() < 1e-11)