Exemplo n.º 1
0
    def get_objects_in_collision_with_pick_and_place(self, parent_obj_pick,
                                                     place):
        saver = utils.CustomStateSaver(self.problem_env.env)
        place_collisions \
            = self.place_swept_volume.get_objects_in_collision_with_given_op_inst(place)

        # place the object at the desired place
        associated_pick = self.place_swept_volume.pick_used[place]
        associated_pick.execute()
        place.execute()
        # utils.two_arm_pick_object(associated_pick.discrete_parameters['object'], associated_pick.continuous_parameters)
        # utils.two_arm_place_object(place.continuous_parameters)

        # now check the collision to the parent object
        if parent_obj_pick is not None:
            # how could I collide with obj to pick here?
            pick_collisions \
                = self.pick_swept_volume.get_objects_in_collision_with_given_op_inst(parent_obj_pick)
        else:
            pick_collisions = []
        saver.Restore()

        objs_in_collision = place_collisions + [
            o for o in pick_collisions if not (o in place_collisions)
        ]
        return objs_in_collision
    def __init__(self, problem_idx):
        Mover.__init__(self, problem_idx)
        self.operator_names = ['one_arm_pick', 'one_arm_place']
        set_robot_config([4.19855789, 2.3236321, 5.2933337], self.robot)
        set_obj_xytheta([3.35744004, 2.19644156, 3.52741118], self.objects[1])
        self.boxes = self.objects
        self.objects = self.problem_config['shelf_objects']
        self.objects = [k for v in self.objects.values() for k in v]
        self.objects[0], self.objects[1] = self.objects[1], self.objects[0]

        self.target_box = self.env.GetKinBody('rectangular_packing_box1')
        utils.randomly_place_region(self.target_box, self.regions['home_region'])
        self.regions['rectangular_packing_box1_region'] = self.compute_box_region(self.target_box)
        self.shelf_regions = self.problem_config['shelf_regions']
        self.target_box_region = self.regions['rectangular_packing_box1_region']
        self.regions.update(self.shelf_regions)
        self.entity_names = [obj.GetName() for obj in self.objects] + ['rectangular_packing_box1_region',
                                                                       'center_shelf_region']
        self.name = 'one_arm_mover'
        self.init_saver = utils.CustomStateSaver(self.env)

        self.object_names = self.entity_names

        # fix incorrectly named regions
        self.regions = {
            region.name: region
            for region in self.regions.values()
        }
Exemplo n.º 3
0
    def create_node(self,
                    parent_action,
                    depth,
                    parent_node,
                    is_parent_action_infeasible,
                    is_init_node=False):
        state_saver = utils.CustomStateSaver(self.problem_env.env)
        is_operator_skeleton_node = (parent_node is None) or (
            not parent_node.is_operator_skeleton_node)
        state = self.get_current_state(parent_node, parent_action,
                                       is_parent_action_infeasible)

        if is_operator_skeleton_node:
            applicable_op_skeletons = self.problem_env.get_applicable_ops(
                parent_action)
            node = DiscreteTreeNodeWithPriorQ(state, self.ucb_parameter, depth,
                                              state_saver,
                                              is_operator_skeleton_node,
                                              is_init_node,
                                              applicable_op_skeletons,
                                              self.learned_q)
        else:
            node = ContinuousTreeNode(state, parent_action, self.ucb_parameter,
                                      depth, state_saver,
                                      is_operator_skeleton_node, is_init_node)
            node.sampling_agent = self.create_sampling_agent(node)

        node.parent = parent_node
        node.parent_action = parent_action
        return node
Exemplo n.º 4
0
    def __init__(self,
                 problem_env,
                 goal_entities,
                 parent_state=None,
                 parent_action=None,
                 planner='greedy'):
        PaPState.__init__(self,
                          problem_env,
                          goal_entities,
                          parent_state=None,
                          parent_action=None,
                          paps_used_in_data=None)

        self.parent_state = parent_state
        self.parent_ternary_predicates = {}
        self.parent_binary_predicates = {}
        self.goal_entities = goal_entities
        if parent_state is not None:
            moved_obj_type = type(
                parent_action.discrete_parameters['two_arm_place_object'])
            if moved_obj_type == str or moved_obj_type == unicode:
                moved_obj = parent_action.discrete_parameters[
                    'two_arm_place_object']
            else:
                moved_obj = parent_action.discrete_parameters[
                    'two_arm_place_object'].GetName()
            self.initialize_parent_predicates(moved_obj, parent_state,
                                              parent_action)
        else:
            moved_obj = None
        problem_env.enable_objects_in_region('entire_region')
        self.reachable_entities = []
        self.reachable_regions_while_holding = []
        self.pick_used = {
            object.GetName(): self.get_pick_poses(object, moved_obj,
                                                  parent_state)
            for object in problem_env.objects
        }
        if self.use_prm:
            if parent_state is None:
                self.collides, self.current_collides = self.update_collisions_at_prm_vertices(
                    None)
            else:
                self.collides, self.current_collides = self.update_collisions_at_prm_vertices(
                    parent_state.collides)

            self.holding_collides = None
            self.current_holding_collides = None

            # hold an object and check collisions
            if planner == 'mcts':
                self.holding_collides = None
                self.current_holding_collides = None
                saver = utils.CustomStateSaver(self.problem_env.env)
                self.pick_used.values()[0].execute()
                if parent_state is None:
                    self.holding_collides, self.current_holding_collides = self.update_collisions_at_prm_vertices(
                        None)
                else:
                    self.holding_collides, self.current_holding_collides \
                        = self.update_collisions_at_prm_vertices(parent_state.holding_collides)
                # Check if, while holding, this config is in collision: np.array([ 1.13287863, -4.72498756, -2.53161845])
                # target_q = np.array([1.13287863, -4.72498756, -2.53161845])
                saver.Restore()
        else:
            self.holding_collides = None
            self.holding_current_collides = None
        self.key_config_obstacles = self.make_key_config_obstacles_from_prm_collisions(
        )
        self.place_used = {}
        self.cached_pick_paths = {}
        self.cached_place_paths = {}
        self.set_cached_pick_paths(parent_state, moved_obj)
        self.set_cached_place_paths(parent_state, moved_obj)

        # predicates
        self.pick_in_way = PickInWay(self.problem_env,
                                     collides=self.current_collides,
                                     pick_poses=self.pick_used,
                                     use_shortest_path=True)
        self.place_in_way = PlaceInWay(self.problem_env,
                                       collides=self.current_collides,
                                       pick_poses=self.pick_used,
                                       use_shortest_path=True)
        self.in_region = InRegion(self.problem_env)
        self.is_holding_goal_entity = IsHoldingGoalEntity(
            self.problem_env, goal_entities)

        self.nodes = self.get_nodes()
        self.binary_edges = self.get_binary_edges()
        self.ternary_edges = self.get_ternary_edges()
    def search(self,
               object_to_move,
               parent_swept_volumes,
               obstacles_to_remove,
               objects_moved_before,
               plan,
               parent_pick=None,
               parent_obj=None,
               ultimate_plan_stime=None,
               timelimit=None):
        print time.time() - ultimate_plan_stime
        if time.time() - ultimate_plan_stime > timelimit:
            return False, 'NoSolution'
        swept_volumes = PickAndPlaceSweptVolume(self.problem_env,
                                                parent_swept_volumes)
        objects_moved_before = [o for o in objects_moved_before]
        plan = [p for p in plan]

        self.problem_env.set_exception_objs_when_disabling_objects_in_region(
            objects_moved_before)
        self.number_of_nodes += 1

        object_to_move = self.problem_env.env.GetKinBody(
            object_to_move) if isinstance(object_to_move,
                                          unicode) else object_to_move
        target_region = self.get_target_region_for_obj(object_to_move)

        # Debugging purpose
        color_before = get_color(object_to_move)
        set_color(object_to_move, [1, 0, 0])
        # End of debugging purpose

        # PlanGrasp
        saver = utils.CustomStateSaver(self.problem_env.env)
        stime = time.time()
        # this contains mc-path from initial config to the target obj
        _, _, pick_operator_instance_for_curr_object = self.get_pick_from_initial_config(
            object_to_move)
        #print 'Time pick', time.time() - stime

        if pick_operator_instance_for_curr_object is None:
            saver.Restore()
            self.reset()
            #print "Infeasible branch"
            return False, 'NoSolution'
        utils.two_arm_pick_object(
            object_to_move,
            pick_operator_instance_for_curr_object.continuous_parameters)

        # FindPlacements
        _, _, place_operator_instance = self.plan_place(
            target_region, swept_volumes)
        if place_operator_instance is None:
            saver.Restore()
            self.reset()
            print "Infeasible branch"
            return False, 'NoSolution'

        # O_{FUC} update
        objects_moved_before.append(object_to_move)
        self.problem_env.set_exception_objs_when_disabling_objects_in_region(
            objects_moved_before)

        if parent_pick is not None:
            utils.two_arm_place_object(
                place_operator_instance.continuous_parameters)
            _, _, pick_operator_instance_for_parent_object = self.plan_pick_motion_for(
                parent_obj, parent_pick)  # PlanNavigation
            if pick_operator_instance_for_parent_object is None:
                print "Infeasible branch"
                saver.Restore()
                return False, 'NoSolution'

            swept_volumes.add_pick_swept_volume(
                pick_operator_instance_for_parent_object)
            swept_volumes.add_place_swept_volume(
                place_operator_instance,
                pick_operator_instance_for_curr_object)

            plan.insert(0, pick_operator_instance_for_parent_object)
            plan.insert(0, place_operator_instance)
        else:
            pick_operator_instance_for_parent_object = None
            swept_volumes.add_place_swept_volume(
                place_operator_instance,
                pick_operator_instance_for_curr_object)
            plan.insert(0, place_operator_instance)
        saver.Restore()

        # O_{PAST}
        self.problem_env.enable_objects_in_region('entire_region')
        objs_in_collision_for_pap \
            = swept_volumes.get_objects_in_collision_with_pick_and_place(pick_operator_instance_for_parent_object,
                                                                         place_operator_instance)

        obstacles_to_remove = objs_in_collision_for_pap + obstacles_to_remove
        # Note:
        #  For this code to be precisely HPN, I need to keep all objects that have not been moved so far in obstacles
        #  to remove. I am making the assumption that, because we are in a continuous domain, we always keep the
        #  tried-actions in the queue, and because the swept-volume heuristic tells us to move the ones in collision
        #  first, we will always try to move the first-colliding object.

        if len(obstacles_to_remove) == 0:
            objs_in_collision_for_picking_curr_obj \
                = swept_volumes.pick_swept_volume.get_objects_in_collision_with_given_op_inst(
                pick_operator_instance_for_curr_object)
            if len(objs_in_collision_for_picking_curr_obj) == 0:
                plan.insert(0, pick_operator_instance_for_curr_object)
                return plan, 'HasSolution'
            else:
                obstacles_to_remove += objs_in_collision_for_picking_curr_obj

        # enumerate through all object orderings
        print "Obstacles to remove", obstacles_to_remove
        """
        cbefore = []
        for oidx, o in enumerate(obstacles_to_remove):
            cbefore.append(get_color(o))
            set_color(o, [0, 0, float(oidx) / len(obstacles_to_remove)])
        [set_color(o, c) for c, o in zip(cbefore, obstacles_to_remove)]
        """

        for new_obj_to_move in obstacles_to_remove:
            set_color(object_to_move, color_before)
            tmp_obstacles_to_remove = set(obstacles_to_remove).difference(
                set([new_obj_to_move]))
            tmp_obstacles_to_remove = list(tmp_obstacles_to_remove)
            #print "tmp obstacles to remove:", tmp_obstacles_to_remove
            branch_plan, status = self.search(
                new_obj_to_move,
                swept_volumes,
                tmp_obstacles_to_remove,
                objects_moved_before,
                plan,
                pick_operator_instance_for_curr_object,
                parent_obj=object_to_move,
                ultimate_plan_stime=ultimate_plan_stime,
                timelimit=timelimit)
            is_branch_success = status == 'HasSolution'
            if is_branch_success:
                return branch_plan, status

        # It should never come down here, as long as the number of nodes have not exceeded the limit
        # but to which level do I back track? To the root node. If this is a root node and
        # the number of nodes have not reached the maximum, keep searching.
        return False, 'NoSolution'