Exemplo n.º 1
0
    def __init__(self, low, high, shape=None, dtype=np.float32):
        assert dtype is not None, 'dtype must be explicitly provided. '
        self.dtype = np.dtype(dtype)

        if shape is None:
            assert low.shape == high.shape, 'box dimension mismatch. '
            self.shape = low.shape
            self.low = low
            self.high = high
        else:
            assert np.isscalar(low) and np.isscalar(high), 'box requires scalar bounds. '
            self.shape = tuple(shape)
            self.low = np.full(self.shape, low)
            self.high = np.full(self.shape, high)

        def _get_precision(dtype):
            if np.issubdtype(dtype, np.floating):
                return np.finfo(dtype).precision
            else:
                return np.inf
        low_precision = _get_precision(self.low.dtype)
        high_precision = _get_precision(self.high.dtype)
        dtype_precision = _get_precision(self.dtype)
        if min(low_precision, high_precision) > dtype_precision:
            logger.warn("Box bound precision lowered by casting to {}".format(self.dtype))
        self.low = self.low.astype(self.dtype)
        self.high = self.high.astype(self.dtype)

        # Boolean arrays which indicate the interval type for each coordinate
        self.bounded_below = -np.inf < self.low
        self.bounded_above = np.inf > self.high

        super(Box, self).__init__(self.shape, self.dtype)
    def _encode_image_frame(self, frame):
        if not self.encoder:
            self.encoder = ImageEncoder(self.path, frame.shape, self.frames_per_sec)
            self.metadata['encoder_version'] = self.encoder.version_info

        try:
            self.encoder.capture_frame(frame)
        except error.InvalidFrame as e:
            logger.warn('Tried to pass invalid video frame, marking as broken: %s', e)
            self.broken = True
        else:
            self.empty = False
    def close_extras(self, timeout=None, terminate=False):
        """
        Parameters
        ----------
        timeout : int or float, optional
            Number of seconds before the call to `close` times out. If `None`,
            the call to `close` never times out. If the call to `close` times
            out, then all processes are terminated.

        terminate : bool (default: `False`)
            If `True`, then the `close` operation is forced and all processes
            are terminated.
        """
        timeout = 0 if terminate else timeout
        try:
            if self._state != AsyncState.DEFAULT:
                logger.warn('Calling `close` while waiting for a pending '
                            'call to `{0}` to complete.'.format(
                                self._state.value))
                function = getattr(self, '{0}_wait'.format(self._state.value))
                function(timeout)
        except mp.TimeoutError:
            terminate = True

        if terminate:
            for process in self.processes:
                if process.is_alive():
                    process.terminate()
        else:
            for pipe in self.parent_pipes:
                if (pipe is not None) and (not pipe.closed):
                    pipe.send(('close', None))
            for pipe in self.parent_pipes:
                if (pipe is not None) and (not pipe.closed):
                    pipe.recv()

        for pipe in self.parent_pipes:
            if pipe is not None:
                pipe.close()
        for process in self.processes:
            process.join()
    def capture_frame(self):
        """Render the given `env` and add the resulting frame to the video."""
        if not self.functional: return
        logger.debug('Capturing video frame: path=%s', self.path)

        render_mode = 'ansi' if self.ansi_mode else 'rgb_array'
        frame = self.env.render(mode=render_mode)

        if frame is None:
            if self._async:
                return
            else:
                # Indicates a bug in the environment: don't want to raise
                # an error here.
                logger.warn('Env returned None on render(). Disabling further rendering for video recorder by marking as disabled: path=%s metadata_path=%s', self.path, self.metadata_path)
                self.broken = True
        else:
            self.last_frame = frame
            if self.ansi_mode:
                self._encode_ansi_frame(frame)
            else:
                self._encode_image_frame(frame)
Exemplo n.º 5
0
def patch_deprecated_methods(env):
    """
    Methods renamed from '_method' to 'method', render() no longer has 'close' parameter, close is a separate method.
    For backward compatibility, this makes it possible to work with unmodified environments.
    """
    global warn_once
    if warn_once:
        logger.warn(
            "Environment '%s' has deprecated methods '_step' and '_reset' rather than 'step' and 'reset'. Compatibility code invoked. Set _gym_disable_underscore_compat = True to disable this behavior."
            % str(type(env)))
        warn_once = False
    env.reset = env._reset
    env.step = env._step
    env.seed = env._seed

    def render(mode):
        return env._render(mode, close=False)

    def close():
        env._render("human", close=True)

    env.render = render
    env.close = close
    def __init__(self,
                 env_fns,
                 observation_space=None,
                 action_space=None,
                 shared_memory=True,
                 copy=True,
                 context=None,
                 daemon=True,
                 worker=None):
        try:
            ctx = mp.get_context(context)
        except AttributeError:
            logger.warn('Context switching for `multiprocessing` is not '
                        'available in Python 2. Using the default context.')
            ctx = mp
        self.env_fns = env_fns
        self.shared_memory = shared_memory
        self.copy = copy

        if (observation_space is None) or (action_space is None):
            dummy_env = env_fns[0]()
            observation_space = observation_space or dummy_env.observation_space
            action_space = action_space or dummy_env.action_space
            dummy_env.close()
            del dummy_env
        super(AsyncVectorEnv,
              self).__init__(num_envs=len(env_fns),
                             observation_space=observation_space,
                             action_space=action_space)

        if self.shared_memory:
            _obs_buffer = create_shared_memory(self.single_observation_space,
                                               n=self.num_envs,
                                               ctx=ctx)
            self.observations = read_from_shared_memory(
                _obs_buffer, self.single_observation_space, n=self.num_envs)
        else:
            _obs_buffer = None
            self.observations = create_empty_array(
                self.single_observation_space, n=self.num_envs, fn=np.zeros)

        self.parent_pipes, self.processes = [], []
        self.error_queue = ctx.Queue()
        target = _worker_shared_memory if self.shared_memory else _worker
        target = worker or target
        with clear_mpi_env_vars():
            for idx, env_fn in enumerate(self.env_fns):
                parent_pipe, child_pipe = ctx.Pipe()
                process = ctx.Process(
                    target=target,
                    name='Worker<{0}>-{1}'.format(type(self).__name__, idx),
                    args=(idx, CloudpickleWrapper(env_fn), child_pipe,
                          parent_pipe, _obs_buffer, self.error_queue))

                self.parent_pipes.append(parent_pipe)
                self.processes.append(process)

                process.daemon = daemon
                process.start()
                child_pipe.close()

        self._state = AsyncState.DEFAULT
        self._check_observation_spaces()
Exemplo n.º 7
0
import gym_open_ai
import pygame
import matplotlib
import argparse
from gym_open_ai import logger
try:
    matplotlib.use('TkAgg')
    import matplotlib.pyplot as plt
except ImportError as e:
    logger.warn(
        'failed to set matplotlib backend, plotting will not work: %s' %
        str(e))
    plt = None

from collections import deque
from pygame.locals import VIDEORESIZE


def display_arr(screen, arr, video_size, transpose):
    arr_min, arr_max = arr.min(), arr.max()
    arr = 255.0 * (arr - arr_min) / (arr_max - arr_min)
    pyg_img = pygame.surfarray.make_surface(
        arr.swapaxes(0, 1) if transpose else arr)
    pyg_img = pygame.transform.scale(pyg_img, video_size)
    screen.blit(pyg_img, (0, 0))


def play(env,
         transpose=True,
         fps=30,
         zoom=None,
Exemplo n.º 8
0
    def _start(self,
               directory,
               video_callable=None,
               force=False,
               resume=False,
               write_upon_reset=False,
               uid=None,
               mode=None):
        """Start monitoring.

        Args:
            directory (str): A per-training run directory where to record stats.
            video_callable (Optional[function, False]): function that takes in the index of the episode and outputs a boolean, indicating whether we should record a video on this episode. The default (for video_callable is None) is to take perfect cubes, capped at 1000. False disables video recording.
            force (bool): Clear out existing training data from this directory (by deleting every file prefixed with "openaigym.").
            resume (bool): Retain the training data already in this directory, which will be merged with our new data
            write_upon_reset (bool): Write the manifest file on each reset. (This is currently a JSON file, so writing it is somewhat expensive.)
            uid (Optional[str]): A unique id used as part of the suffix for the file. By default, uses os.getpid().
            mode (['evaluation', 'training']): Whether this is an evaluation or training episode.
        """
        if self.env.spec is None:
            logger.warn(
                "Trying to monitor an environment which has no 'spec' set. This usually means you did not create it via 'gym_open_ai.make', and is recommended only for advanced users."
            )
            env_id = '(unknown)'
        else:
            env_id = self.env.spec.id

        if not os.path.exists(directory):
            logger.info('Creating monitor directory %s', directory)
            if six.PY3:
                os.makedirs(directory, exist_ok=True)
            else:
                os.makedirs(directory)

        if video_callable is None:
            video_callable = capped_cubic_video_schedule
        elif video_callable == False:
            video_callable = disable_videos
        elif not callable(video_callable):
            raise error.Error(
                'You must provide a function, None, or False for video_callable, not {}: {}'
                .format(type(video_callable), video_callable))
        self.video_callable = video_callable

        # Check on whether we need to clear anything
        if force:
            clear_monitor_files(directory)
        elif not resume:
            training_manifests = detect_training_manifests(directory)
            if len(training_manifests) > 0:
                raise error.Error(
                    '''Trying to write to monitor directory {} with existing monitor files: {}.

 You should use a unique directory for each training run, or use 'force=True' to automatically clear previous monitor files.'''
                    .format(directory, ', '.join(training_manifests[:5])))

        self._monitor_id = monitor_closer.register(self)

        self.enabled = True
        self.directory = os.path.abspath(directory)
        # We use the 'openai-gym_open_ai' prefix to determine if a file is
        # ours
        self.file_prefix = FILE_PREFIX
        self.file_infix = '{}.{}'.format(self._monitor_id,
                                         uid if uid else os.getpid())

        self.stats_recorder = stats_recorder.StatsRecorder(
            directory,
            '{}.episode_batch.{}'.format(self.file_prefix, self.file_infix),
            autoreset=self.env_semantics_autoreset,
            env_id=env_id)

        if not os.path.exists(directory): os.mkdir(directory)
        self.write_upon_reset = write_upon_reset

        if mode is not None:
            self._set_mode(mode)