def test_bessel(ctx_factory): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) dims = 2 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(0.1, ) * dims, b=(1.0, ) * dims, n=(8, ) * dims) discr = DGDiscretizationWithBoundaries(actx, mesh, order=3) nodes = sym.nodes(dims) r = sym.cse(sym.sqrt(nodes[0]**2 + nodes[1]**2)) # https://dlmf.nist.gov/10.6.1 n = 3 bessel_zero = (sym.bessel_j(n + 1, r) + sym.bessel_j(n - 1, r) - 2 * n / r * sym.bessel_j(n, r)) z = bind(discr, sym.norm(2, bessel_zero))(actx) assert z < 1e-15
def get_strong_wave_op_with_discr(cl_ctx, dims=2, order=4): from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dims, b=(0.5, ) * dims, n=(16, ) * dims) logger.debug("%d elements", mesh.nelements) discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order) source_center = np.array([0.1, 0.22, 0.33])[:dims] source_width = 0.05 source_omega = 3 sym_x = sym.nodes(mesh.dim) sym_source_center_dist = sym_x - source_center sym_t = sym.ScalarVariable("t") from grudge.models.wave import StrongWaveOperator from meshmode.mesh import BTAG_ALL, BTAG_NONE op = StrongWaveOperator( -0.1, dims, source_f=( sym.sin(source_omega * sym_t) * sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) / source_width**2)), dirichlet_tag=BTAG_NONE, neumann_tag=BTAG_NONE, radiation_tag=BTAG_ALL, flux_type="upwind") op.check_bc_coverage(mesh) return (op.sym_operator(), discr)
def test_surface_mass_operator_inverse(actx_factory, name): actx = actx_factory() # {{{ cases if name == "2-1-ellipse": from mesh_data import EllipseMeshBuilder builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0) elif name == "spheroid": from mesh_data import SpheroidMeshBuilder builder = SpheroidMeshBuilder() else: raise ValueError("unknown geometry name: %s" % name) # }}} # {{{ convergence from pytools.convergence import EOCRecorder eoc = EOCRecorder() for resolution in builder.resolutions: mesh = builder.get_mesh(resolution, builder.mesh_order) discr = DiscretizationCollection(actx, mesh, order=builder.order) volume_discr = discr.discr_from_dd(dof_desc.DD_VOLUME) logger.info("ndofs: %d", volume_discr.ndofs) logger.info("nelements: %d", volume_discr.mesh.nelements) # {{{ compute inverse mass dd = dof_desc.DD_VOLUME sym_f = sym.cos(4.0 * sym.nodes(mesh.ambient_dim, dd)[0]) sym_op = sym.InverseMassOperator(dd, dd)(sym.MassOperator(dd, dd)( sym.var("f"))) f = bind(discr, sym_f)(actx) f_inv = bind(discr, sym_op)(actx, f=f) inv_error = bind( discr, sym.norm(2, sym.var("x") - sym.var("y")) / sym.norm(2, sym.var("y")))( actx, x=f_inv, y=f) # }}} h_max = bind( discr, sym.h_max_from_volume(discr.ambient_dim, dim=discr.dim, dd=dd))(actx) eoc.add_data_point(h_max, inv_error) # }}} logger.info("inverse mass error\n%s", str(eoc)) # NOTE: both cases give 1.0e-16-ish at the moment, but just to be on the # safe side, choose a slightly larger tolerance assert eoc.max_error() < 1.0e-14
def test_1d_mass_mat_trig(ctx_factory): """Check the integral of some trig functions on an interval using the mass matrix """ cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-4 * np.pi, ), b=(9 * np.pi, ), n=(17, ), order=1) discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=8) x = sym.nodes(1) f = bind(discr, sym.cos(x[0])**2)(queue) ones = bind(discr, sym.Ones(sym.DD_VOLUME))(queue) mass_op = bind(discr, sym.MassOperator()(sym.var("f"))) num_integral_1 = np.dot(ones.get(), mass_op(queue, f=f)) num_integral_2 = np.dot(f.get(), mass_op(queue, f=ones)) num_integral_3 = bind(discr, sym.integral(sym.var("f")))(queue, f=f) true_integral = 13 * np.pi / 2 err_1 = abs(num_integral_1 - true_integral) err_2 = abs(num_integral_2 - true_integral) err_3 = abs(num_integral_3 - true_integral) assert err_1 < 1e-10 assert err_2 < 1e-10 assert err_3 < 1e-10
def simple_mpi_communication_entrypoint(): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis from meshmode.mesh import BTAG_ALL from mpi4py import MPI comm = MPI.COMM_WORLD num_parts = comm.Get_size() mesh_dist = MPIMeshDistributor(comm) if mesh_dist.is_mananger_rank(): from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-1, ) * 2, b=(1, ) * 2, nelements_per_axis=(2, ) * 2) part_per_element = get_partition_by_pymetis(mesh, num_parts) local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts) else: local_mesh = mesh_dist.receive_mesh_part() vol_discr = DiscretizationCollection(actx, local_mesh, order=5, mpi_communicator=comm) sym_x = sym.nodes(local_mesh.dim) myfunc_symb = sym.sin(np.dot(sym_x, [2, 3])) myfunc = bind(vol_discr, myfunc_symb)(actx) sym_all_faces_func = sym.cse( sym.project("vol", "all_faces")(sym.var("myfunc"))) sym_int_faces_func = sym.cse( sym.project("vol", "int_faces")(sym.var("myfunc"))) sym_bdry_faces_func = sym.cse( sym.project(BTAG_ALL, "all_faces")(sym.project("vol", BTAG_ALL)(sym.var("myfunc")))) bound_face_swap = bind( vol_discr, sym.project("int_faces", "all_faces")( sym.OppositeInteriorFaceSwap("int_faces")(sym_int_faces_func)) - (sym_all_faces_func - sym_bdry_faces_func)) hopefully_zero = bound_face_swap(myfunc=myfunc) error = actx.np.linalg.norm(hopefully_zero, ord=np.inf) print(__file__) with np.printoptions(threshold=100000000, suppress=True): logger.debug(hopefully_zero) logger.info("error: %.5e", error) assert error < 1e-14
def simple_mpi_communication_entrypoint(): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis from mpi4py import MPI comm = MPI.COMM_WORLD num_parts = comm.Get_size() mesh_dist = MPIMeshDistributor(comm) if mesh_dist.is_mananger_rank(): from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-1, ) * 2, b=(1, ) * 2, n=(3, ) * 2) part_per_element = get_partition_by_pymetis(mesh, num_parts) local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts) else: local_mesh = mesh_dist.receive_mesh_part() vol_discr = DGDiscretizationWithBoundaries(cl_ctx, local_mesh, order=5, mpi_communicator=comm) sym_x = sym.nodes(local_mesh.dim) myfunc_symb = sym.sin(np.dot(sym_x, [2, 3])) myfunc = bind(vol_discr, myfunc_symb)(queue) sym_all_faces_func = sym.cse( sym.interp("vol", "all_faces")(sym.var("myfunc"))) sym_int_faces_func = sym.cse( sym.interp("vol", "int_faces")(sym.var("myfunc"))) sym_bdry_faces_func = sym.cse( sym.interp(sym.BTAG_ALL, "all_faces")(sym.interp("vol", sym.BTAG_ALL)(sym.var("myfunc")))) bound_face_swap = bind( vol_discr, sym.interp("int_faces", "all_faces")( sym.OppositeInteriorFaceSwap("int_faces")(sym_int_faces_func)) - (sym_all_faces_func - sym_bdry_faces_func)) # print(bound_face_swap) # 1/0 hopefully_zero = bound_face_swap(queue, myfunc=myfunc) import numpy.linalg as la error = la.norm(hopefully_zero.get()) np.set_printoptions(threshold=100000000, suppress=True) print(hopefully_zero) print(error) assert error < 1e-14
def test_operator_compiler_overwrite(actx_factory): """Tests that the same expression in ``eval_code`` and ``discr_code`` does not confuse the OperatorCompiler in grudge/symbolic/compiler.py. """ actx = actx_factory() ambient_dim = 2 target_order = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * ambient_dim, b=(0.5, ) * ambient_dim, n=(8, ) * ambient_dim, order=1) discr = DiscretizationCollection(actx, mesh, order=target_order) # {{{ test sym_u = sym.nodes(ambient_dim) sym_div_u = sum(d(u) for d, u in zip(sym.nabla(ambient_dim), sym_u)) div_u = bind(discr, sym_div_u)(actx) error = bind(discr, sym.norm(2, sym.var("x")))(actx, x=div_u - discr.dim) logger.info("error: %.5e", error)
def get_rectangular_cavity_mode(E_0, mode_indices): # noqa: N803 """A rectangular TM cavity mode for a rectangle / cube with one corner at the origin and the other at (1,1[,1]).""" dims = len(mode_indices) if dims != 2 and dims != 3: raise ValueError("Improper mode_indices dimensions") import numpy factors = [n * numpy.pi for n in mode_indices] kx, ky = factors[0:2] if dims == 3: kz = factors[2] omega = numpy.sqrt(sum(f**2 for f in factors)) nodes = sym.nodes(dims) x = nodes[0] y = nodes[1] if dims == 3: z = nodes[2] sx = sym.sin(kx * x) cx = sym.cos(kx * x) sy = sym.sin(ky * y) cy = sym.cos(ky * y) if dims == 3: sz = sym.sin(kz * z) cz = sym.cos(kz * z) if dims == 2: tfac = sym.ScalarVariable("t") * omega result = flat_obj_array( 0, 0, sym.sin(kx * x) * sym.sin(ky * y) * sym.cos(tfac), # ez -ky * sym.sin(kx * x) * sym.cos(ky * y) * sym.sin(tfac) / omega, # hx kx * sym.cos(kx * x) * sym.sin(ky * y) * sym.sin(tfac) / omega, # hy 0, ) else: tdep = sym.exp(-1j * omega * sym.ScalarVariable("t")) gamma_squared = ky**2 + kx**2 result = flat_obj_array( -kx * kz * E_0 * cx * sy * sz * tdep / gamma_squared, # ex -ky * kz * E_0 * sx * cy * sz * tdep / gamma_squared, # ey E_0 * sx * sy * cz * tdep, # ez -1j * omega * ky * E_0 * sx * cy * cz * tdep / gamma_squared, # hx 1j * omega * kx * E_0 * cx * sy * cz * tdep / gamma_squared, 0, ) return result
def _get_source_term(dims): source_center = np.array([0.1, 0.22, 0.33])[:dims] source_width = 0.05 source_omega = 3 sym_x = sym.nodes(dims) sym_source_center_dist = sym_x - source_center sym_t = sym.ScalarVariable("t") return (sym.sin(source_omega * sym_t) * sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) / source_width**2))
def test_2d_gauss_theorem(actx_factory): """Verify Gauss's theorem explicitly on a mesh""" pytest.importorskip("meshpy") from meshpy.geometry import make_circle, GeometryBuilder from meshpy.triangle import MeshInfo, build geob = GeometryBuilder() geob.add_geometry(*make_circle(1)) mesh_info = MeshInfo() geob.set(mesh_info) mesh_info = build(mesh_info) from meshmode.mesh.io import from_meshpy mesh = from_meshpy(mesh_info, order=1) actx = actx_factory() discr = DGDiscretizationWithBoundaries(actx, mesh, order=2) def f(x): return flat_obj_array( sym.sin(3*x[0])+sym.cos(3*x[1]), sym.sin(2*x[0])+sym.cos(x[1])) gauss_err = bind(discr, sym.integral(( sym.nabla(2) * f(sym.nodes(2)) ).sum()) - # noqa: W504 sym.integral( sym.project("vol", sym.BTAG_ALL)(f(sym.nodes(2))) .dot(sym.normal(sym.BTAG_ALL, 2)), dd=sym.BTAG_ALL) )(actx) assert abs(gauss_err) < 1e-13
def get_strong_wave_op_with_discr_direct(cl_ctx, dims=2, order=4): from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dims, b=(0.5, ) * dims, n=(16, ) * dims) logger.debug("%d elements", mesh.nelements) discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order) source_center = np.array([0.1, 0.22, 0.33])[:dims] source_width = 0.05 source_omega = 3 sym_x = sym.nodes(mesh.dim) sym_source_center_dist = sym_x - source_center sym_t = sym.ScalarVariable("t") from meshmode.mesh import BTAG_ALL c = -0.1 sign = -1 w = sym.make_sym_array("w", dims + 1) u = w[0] v = w[1:] source_f = ( sym.sin(source_omega * sym_t) * sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) / source_width**2)) rad_normal = sym.normal(BTAG_ALL, dims) rad_u = sym.cse(sym.interp("vol", BTAG_ALL)(u)) rad_v = sym.cse(sym.interp("vol", BTAG_ALL)(v)) rad_bc = sym.cse( sym.join_fields( 0.5 * (rad_u - sign * np.dot(rad_normal, rad_v)), 0.5 * rad_normal * (np.dot(rad_normal, rad_v) - sign * rad_u)), "rad_bc") sym_operator = ( -sym.join_fields(-c * np.dot(sym.nabla(dims), v) - source_f, -c * (sym.nabla(dims) * u)) + sym.InverseMassOperator()( sym.FaceMassOperator() (dg_flux(c, sym.int_tpair(w)) + dg_flux(c, sym.bv_tpair(BTAG_ALL, w, rad_bc))))) return (sym_operator, discr)
def test_foreign_points(ctx_factory): pytest.importorskip("sumpy") import sumpy.point_calculus as pc cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) dim = 2 cp = pc.CalculusPatch(np.zeros(dim)) from grudge.discretization import PointsDiscretization pdiscr = PointsDiscretization(cl.array.to_device(queue, cp.points)) bind(pdiscr, sym.nodes(dim)**2)(queue)
def test_tri_diff_mat(ctx_factory, dim, order=4): """Check differentiation matrix along the coordinate axes on a disk Uses sines as the function to differentiate. """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) from meshmode.mesh.generation import generate_regular_rect_mesh from pytools.convergence import EOCRecorder axis_eoc_recs = [EOCRecorder() for axis in range(dim)] for n in [10, 20]: mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, n=(n, ) * dim, order=4) discr = DGDiscretizationWithBoundaries(actx, mesh, order=4) nabla = sym.nabla(dim) for axis in range(dim): x = sym.nodes(dim) f = bind(discr, sym.sin(3 * x[axis]))(actx) df = bind(discr, 3 * sym.cos(3 * x[axis]))(actx) sym_op = nabla[axis](sym.var("f")) bound_op = bind(discr, sym_op) df_num = bound_op(f=f) linf_error = flat_norm(df_num - df, np.Inf) axis_eoc_recs[axis].add_data_point(1 / n, linf_error) for axis, eoc_rec in enumerate(axis_eoc_recs): logger.info("axis %d\n%s", axis, eoc_rec) assert eoc_rec.order_estimate() >= order
def test_bessel(actx_factory): actx = actx_factory() dims = 2 mesh = mgen.generate_regular_rect_mesh(a=(0.1, ) * dims, b=(1.0, ) * dims, nelements_per_axis=(8, ) * dims) discr = DiscretizationCollection(actx, mesh, order=3) nodes = sym.nodes(dims) r = sym.cse(sym.sqrt(nodes[0]**2 + nodes[1]**2)) # https://dlmf.nist.gov/10.6.1 n = 3 bessel_zero = (sym.bessel_j(n + 1, r) + sym.bessel_j(n - 1, r) - 2 * n / r * sym.bessel_j(n, r)) z = bind(discr, sym.norm(2, bessel_zero))(actx) assert z < 1e-15
def test_tri_diff_mat(actx_factory, dim, order=4): """Check differentiation matrix along the coordinate axes on a disk Uses sines as the function to differentiate. """ actx = actx_factory() from pytools.convergence import EOCRecorder axis_eoc_recs = [EOCRecorder() for axis in range(dim)] for n in [4, 8, 16]: mesh = mgen.generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, nelements_per_axis=(n, ) * dim, order=4) discr = DiscretizationCollection(actx, mesh, order=4) nabla = sym.nabla(dim) for axis in range(dim): x = sym.nodes(dim) f = bind(discr, sym.sin(3 * x[axis]))(actx) df = bind(discr, 3 * sym.cos(3 * x[axis]))(actx) sym_op = nabla[axis](sym.var("f")) bound_op = bind(discr, sym_op) df_num = bound_op(f=f) linf_error = actx.np.linalg.norm(df_num - df, ord=np.inf) axis_eoc_recs[axis].add_data_point(1 / n, linf_error) for axis, eoc_rec in enumerate(axis_eoc_recs): logger.info("axis %d\n%s", axis, eoc_rec) assert eoc_rec.order_estimate() > order - 0.25
def _get_variables_on(dd): sym_f = sym.var("f", dd=dd) sym_x = sym.nodes(ambient_dim, dd=dd) sym_ones = sym.Ones(dd) return sym_f, sym_x, sym_ones
def main(ctx_factory, dim=2, order=4, product_tag=None, visualize=False): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) # {{{ parameters # domain [0, d]^dim d = 1.0 # number of points in each dimension npoints = 25 # grid spacing h = d / npoints # cfl dt_factor = 1.0 # finale time final_time = 0.5 # time steps dt = dt_factor * h / order**2 nsteps = int(final_time // dt) + 1 dt = final_time / nsteps + 1.0e-15 # flux flux_type = "upwind" # velocity field sym_x = sym.nodes(dim) if dim == 1: c = sym_x else: # solid body rotation c = flat_obj_array(np.pi * (d / 2 - sym_x[1]), np.pi * (sym_x[0] - d / 2), 0)[:dim] # }}} # {{{ discretization from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(0, ) * dim, b=(d, ) * dim, npoints_per_axis=(npoints, ) * dim, order=order) from meshmode.discretization.poly_element import \ QuadratureSimplexGroupFactory if product_tag: discr_tag_to_group_factory = { product_tag: QuadratureSimplexGroupFactory(order=4 * order) } else: discr_tag_to_group_factory = {} from grudge import DiscretizationCollection discr = DiscretizationCollection( actx, mesh, order=order, discr_tag_to_group_factory=discr_tag_to_group_factory) # }}} # {{{ symbolic operators # gaussian parameters source_center = np.array([0.5, 0.75, 0.0])[:dim] source_width = 0.05 dist_squared = np.dot(sym_x - source_center, sym_x - source_center) def f_gaussian(x): return sym.exp(-dist_squared / source_width**2) def f_step(x): return sym.If(sym.Comparison(dist_squared, "<", (4 * source_width)**2), 1, 0) def u_bc(x): return 0.0 from grudge.models.advection import VariableCoefficientAdvectionOperator op = VariableCoefficientAdvectionOperator(c, u_bc(sym.nodes(dim, BTAG_ALL)), quad_tag=product_tag, flux_type=flux_type) bound_op = bind(discr, op.sym_operator()) u = bind(discr, f_gaussian(sym.nodes(dim)))(actx, t=0) def rhs(t, u): return bound_op(t=t, u=u) # }}} # {{{ time stepping from grudge.shortcuts import set_up_rk4 dt_stepper = set_up_rk4("u", dt, u, rhs) plot = Plotter(actx, discr, order, visualize=visualize, ylim=[-0.1, 1.1]) step = 0 norm = bind(discr, sym.norm(2, sym.var("u"))) for event in dt_stepper.run(t_end=final_time): if not isinstance(event, dt_stepper.StateComputed): continue if step % 10 == 0: norm_u = norm(u=event.state_component) plot(event, "fld-var-velocity-%04d" % step) step += 1 logger.info("[%04d] t = %.5f |u| = %.5e", step, event.t, norm_u)
def main(write_output=True, order=4): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) dims = 2 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dims, b=(0.5, ) * dims, n=(16, ) * dims) if mesh.dim == 2: dt = 0.04 elif mesh.dim == 3: dt = 0.02 print("%d elements" % mesh.nelements) discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order) source_center = np.array([0.1, 0.22, 0.33])[:mesh.dim] source_width = 0.05 source_omega = 3 sym_x = sym.nodes(mesh.dim) sym_source_center_dist = sym_x - source_center sym_t = sym.ScalarVariable("t") from grudge.models.wave import StrongWaveOperator from meshmode.mesh import BTAG_ALL, BTAG_NONE op = StrongWaveOperator( -0.1, discr.dim, source_f=( sym.sin(source_omega * sym_t) * sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) / source_width**2)), dirichlet_tag=BTAG_NONE, neumann_tag=BTAG_NONE, radiation_tag=BTAG_ALL, flux_type="upwind") queue = cl.CommandQueue(discr.cl_context) from pytools.obj_array import join_fields fields = join_fields(discr.zeros(queue), [discr.zeros(queue) for i in range(discr.dim)]) # FIXME #dt = op.estimate_rk4_timestep(discr, fields=fields) op.check_bc_coverage(mesh) # print(sym.pretty(op.sym_operator())) bound_op = bind(discr, op.sym_operator()) def rhs(t, w): return bound_op(queue, t=t, w=w) dt_stepper = set_up_rk4("w", dt, fields, rhs) final_t = 10 nsteps = int(final_t / dt) print("dt=%g nsteps=%d" % (dt, nsteps)) from grudge.shortcuts import make_visualizer vis = make_visualizer(discr, vis_order=order) step = 0 norm = bind(discr, sym.norm(2, sym.var("u"))) from time import time t_last_step = time() for event in dt_stepper.run(t_end=final_t): if isinstance(event, dt_stepper.StateComputed): assert event.component_id == "w" step += 1 print(step, event.t, norm(queue, u=event.state_component[0]), time() - t_last_step) if step % 10 == 0: vis.write_vtk_file("fld-wave-min-%04d.vtu" % step, [ ("u", event.state_component[0]), ("v", event.state_component[1:]), ]) t_last_step = time()
def mpi_communication_entrypoint(): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) from mpi4py import MPI comm = MPI.COMM_WORLD i_local_rank = comm.Get_rank() num_parts = comm.Get_size() from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis mesh_dist = MPIMeshDistributor(comm) dim = 2 dt = 0.04 order = 4 if mesh_dist.is_mananger_rank(): from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, n=(16, ) * dim) part_per_element = get_partition_by_pymetis(mesh, num_parts) local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts) else: local_mesh = mesh_dist.receive_mesh_part() vol_discr = DGDiscretizationWithBoundaries(cl_ctx, local_mesh, order=order, mpi_communicator=comm) source_center = np.array([0.1, 0.22, 0.33])[:local_mesh.dim] source_width = 0.05 source_omega = 3 sym_x = sym.nodes(local_mesh.dim) sym_source_center_dist = sym_x - source_center sym_t = sym.ScalarVariable("t") from grudge.models.wave import StrongWaveOperator from meshmode.mesh import BTAG_ALL, BTAG_NONE op = StrongWaveOperator( -0.1, vol_discr.dim, source_f=( sym.sin(source_omega * sym_t) * sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) / source_width**2)), dirichlet_tag=BTAG_NONE, neumann_tag=BTAG_NONE, radiation_tag=BTAG_ALL, flux_type="upwind") from pytools.obj_array import join_fields fields = join_fields( vol_discr.zeros(queue), [vol_discr.zeros(queue) for i in range(vol_discr.dim)]) # FIXME # dt = op.estimate_rk4_timestep(vol_discr, fields=fields) # FIXME: Should meshmode consider BTAG_PARTITION to be a boundary? # Fails because: "found faces without boundary conditions" # op.check_bc_coverage(local_mesh) from pytools.log import LogManager, \ add_general_quantities, \ add_run_info, \ IntervalTimer, EventCounter log_filename = None # NOTE: LogManager hangs when using a file on a shared directory. # log_filename = 'grudge_log.dat' logmgr = LogManager(log_filename, "w", comm) add_run_info(logmgr) add_general_quantities(logmgr) log_quantities =\ {"rank_data_swap_timer": IntervalTimer("rank_data_swap_timer", "Time spent evaluating RankDataSwapAssign"), "rank_data_swap_counter": EventCounter("rank_data_swap_counter", "Number of RankDataSwapAssign instructions evaluated"), "exec_timer": IntervalTimer("exec_timer", "Total time spent executing instructions"), "insn_eval_timer": IntervalTimer("insn_eval_timer", "Time spend evaluating instructions"), "future_eval_timer": IntervalTimer("future_eval_timer", "Time spent evaluating futures"), "busy_wait_timer": IntervalTimer("busy_wait_timer", "Time wasted doing busy wait")} for quantity in log_quantities.values(): logmgr.add_quantity(quantity) # print(sym.pretty(op.sym_operator())) bound_op = bind(vol_discr, op.sym_operator()) # print(bound_op) # 1/0 def rhs(t, w): val, rhs.profile_data = bound_op(queue, profile_data=rhs.profile_data, log_quantities=log_quantities, t=t, w=w) return val rhs.profile_data = {} dt_stepper = set_up_rk4("w", dt, fields, rhs) final_t = 4 nsteps = int(final_t / dt) print("rank=%d dt=%g nsteps=%d" % (i_local_rank, dt, nsteps)) # from grudge.shortcuts import make_visualizer # vis = make_visualizer(vol_discr, vis_order=order) step = 0 norm = bind(vol_discr, sym.norm(2, sym.var("u"))) from time import time t_last_step = time() logmgr.tick_before() for event in dt_stepper.run(t_end=final_t): if isinstance(event, dt_stepper.StateComputed): assert event.component_id == "w" step += 1 print(step, event.t, norm(queue, u=event.state_component[0]), time() - t_last_step) # if step % 10 == 0: # vis.write_vtk_file("rank%d-fld-%04d.vtu" % (i_local_rank, step), # [("u", event.state_component[0]), # ("v", event.state_component[1:])]) t_last_step = time() logmgr.tick_after() logmgr.tick_before() logmgr.tick_after() def print_profile_data(data): print("""execute() for rank %d: \tInstruction Evaluation: %f%% \tFuture Evaluation: %f%% \tBusy Wait: %f%% \tTotal: %f seconds""" % (i_local_rank, data['insn_eval_time'] / data['total_time'] * 100, data['future_eval_time'] / data['total_time'] * 100, data['busy_wait_time'] / data['total_time'] * 100, data['total_time'])) print_profile_data(rhs.profile_data) logmgr.close() logger.debug("Rank %d exiting", i_local_rank)
def gaussian_mode(): source_width = 0.1 sym_x = sym.nodes(2) return sym.exp(-np.dot(sym_x, sym_x) / source_width**2)
def main(write_output=True, order=4): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) dim = 2 resolution = 15 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, -0.5), b=(0.5, 0.5), n=(resolution, resolution), order=order) dt_factor = 5 h = 1 / resolution sym_x = sym.nodes(2) advec_v = join_fields(-1 * sym_x[1], sym_x[0]) / 2 flux_type = "upwind" source_center = np.array([0.1, 0.1]) source_width = 0.05 sym_x = sym.nodes(2) sym_source_center_dist = sym_x - source_center def f_gaussian(x): return sym.exp( -np.dot(sym_source_center_dist, sym_source_center_dist) / source_width**2) def f_step(x): return sym.If( sym.Comparison( np.dot(sym_source_center_dist, sym_source_center_dist), "<", (4 * source_width)**2), 1, 0) def u_analytic(x): return 0 from grudge.models.advection import VariableCoefficientAdvectionOperator from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory # noqa discr = DGDiscretizationWithBoundaries( cl_ctx, mesh, order=order, quad_tag_to_group_factory={ #"product": None, "product": QuadratureSimplexGroupFactory(order=4 * order) }) op = VariableCoefficientAdvectionOperator(2, advec_v, u_analytic( sym.nodes(dim, sym.BTAG_ALL)), quad_tag="product", flux_type=flux_type) bound_op = bind( discr, op.sym_operator(), #debug_flags=["dump_sym_operator_stages"] ) u = bind(discr, f_gaussian(sym.nodes(dim)))(queue, t=0) def rhs(t, u): return bound_op(queue, t=t, u=u) dt = dt_factor * h / order**2 nsteps = (FINAL_TIME // dt) + 1 dt = FINAL_TIME / nsteps + 1e-15 from grudge.shortcuts import set_up_rk4 dt_stepper = set_up_rk4("u", dt, u, rhs) from grudge.shortcuts import make_visualizer vis = make_visualizer(discr, vis_order=2 * order) step = 0 for event in dt_stepper.run(t_end=FINAL_TIME): if isinstance(event, dt_stepper.StateComputed): step += 1 if step % 30 == 0: print(step) vis.write_vtk_file("fld-var-velocity-%04d.vtu" % step, [("u", event.state_component)])
def main(ctx_factory, dim=2, order=4, visualize=False): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) # {{{ parameters # domain [-d/2, d/2]^dim d = 1.0 # number of points in each dimension npoints = 20 # grid spacing h = d / npoints # cfl dt_factor = 2.0 # final time final_time = 1.0 # compute number of steps dt = dt_factor * h / order**2 nsteps = int(final_time // dt) + 1 dt = final_time / nsteps + 1.0e-15 # velocity field c = np.array([0.5] * dim) norm_c = la.norm(c) # flux flux_type = "central" # }}} # {{{ discretization from meshmode.mesh.generation import generate_box_mesh mesh = generate_box_mesh( [np.linspace(-d / 2, d / 2, npoints) for _ in range(dim)], order=order) from grudge import DiscretizationCollection discr = DiscretizationCollection(actx, mesh, order=order) # }}} # {{{ symbolic operators def f(x): return sym.sin(3 * x) def u_analytic(x): t = sym.var("t", dof_desc.DD_SCALAR) return f(-np.dot(c, x) / norm_c + t * norm_c) from grudge.models.advection import WeakAdvectionOperator op = WeakAdvectionOperator(c, inflow_u=u_analytic(sym.nodes(dim, BTAG_ALL)), flux_type=flux_type) bound_op = bind(discr, op.sym_operator()) u = bind(discr, u_analytic(sym.nodes(dim)))(actx, t=0) def rhs(t, u): return bound_op(t=t, u=u) # }}} # {{{ time stepping from grudge.shortcuts import set_up_rk4 dt_stepper = set_up_rk4("u", dt, u, rhs) plot = Plotter(actx, discr, order, visualize=visualize, ylim=[-1.1, 1.1]) norm = bind(discr, sym.norm(2, sym.var("u"))) step = 0 norm_u = 0.0 for event in dt_stepper.run(t_end=final_time): if not isinstance(event, dt_stepper.StateComputed): continue if step % 10 == 0: norm_u = norm(u=event.state_component) plot(event, "fld-weak-%04d" % step) step += 1 logger.info("[%04d] t = %.5f |u| = %.5e", step, event.t, norm_u)
def test_convergence_advec(ctx_factory, mesh_name, mesh_pars, op_type, flux_type, order, visualize=False): """Test whether 2D advection actually converges""" cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() for mesh_par in mesh_pars: if mesh_name == "segment": from meshmode.mesh.generation import generate_box_mesh mesh = generate_box_mesh([np.linspace(-1.0, 1.0, mesh_par)], order=order) dim = 1 dt_factor = 1.0 elif mesh_name == "disk": pytest.importorskip("meshpy") from meshpy.geometry import make_circle, GeometryBuilder from meshpy.triangle import MeshInfo, build geob = GeometryBuilder() geob.add_geometry(*make_circle(1)) mesh_info = MeshInfo() geob.set(mesh_info) mesh_info = build(mesh_info, max_volume=mesh_par) from meshmode.mesh.io import from_meshpy mesh = from_meshpy(mesh_info, order=1) dim = 2 dt_factor = 4 elif mesh_name.startswith("rect"): dim = int(mesh_name[4:]) from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, n=(mesh_par, ) * dim, order=4) if dim == 2: dt_factor = 4 elif dim == 3: dt_factor = 2 else: raise ValueError("dt_factor not known for %dd" % dim) else: raise ValueError("invalid mesh name: " + mesh_name) v = np.array([0.27, 0.31, 0.1])[:dim] norm_v = la.norm(v) def f(x): return sym.sin(10 * x) def u_analytic(x): return f(-v.dot(x) / norm_v + sym.var("t", sym.DD_SCALAR) * norm_v) from grudge.models.advection import (StrongAdvectionOperator, WeakAdvectionOperator) discr = DGDiscretizationWithBoundaries(actx, mesh, order=order) op_class = { "strong": StrongAdvectionOperator, "weak": WeakAdvectionOperator, }[op_type] op = op_class(v, inflow_u=u_analytic(sym.nodes(dim, sym.BTAG_ALL)), flux_type=flux_type) bound_op = bind(discr, op.sym_operator()) u = bind(discr, u_analytic(sym.nodes(dim)))(actx, t=0) def rhs(t, u): return bound_op(t=t, u=u) if dim == 3: final_time = 0.1 else: final_time = 0.2 h_max = bind(discr, sym.h_max_from_volume(discr.ambient_dim))(actx) dt = dt_factor * h_max / order**2 nsteps = (final_time // dt) + 1 dt = final_time / nsteps + 1e-15 from grudge.shortcuts import set_up_rk4 dt_stepper = set_up_rk4("u", dt, u, rhs) last_u = None from grudge.shortcuts import make_visualizer vis = make_visualizer(discr, vis_order=order) step = 0 for event in dt_stepper.run(t_end=final_time): if isinstance(event, dt_stepper.StateComputed): step += 1 logger.debug("[%04d] t = %.5f", step, event.t) last_t = event.t last_u = event.state_component if visualize: vis.write_vtk_file("fld-%s-%04d.vtu" % (mesh_par, step), [("u", event.state_component)]) error_l2 = bind(discr, sym.norm(2, sym.var("u") - u_analytic(sym.nodes(dim))))( t=last_t, u=last_u) logger.info("h_max %.5e error %.5e", h_max, error_l2) eoc_rec.add_data_point(h_max, error_l2) logger.info( "\n%s", eoc_rec.pretty_print(abscissa_label="h", error_label="L2 Error")) assert eoc_rec.order_estimate() > order
def main(write_output=True, order=4): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) dims = 2 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(-0.5,)*dims, b=(0.5,)*dims, nelements_per_axis=(20,)*dims) discr = DiscretizationCollection(actx, mesh, order=order) source_center = np.array([0.1, 0.22, 0.33])[:mesh.dim] source_width = 0.05 source_omega = 3 sym_x = sym.nodes(mesh.dim) sym_source_center_dist = sym_x - source_center sym_t = sym.ScalarVariable("t") c = sym.If(sym.Comparison( np.dot(sym_x, sym_x), "<", 0.15), np.float32(0.1), np.float32(0.2)) from grudge.models.wave import VariableCoefficientWeakWaveOperator from meshmode.mesh import BTAG_ALL, BTAG_NONE op = VariableCoefficientWeakWaveOperator(c, discr.dim, source_f=( sym.sin(source_omega*sym_t) * sym.exp( -np.dot(sym_source_center_dist, sym_source_center_dist) / source_width**2)), dirichlet_tag=BTAG_NONE, neumann_tag=BTAG_NONE, radiation_tag=BTAG_ALL, flux_type="upwind") from pytools.obj_array import flat_obj_array fields = flat_obj_array(discr.zeros(actx), [discr.zeros(actx) for i in range(discr.dim)]) op.check_bc_coverage(mesh) c_eval = bind(discr, c)(actx) bound_op = bind(discr, op.sym_operator()) def rhs(t, w): return bound_op(t=t, w=w) if mesh.dim == 2: dt = 0.04 * 0.3 elif mesh.dim == 3: dt = 0.02 * 0.1 dt_stepper = set_up_rk4("w", dt, fields, rhs) final_t = 1 nsteps = int(final_t/dt) print("dt=%g nsteps=%d" % (dt, nsteps)) from grudge.shortcuts import make_visualizer vis = make_visualizer(discr) step = 0 norm = bind(discr, sym.norm(2, sym.var("u"))) from time import time t_last_step = time() for event in dt_stepper.run(t_end=final_t): if isinstance(event, dt_stepper.StateComputed): assert event.component_id == "w" step += 1 print(step, event.t, norm(u=event.state_component[0]), time()-t_last_step) if step % 10 == 0: vis.write_vtk_file("fld-var-propogation-speed-%04d.vtu" % step, [ ("u", event.state_component[0]), ("v", event.state_component[1:]), ("c", c_eval), ]) t_last_step = time()
def test_improvement_quadrature(ctx_factory, order): """Test whether quadrature improves things and converges""" from meshmode.mesh.generation import generate_regular_rect_mesh from grudge.models.advection import VariableCoefficientAdvectionOperator from pytools.convergence import EOCRecorder from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) dims = 2 sym_nds = sym.nodes(dims) advec_v = flat_obj_array(-1 * sym_nds[1], sym_nds[0]) flux = "upwind" op = VariableCoefficientAdvectionOperator(advec_v, 0, flux_type=flux) def gaussian_mode(): source_width = 0.1 sym_x = sym.nodes(2) return sym.exp(-np.dot(sym_x, sym_x) / source_width**2) def conv_test(descr, use_quad): logger.info("-" * 75) logger.info(descr) logger.info("-" * 75) eoc_rec = EOCRecorder() ns = [20, 25] for n in ns: mesh = generate_regular_rect_mesh(a=(-0.5, ) * dims, b=(0.5, ) * dims, n=(n, ) * dims, order=order) if use_quad: quad_tag_to_group_factory = { "product": QuadratureSimplexGroupFactory(order=4 * order) } else: quad_tag_to_group_factory = {"product": None} discr = DGDiscretizationWithBoundaries( actx, mesh, order=order, quad_tag_to_group_factory=quad_tag_to_group_factory) bound_op = bind(discr, op.sym_operator()) fields = bind(discr, gaussian_mode())(actx, t=0) norm = bind(discr, sym.norm(2, sym.var("u"))) esc = bound_op(u=fields) total_error = norm(u=esc) eoc_rec.add_data_point(1.0 / n, total_error) logger.info( "\n%s", eoc_rec.pretty_print(abscissa_label="h", error_label="L2 Error")) return eoc_rec.order_estimate(), np.array( [x[1] for x in eoc_rec.history]) eoc, errs = conv_test("no quadrature", False) q_eoc, q_errs = conv_test("with quadrature", True) assert q_eoc > eoc assert (q_errs < errs).all() assert q_eoc > order
def simple_wave_entrypoint(dim=2, num_elems=256, order=4, num_steps=30, log_filename="grudge.dat"): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) from mpi4py import MPI comm = MPI.COMM_WORLD num_parts = comm.Get_size() n = int(num_elems ** (1./dim)) from meshmode.distributed import MPIMeshDistributor mesh_dist = MPIMeshDistributor(comm) if mesh_dist.is_mananger_rank(): from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim, n=(n,)*dim) from pymetis import part_graph _, p = part_graph(num_parts, xadj=mesh.nodal_adjacency.neighbors_starts.tolist(), adjncy=mesh.nodal_adjacency.neighbors.tolist()) part_per_element = np.array(p) local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts) else: local_mesh = mesh_dist.receive_mesh_part() vol_discr = DGDiscretizationWithBoundaries(cl_ctx, local_mesh, order=order, mpi_communicator=comm) source_center = np.array([0.1, 0.22, 0.33])[:local_mesh.dim] source_width = 0.05 source_omega = 3 sym_x = sym.nodes(local_mesh.dim) sym_source_center_dist = sym_x - source_center sym_t = sym.ScalarVariable("t") from grudge.models.wave import StrongWaveOperator from meshmode.mesh import BTAG_ALL, BTAG_NONE op = StrongWaveOperator(-0.1, vol_discr.dim, source_f=( sym.sin(source_omega*sym_t) * sym.exp( -np.dot(sym_source_center_dist, sym_source_center_dist) / source_width**2)), dirichlet_tag=BTAG_NONE, neumann_tag=BTAG_NONE, radiation_tag=BTAG_ALL, flux_type="upwind") from pytools.obj_array import join_fields fields = join_fields(vol_discr.zeros(queue), [vol_discr.zeros(queue) for i in range(vol_discr.dim)]) from logpyle import LogManager, \ add_general_quantities, \ add_run_info, \ IntervalTimer, EventCounter # NOTE: LogManager hangs when using a file on a shared directory. logmgr = LogManager(log_filename, "w", comm) add_run_info(logmgr) add_general_quantities(logmgr) log_quantities =\ {"rank_data_swap_timer": IntervalTimer("rank_data_swap_timer", "Time spent evaluating RankDataSwapAssign"), "rank_data_swap_counter": EventCounter("rank_data_swap_counter", "Number of RankDataSwapAssign instructions evaluated"), "exec_timer": IntervalTimer("exec_timer", "Total time spent executing instructions"), "insn_eval_timer": IntervalTimer("insn_eval_timer", "Time spend evaluating instructions"), "future_eval_timer": IntervalTimer("future_eval_timer", "Time spent evaluating futures"), "busy_wait_timer": IntervalTimer("busy_wait_timer", "Time wasted doing busy wait")} for quantity in log_quantities.values(): logmgr.add_quantity(quantity) bound_op = bind(vol_discr, op.sym_operator()) def rhs(t, w): val, rhs.profile_data = bound_op(queue, profile_data=rhs.profile_data, log_quantities=log_quantities, t=t, w=w) return val rhs.profile_data = {} dt = 0.04 dt_stepper = set_up_rk4("w", dt, fields, rhs) logmgr.tick_before() for event in dt_stepper.run(t_end=dt * num_steps): if isinstance(event, dt_stepper.StateComputed): logmgr.tick_after() logmgr.tick_before() logmgr.tick_after() def print_profile_data(data): print("""execute() for rank %d: \tInstruction Evaluation: %f%% \tFuture Evaluation: %f%% \tBusy Wait: %f%% \tTotal: %f seconds""" % (comm.Get_rank(), data['insn_eval_time'] / data['total_time'] * 100, data['future_eval_time'] / data['total_time'] * 100, data['busy_wait_time'] / data['total_time'] * 100, data['total_time'])) print_profile_data(rhs.profile_data) logmgr.close()
def main(write_output=True, order=4): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) comm = MPI.COMM_WORLD num_parts = comm.Get_size() from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis mesh_dist = MPIMeshDistributor(comm) if mesh_dist.is_mananger_rank(): dims = 2 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dims, b=(0.5, ) * dims, n=(16, ) * dims) print("%d elements" % mesh.nelements) part_per_element = get_partition_by_pymetis(mesh, num_parts) local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts) del mesh else: local_mesh = mesh_dist.receive_mesh_part() discr = DGDiscretizationWithBoundaries(actx, local_mesh, order=order, mpi_communicator=comm) if local_mesh.dim == 2: dt = 0.04 elif local_mesh.dim == 3: dt = 0.02 source_center = np.array([0.1, 0.22, 0.33])[:local_mesh.dim] source_width = 0.05 source_omega = 3 sym_x = sym.nodes(local_mesh.dim) sym_source_center_dist = sym_x - source_center sym_t = sym.ScalarVariable("t") from grudge.models.wave import StrongWaveOperator from meshmode.mesh import BTAG_ALL, BTAG_NONE op = StrongWaveOperator( -0.1, discr.dim, source_f=( sym.sin(source_omega * sym_t) * sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) / source_width**2)), dirichlet_tag=BTAG_NONE, neumann_tag=BTAG_NONE, radiation_tag=BTAG_ALL, flux_type="upwind") from pytools.obj_array import flat_obj_array fields = flat_obj_array(discr.zeros(actx), [discr.zeros(actx) for i in range(discr.dim)]) # FIXME #dt = op.estimate_rk4_timestep(discr, fields=fields) op.check_bc_coverage(local_mesh) # print(sym.pretty(op.sym_operator())) bound_op = bind(discr, op.sym_operator()) def rhs(t, w): return bound_op(t=t, w=w) dt_stepper = set_up_rk4("w", dt, fields, rhs) final_t = 10 nsteps = int(final_t / dt) print("dt=%g nsteps=%d" % (dt, nsteps)) from grudge.shortcuts import make_visualizer vis = make_visualizer(discr, vis_order=order) step = 0 norm = bind(discr, sym.norm(2, sym.var("u"))) from time import time t_last_step = time() rank = comm.Get_rank() for event in dt_stepper.run(t_end=final_t): if isinstance(event, dt_stepper.StateComputed): assert event.component_id == "w" step += 1 print(step, event.t, norm(u=event.state_component[0]), time() - t_last_step) if step % 10 == 0: vis.write_vtk_file( "fld-wave-min-mpi-%03d-%04d.vtu" % ( rank, step, ), [ ("u", event.state_component[0]), ("v", event.state_component[1:]), ]) t_last_step = time()
def test_surface_divergence_theorem(actx_factory, mesh_name, visualize=False): r"""Check the surface divergence theorem. .. math:: \int_Sigma \phi \nabla_i f_i = \int_\Sigma \nabla_i \phi f_i + \int_\Sigma \kappa \phi f_i n_i + \int_{\partial \Sigma} \phi f_i m_i where :math:`n_i` is the surface normal and :class:`m_i` is the face normal (which should be orthogonal to both the surface normal and the face tangent). """ actx = actx_factory() # {{{ cases if mesh_name == "2-1-ellipse": from mesh_data import EllipseMeshBuilder builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0) elif mesh_name == "spheroid": from mesh_data import SpheroidMeshBuilder builder = SpheroidMeshBuilder() elif mesh_name == "circle": from mesh_data import EllipseMeshBuilder builder = EllipseMeshBuilder(radius=1.0, aspect_ratio=1.0) elif mesh_name == "starfish": from mesh_data import StarfishMeshBuilder builder = StarfishMeshBuilder() elif mesh_name == "sphere": from mesh_data import SphereMeshBuilder builder = SphereMeshBuilder(radius=1.0, mesh_order=16) else: raise ValueError("unknown mesh name: %s" % mesh_name) # }}} # {{{ convergene def f(x): return flat_obj_array( sym.sin(3 * x[1]) + sym.cos(3 * x[0]) + 1.0, sym.sin(2 * x[0]) + sym.cos(x[1]), 3.0 * sym.cos(x[0] / 2) + sym.cos(x[1]), )[:ambient_dim] from pytools.convergence import EOCRecorder eoc_global = EOCRecorder() eoc_local = EOCRecorder() theta = np.pi / 3.33 ambient_dim = builder.ambient_dim if ambient_dim == 2: mesh_rotation = np.array([ [np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)], ]) else: mesh_rotation = np.array([ [1.0, 0.0, 0.0], [0.0, np.cos(theta), -np.sin(theta)], [0.0, np.sin(theta), np.cos(theta)], ]) mesh_offset = np.array([0.33, -0.21, 0.0])[:ambient_dim] for i, resolution in enumerate(builder.resolutions): from meshmode.mesh.processing import affine_map from meshmode.discretization.connection import FACE_RESTR_ALL mesh = builder.get_mesh(resolution, builder.mesh_order) mesh = affine_map(mesh, A=mesh_rotation, b=mesh_offset) from meshmode.discretization.poly_element import \ QuadratureSimplexGroupFactory discr = DiscretizationCollection(actx, mesh, order=builder.order, discr_tag_to_group_factory={ "product": QuadratureSimplexGroupFactory( 2 * builder.order) }) volume = discr.discr_from_dd(dof_desc.DD_VOLUME) logger.info("ndofs: %d", volume.ndofs) logger.info("nelements: %d", volume.mesh.nelements) dd = dof_desc.DD_VOLUME dq = dd.with_discr_tag("product") df = dof_desc.as_dofdesc(FACE_RESTR_ALL) ambient_dim = discr.ambient_dim dim = discr.dim # variables sym_f = f(sym.nodes(ambient_dim, dd=dd)) sym_f_quad = f(sym.nodes(ambient_dim, dd=dq)) sym_kappa = sym.summed_curvature(ambient_dim, dim=dim, dd=dq) sym_normal = sym.surface_normal(ambient_dim, dim=dim, dd=dq).as_vector() sym_face_normal = sym.normal(df, ambient_dim, dim=dim - 1) sym_face_f = sym.project(dd, df)(sym_f) # operators sym_stiff = sum( sym.StiffnessOperator(d)(f) for d, f in enumerate(sym_f)) sym_stiff_t = sum( sym.StiffnessTOperator(d)(f) for d, f in enumerate(sym_f)) sym_k = sym.MassOperator(dq, dd)(sym_kappa * sym_f_quad.dot(sym_normal)) sym_flux = sym.FaceMassOperator()(sym_face_f.dot(sym_face_normal)) # sum everything up sym_op_global = sym.NodalSum(dd)(sym_stiff - (sym_stiff_t + sym_k)) sym_op_local = sym.ElementwiseSumOperator(dd)(sym_stiff - (sym_stiff_t + sym_k + sym_flux)) # evaluate op_global = bind(discr, sym_op_global)(actx) op_local = bind(discr, sym_op_local)(actx) err_global = abs(op_global) err_local = bind(discr, sym.norm(np.inf, sym.var("x")))(actx, x=op_local) logger.info("errors: global %.5e local %.5e", err_global, err_local) # compute max element size h_max = bind( discr, sym.h_max_from_volume(discr.ambient_dim, dim=discr.dim, dd=dd))(actx) eoc_global.add_data_point(h_max, err_global) eoc_local.add_data_point(h_max, err_local) if visualize: from grudge.shortcuts import make_visualizer vis = make_visualizer(discr, vis_order=builder.order) filename = f"surface_divergence_theorem_{mesh_name}_{i:04d}.vtu" vis.write_vtk_file(filename, [("r", actx.np.log10(op_local))], overwrite=True) # }}} order = min(builder.order, builder.mesh_order) - 0.5 logger.info("\n%s", str(eoc_global)) logger.info("\n%s", str(eoc_local)) assert eoc_global.max_error() < 1.0e-12 \ or eoc_global.order_estimate() > order - 0.5 assert eoc_local.max_error() < 1.0e-12 \ or eoc_local.order_estimate() > order - 0.5
def main(ctx_factory, dim=2, order=4, product_tag=None, visualize=False): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) # {{{ parameters # sphere radius radius = 1.0 # sphere resolution resolution = 64 if dim == 2 else 1 # cfl dt_factor = 2.0 # final time final_time = np.pi # velocity field sym_x = sym.nodes(dim) c = make_obj_array([-sym_x[1], sym_x[0], 0.0])[:dim] # flux flux_type = "lf" # }}} # {{{ discretization if dim == 2: from meshmode.mesh.generation import make_curve_mesh, ellipse mesh = make_curve_mesh(lambda t: radius * ellipse(1.0, t), np.linspace(0.0, 1.0, resolution + 1), order) elif dim == 3: from meshmode.mesh.generation import generate_icosphere mesh = generate_icosphere(radius, order=4 * order, uniform_refinement_rounds=resolution) else: raise ValueError("unsupported dimension") discr_tag_to_group_factory = {} if product_tag == "none": product_tag = None else: product_tag = dof_desc.DISCR_TAG_QUAD from meshmode.discretization.poly_element import \ PolynomialWarpAndBlendGroupFactory, \ QuadratureSimplexGroupFactory discr_tag_to_group_factory[dof_desc.DISCR_TAG_BASE] = \ PolynomialWarpAndBlendGroupFactory(order) if product_tag: discr_tag_to_group_factory[product_tag] = \ QuadratureSimplexGroupFactory(order=4*order) from grudge import DiscretizationCollection discr = DiscretizationCollection( actx, mesh, discr_tag_to_group_factory=discr_tag_to_group_factory) volume_discr = discr.discr_from_dd(dof_desc.DD_VOLUME) logger.info("ndofs: %d", volume_discr.ndofs) logger.info("nelements: %d", volume_discr.mesh.nelements) # }}} # {{{ symbolic operators def f_initial_condition(x): return x[0] from grudge.models.advection import SurfaceAdvectionOperator op = SurfaceAdvectionOperator(c, flux_type=flux_type, quad_tag=product_tag) bound_op = bind(discr, op.sym_operator()) u0 = bind(discr, f_initial_condition(sym_x))(actx, t=0) def rhs(t, u): return bound_op(actx, t=t, u=u) # check velocity is tangential sym_normal = sym.surface_normal(dim, dim=dim - 1, dd=dof_desc.DD_VOLUME).as_vector() error = bind(discr, sym.norm(2, c.dot(sym_normal)))(actx) logger.info("u_dot_n: %.5e", error) # }}} # {{{ time stepping # compute time step h_min = bind(discr, sym.h_max_from_volume(discr.ambient_dim, dim=discr.dim))(actx) dt = dt_factor * h_min / order**2 nsteps = int(final_time // dt) + 1 dt = final_time / nsteps + 1.0e-15 logger.info("dt: %.5e", dt) logger.info("nsteps: %d", nsteps) from grudge.shortcuts import set_up_rk4 dt_stepper = set_up_rk4("u", dt, u0, rhs) plot = Plotter(actx, discr, order, visualize=visualize) norm = bind(discr, sym.norm(2, sym.var("u"))) norm_u = norm(actx, u=u0) step = 0 event = dt_stepper.StateComputed(0.0, 0, 0, u0) plot(event, "fld-surface-%04d" % 0) if visualize and dim == 3: from grudge.shortcuts import make_visualizer vis = make_visualizer(discr) vis.write_vtk_file("fld-surface-velocity.vtu", [("u", bind(discr, c)(actx)), ("n", bind(discr, sym_normal)(actx))], overwrite=True) df = dof_desc.DOFDesc(FACE_RESTR_INTERIOR) face_discr = discr.connection_from_dds(dof_desc.DD_VOLUME, df).to_discr face_normal = bind( discr, sym.normal(df, face_discr.ambient_dim, dim=face_discr.dim))(actx) from meshmode.discretization.visualization import make_visualizer vis = make_visualizer(actx, face_discr) vis.write_vtk_file("fld-surface-face-normals.vtu", [("n", face_normal)], overwrite=True) for event in dt_stepper.run(t_end=final_time, max_steps=nsteps + 1): if not isinstance(event, dt_stepper.StateComputed): continue step += 1 if step % 10 == 0: norm_u = norm(actx, u=event.state_component) plot(event, "fld-surface-%04d" % step) logger.info("[%04d] t = %.5f |u| = %.5e", step, event.t, norm_u) plot(event, "fld-surface-%04d" % step)
def main(write_output=True, order=4): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) dim = 2 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, -0.5), b=(0.5, 0.5), n=(20, 20), order=order) dt_factor = 4 h = 1 / 20 discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order) c = np.array([0.1, 0.1]) norm_c = la.norm(c) flux_type = "central" def f(x): return sym.sin(3 * x) def u_analytic(x): return f(-np.dot(c, x) / norm_c + sym.var("t", sym.DD_SCALAR) * norm_c) from grudge.models.advection import WeakAdvectionOperator discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order) op = WeakAdvectionOperator(c, inflow_u=u_analytic(sym.nodes( dim, sym.BTAG_ALL)), flux_type=flux_type) bound_op = bind(discr, op.sym_operator()) u = bind(discr, u_analytic(sym.nodes(dim)))(queue, t=0) def rhs(t, u): return bound_op(queue, t=t, u=u) final_time = 0.3 dt = dt_factor * h / order**2 nsteps = (final_time // dt) + 1 dt = final_time / nsteps + 1e-15 from grudge.shortcuts import set_up_rk4 dt_stepper = set_up_rk4("u", dt, u, rhs) from grudge.shortcuts import make_visualizer vis = make_visualizer(discr, vis_order=order) step = 0 for event in dt_stepper.run(t_end=final_time): if isinstance(event, dt_stepper.StateComputed): step += 1 #print(step, event.t, norm(queue, u=event.state_component[0])) vis.write_vtk_file("fld-weak-%04d.vtu" % step, [("u", event.state_component)])