Exemplo n.º 1
0
def test_run_environment(env_name):
    """
    Run the gym test using the specified environment
    :param env_name: Name of the Unity environment binary to launch
    """
    u_env = UnityEnvironment(env_name, worker_id=1, no_graphics=True)
    env = UnityToGymWrapper(u_env)

    try:
        # Examine environment parameters
        print(str(env))

        # Reset the environment
        initial_observations = env.reset()

        if len(env.observation_space.shape) == 1:
            # Examine the initial vector observation
            print("Agent observations look like: \n{}".format(
                initial_observations))

        for _episode in range(10):
            env.reset()
            done = False
            episode_rewards = 0
            while not done:
                actions = env.action_space.sample()
                obs, reward, done, _ = env.step(actions)
                episode_rewards += reward
            print("Total reward this episode: {}".format(episode_rewards))
    finally:
        env.close()
class UnityEnvWrapper(gym.Env):
    def __init__(self, env_config):
        self.worker_index = 0

        if 'SM_CHANNEL_TRAIN' in os.environ:
            env_name = os.environ['SM_CHANNEL_TRAIN'] +'/'+ env_config['env_name']
            os.chmod(env_name, 0o755)
            print("Changed environment binary into executable mode.")
            # Try connecting to the Unity3D game instance.
            while True:
                try:
                    channel = EnvironmentParametersChannel()
                    unity_env = UnityEnvironment(
                                    env_name, 
                                    no_graphics=True, 
                                    worker_id=self.worker_index, 
                                    side_channels=[channel], 
                                    additional_args=['-logFile', 'unity.log'])
                    channel.set_float_parameter("simulation_mode", 1.0)
                except UnityWorkerInUseException:
                    self.worker_index += 1
                else:
                    break
        else:
            env_name = env_config['env_name']
            while True:
                try:
                    unity_env = default_registry[env_name].make(
                        no_graphics=True,
                        worker_id=self.worker_index,
                        additional_args=['-logFile', 'unity.log'])
                except UnityWorkerInUseException:
                    self.worker_index += 1
                else:
                    break
            
        self.env = UnityToGymWrapper(unity_env) 
        self.action_space = self.env.action_space
        self.observation_space = self.env.observation_space

    def reset(self):
        return self.env.reset()

    def step(self, action):
        return self.env.step(action)

    def close(self):
        try:
            self.env.close()
        except Exception:
            pass
Exemplo n.º 3
0
def test_closing(env_name):
    """
    Run the gym test and closes the environment multiple times
    :param env_name: Name of the Unity environment binary to launch
    """

    try:
        env1 = UnityToGymWrapper(
            UnityEnvironment(env_name, worker_id=1, no_graphics=True))
        env1.close()
        env1 = UnityToGymWrapper(
            UnityEnvironment(env_name, worker_id=1, no_graphics=True))
        env2 = UnityToGymWrapper(
            UnityEnvironment(env_name, worker_id=2, no_graphics=True))
        env2.reset()
    finally:
        env1.close()
        env2.close()
Exemplo n.º 4
0
class FooCarEnv(gym.Env):
	_channel = EnvironmentParametersChannel()

	PathSpace = {
		'xyz': 0,
		'xy': 2,
		'yz': 2,
		'xz': 2
	}

	def __init__(self, no_graphics:bool=False, seed:int=1, **config):
		self._config = config
		worker_id = 0
		if 'worker_id' in config:
			worker_id = config['worker_id']
		self._unity_env = UnityEnvironment(
			file_name=UNITY_ENV_EXE_FILE,
			# file_name=None, # Unity Editor Mode (debug)
			no_graphics=no_graphics,
			seed=seed, 
			side_channels=[self._channel],
			worker_id=worker_id
		)
		for key, value in config.items():
			self._channel.set_float_parameter(key, float(value))
		
		self._gym_env = UnityToGymWrapper(self._unity_env)

	def step(self, action):
		obs, reward, done, info = self._gym_env.step(action)
		size = self.observation_size

		return obs[:size], reward, done, info

	def reset(self):
		obs = self._gym_env.reset()
		size = self.observation_size
		return obs[:size]

	def render(self, mode="rgb_array"):
		return self._gym_env.render(mode=mode)
	
	def seed(self, seed=None):
		self._gym_env.seed(seed=seed) # it will throw a warning

	def close(self):
		self._gym_env.close()

	@property
	def metadata(self):
		return self._gym_env.metadata

	@property
	def reward_range(self) -> Tuple[float, float]:
		return self._gym_env.reward_range

	@property
	def action_space(self):
		return self._gym_env.action_space

	@property
	def observation_space(self):
		config = self._config
		space = self.PathSpace

		path_space = config['path_space'] if 'path_space' in config else space['xz']
		r = config['radius_anchor_circle'] if 'radius_anchor_circle' in config else 8.0
		r_e = config['radius_epsilon_ratio'] if 'radius_epsilon_ratio' in config else 0.7
		h = config['max_anchor_height'] if 'max_anchor_height' in config else 1.0

		xyz_mode = (path_space == space['xyz'])
		bound = max(r * (1 + r_e), h if xyz_mode else 0)
		shape = (self.observation_size,)
		
		return gym.spaces.Box(-bound, +bound, dtype=np.float32, shape=shape)
		
	@property
	def observation_size(self):
		# Reference: readonly variable (Unity)FooCar/CarAgent.ObservationSize
		config = self._config
		space = self.PathSpace

		path_space = config['path_space'] if 'path_space' in config else space['xz']
		ticker_end = config['ticker_end'] if 'ticker_end' in config else 5
		ticker_start = config['ticker_start'] if 'ticker_start' in config else -3

		xyz_mode = (path_space == space['xyz'])
		basic_num = 6
		point_dim = 3 if xyz_mode else 2

		return basic_num + 2 * point_dim * (ticker_end - ticker_start + 1)
Exemplo n.º 5
0
state = torch.load('D:/RL_project/FInal Project/RLCar/Path_folder/46305_0.172707200050354.pth')
def get_action(state):
    if len(state) == 34:
        state = get_il_state(state)
    with torch.no_grad():
        state = torch.Tensor(state).view(1,-1).to(device)
        print("state.shape=",state.shape)
        action = model_req(state)
    return action.cpu().numpy()

def il_eval():
    state = env.reset()
    score = 0
    max_t = 10000
    for t in range(max_t):
        action = get_action(state)
        next_state, reward, done, _ = env.step(action)
        next_state = get_il_state(next_state)
        state = next_state
        score += reward
        if done:
            break 
        
#env = UnityToGymWrapper(UnityEnvironment(base_port=5004), 0)
env = UnityToGymWrapper(UnityEnvironment('D:/RL_project/FInal Project/RLCar/Build/RLCar.exe'), 0)

il_eval()

env.close()
Exemplo n.º 6
0
def objective(trial):
    # Domain setup
    # windows_path = "../crawler_single/UnityEnvironment"
    # build_path = windows_path
    linux_path = "../crawler_single/linux/dynamic_server/crawler_dynamic.x86_64"
    build_path = linux_path
    unity_env = UnityEnvironment(file_name=build_path,
                                 seed=1,
                                 side_channels=[],
                                 no_graphics=False)
    env = UnityToGymWrapper(unity_env=unity_env)

    training_episodes = 10000

    params = {}

    params["nr_output_features"] = env.action_space.shape[0]
    params["nr_input_features"] = env.observation_space.shape[0]
    params["env"] = env

    params["lr"] = 3e-4
    params["clip"] = 0.2
    params["hidden_units"] = 512
    params["update_episodes"] = 10
    params["minibatch_size"] = 32
    params["tau"] = 0.95
    params["std"] = 0.35

    params["update_episodes"] = trial.suggest_int(name='update_episodes',
                                                  low=5,
                                                  high=30,
                                                  step=5)
    params["ppo_epochs"] = trial.suggest_int(name='ppo_epochs',
                                             low=2,
                                             high=10,
                                             step=2)
    params["gamma"] = trial.suggest_float(name='gamma',
                                          low=0.98,
                                          high=0.99,
                                          log=True)
    params["beta"] = trial.suggest_float(name='beta',
                                         low=0.08,
                                         high=0.12,
                                         log=True)

    print(params)

    time_str = time.strftime("%y%m%d_%H")
    t = "{}_{}".format(worker_id, time_str)
    print(t)
    writer = SummaryWriter(log_dir='runs/alex/{}'.format(time_str),
                           filename_suffix=t)
    agent = a.PPOLearner(params, writer)

    returns = [
        episode(env, agent, params, writer, i)
        for i in range(training_episodes)
    ]

    torch.save(
        agent.ppo_net, "../Net_Crawler/Alex/PPONet_crawler{}_{}.pt".format(
            worker_id, time_str))
    mean_reward, std_reward = evaluate_model(agent.ppo_net,
                                             env,
                                             n_eval_episodes=10)
    print("{}, {}".format(mean_reward, std_reward))

    writer.close()
    env.close()
    return mean_reward
Exemplo n.º 7
0
class ActorUnity(Actor, RoadworkActorInterface):
    def __init__(self, ctx, actor_id):
        super(ActorUnity, self).__init__(ctx, actor_id)
        self.env = None # Placeholder
        self.actor_id = actor_id

    async def sim_call_method(self, data) -> object:
        method = data['method']
        args = data['args'] # Array of arguments - [] 
        kwargs = data['kwargs'] # Dict 

        return getattr(self.env, method)(*args, **kwargs)

    async def sim_get_state(self, data) -> object:
        key = data['key']
        has_value, val = await self._state_manager.try_get_state(key)
        return val

    async def sim_set_state(self, data) -> None:
        key = data['key']
        value = data['value']

        print(f'Setting Sim State for key {key}', flush=True)
        await self._state_manager.set_state(key, value)
        await self._state_manager.save_state()

    async def _on_activate(self) -> None:
        """An callback which will be called whenever actor is activated."""
        print(f'Activate {self.__class__.__name__} actor!', flush=True)

    async def _on_deactivate(self) -> None:
        """An callback which will be called whenever actor is deactivated."""
        print(f'Deactivate {self.__class__.__name__} actor!', flush=True)

    # see behavior_spec: https://github.com/Unity-Technologies/ml-agents/blob/release_4_docs/docs/Python-API.md#interacting-with-a-unity-environment
    # behavior_spec.action_type and behavior_spec.action_shape is what we need here
    async def sim_action_space(self) -> object:
        behavior_names = list(self.env.behavior_specs.keys()) # the behavior_names which map to a Behavior Spec with observation_shapes, action_type, action_shape
        behavior_idx = 0 # we currently support only 1 behavior spec! even though Unity can support multiple (@TODO)
        behavior_spec = self.env.behavior_specs[behavior_names[behavior_idx]]

        print(f"Action Type: {behavior_spec.action_type}", flush=True)
        print(f"Action Shape: {behavior_spec.action_shape}", flush=True)

        # We can use /src/Lib/python/roadwork/roadwork/json/unserializer.py as an example
        # Currently only ActionType.DISCRETE implemented, all ActionTypes can be found here: https://github.com/Unity-Technologies/ml-agents/blob/3901bad5b0b4e094e119af2f9d0d1304ad3f97ae/ml-agents-envs/mlagents_envs/base_env.py#L247
        # Note: Unity supports DISCRETE or CONTINUOUS action spaces @TODO: implement continuous in a specific env (which one??)
        if behavior_spec.is_action_discrete() == True:
            self.env.action_space = spaces.Discrete(behavior_spec.action_shape[0])

        print(f"Converted Action Space: {self.env.action_space}", flush=True)

        res = Serializer.serializeMeta(self.env.action_space)

        return res
        
    # see behavior_spec: https://github.com/Unity-Technologies/ml-agents/blob/release_4_docs/docs/Python-API.md#interacting-with-a-unity-environment
    # behavior_spec.observation_shapes is what we need, this is an array of tuples [ (), (), (), ... ] which represents variables? (@TODO: Confirm) (e.g. https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Examples.md#basic)
    # @TODO: This sounds as a MultiDiscrete environment (https://github.com/openai/gym/blob/master/gym/spaces/multi_discrete.py) so we map to this currently
    async def sim_observation_space(self) -> object:
        behavior_names = list(self.env.behavior_specs.keys()) # the behavior_names which map to a Behavior Spec with observation_shapes, action_type, action_shape
        behavior_idx = 0 # we currently support only 1 behavior spec! even though Unity can support multiple (@TODO)
        behavior_spec = self.env.behavior_specs[behavior_names[behavior_idx]]

        print(f"Observation Shapes: {behavior_spec.observation_shapes}", flush=True)
        observation_space_n_vec = []

        for i in range(0, len(behavior_spec.observation_shapes)):
          observation_space_n_vec.append(behavior_spec.observation_shapes[i][0]) # Get el 0 from the tuple, containing the size

        print(f"Converted Observation Space: {observation_space_n_vec}", flush=True)

        self.env.observation_space = spaces.MultiDiscrete(observation_space_n_vec)
        res = Serializer.serializeMeta(self.env.observation_space)

        return res

    async def sim_create(self, data) -> None:
        """An actor method to create a sim environment."""
        env_id = data['env_id']
        # seed = data['seed']

        print(f'Creating sim with value {env_id}', flush=True)
        print(f"Current dir: {os.getcwd()}", flush=True)
        try:
            print("[Server] Creating Unity Environment", flush=True)
            self.env = UnityEnvironment(f"{os.getcwd()}/src/Server/Unity/envs/{env_id}/{env_id}")

            print("[Server] Resetting environment already", flush=True)
            self.env.reset() # we need to reset first in Unity

            # self.unity_env = UnityEnvironment("./environments/GridWorld")
            # self.env = gym.make(env_id)

            # if seed:
            #     self.env.seed(seed)
        except gym.error.Error as e:
            print(e)
            raise Exception("Attempted to look up malformed environment ID '{}'".format(env_id))
        except Exception as e:
            print(e)
            raise Exception(e)
        except:
            print(sys.exc_info())
            traceback.print_tb(sys.exc_info()[2])
            raise

    async def sim_reset(self) -> object:
        observation = self.env.reset()

        # observation is a ndarray, we need to serialize this
        # therefore, change it to list type which is serializable
        if isinstance(observation, np.ndarray):
            observation = observation.tolist()

        return observation

    async def sim_render(self) -> None:
        self.env.render()

    async def sim_monitor_start(self, data) -> None:
        episodeInterval = 10 # Create a recording every X episodes

        if data['episode_interval']:
            episodeInterval = int(data['episode_interval'])

        v_c = lambda count: count % episodeInterval == 0 # Create every X episodes
        #self.env = gym.wrappers.Monitor(self.env, f'./output/{self.actor_id}', resume=False, force=True, video_callable=v_c)
        #self.env = UnityToGymWrapper(self.unity_environment)

        #defaults to BaseEnv
        self.env = UnityToGymWrapper()

    async def sim_monitor_stop(self) -> None:
        self.env.close()

    async def sim_action_sample(self) -> object:
        action = self.env.action_space.sample()
        return action

    async def sim_step(self, data) -> object:
        action = data['action']

        # Unity requires us to set the action with env.set_actions(behavior_name, action) where action is an array
        behavior_names = list(self.env.behavior_specs.keys()) # the behavior_names which map to a Behavior Spec with observation_shapes, action_type, action_shape
        behavior_idx = 0 # we currently support only 1 behavior spec! even though Unity can support multiple (@TODO)
        behavior_name = behavior_names[behavior_idx]
        self.env.set_actions(behavior_name, np.array([ [ action ] ])) # first dimension = number of agents, second dimension = action?
        self.env.step() # step does not return in Unity

        # Get the DecisionSteps and TerminalSteps
        # -> they both contain: 
        # DecisionSteps: Which agents need an action this step? (Note: contains action masks!)
        # E.g.: DecisionStep(obs=[array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)], reward=-0.01, agent_id=0, action_mask=[array([False, False, False])])
        # TerminalSteps: Which agents their episode ended?
        decision_steps, terminal_steps = self.env.get_steps(behavior_names[behavior_idx])


        # print(decision_steps, flush=True)
        # print(terminal_steps, flush=True)
        # print(decision_steps[0], flush=True)
        # print(terminal_steps[0], flush=True)

        # We support 1 decision step currently, get its observation
        # TODO
        decision_step_idx = 0
        decision_step = decision_steps[decision_step_idx]
        obs, reward, agent_id, action_mask = decision_step

        observation = obs[decision_step_idx]
        reward = float(reward)
        isDone = False
        info = {}

        # @TODO: terminal_steps should be implemented, it requires a reset

        # observation is a ndarray, we need to serialize this
        # therefore, change it to list type which is serializable
        if isinstance(observation, np.ndarray):
            observation = observation.tolist()

        return observation, reward, isDone, info
Exemplo n.º 8
0
def train(path):
    # env = gym.make("LunarLander-v2")
    # env = wrappers.Monitor(env, "tmp/lunar-lander", video_callable=lambda episode_id: True, force=True)
    unityenv = UnityEnvironment(path)
    env = UnityToGymWrapper(unity_env=unityenv, flatten_branched=True)
    ddqnAgent = DDQNAgent(alpha=0.0001,
                          gamma=0.99,
                          nActions=7,
                          epsilon=1.0,
                          batchSize=512,
                          inputShape=210)
    nEpisodes = 1000
    ddqnScores = []
    ddqnAverageScores = []
    epsilonHistory = []
    stepsPerEpisode = []
    for episode in range(nEpisodes):
        StartTime = time.time()
        done = False
        score = 0
        steps = 0
        observation = env.reset()
        while not done:
            action = ddqnAgent.chooseAction(observation)
            observationNew, reward, done, info = env.step(action)
            score += reward
            ddqnAgent.remember(state=observation,
                               stateNew=observationNew,
                               action=action,
                               reward=reward,
                               done=done)
            observation = observationNew
            ddqnAgent.learn()
            steps += 1
        epsilonHistory.append(ddqnAgent.epsilon)
        ddqnScores.append(score)
        averageScore = np.mean(ddqnScores)
        ddqnAverageScores.append(averageScore)
        stepsPerEpisode.append(steps)
        ElapsedTime = time.time() - StartTime
        ElapsedTime = ElapsedTime / 60
        print("Episode:", episode, "Score: %.2f" % score,
              "Average Score: %.2f" % averageScore, "Run Time:", ElapsedTime,
              "Minutes", "Epsilon:", ddqnAgent.epsilon, "Steps:", steps)
        if episode > 1 and episode % 9 == 0:
            ddqnAgent.saveModel()
    env.close()
    x = [i for i in range(nEpisodes)]
    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(10, 10))
    fig.suptitle("DDQN Hallway")
    ax1.plot(x, ddqnScores, "C1")
    ax1.set_title('Episodes vs Scores')
    ax1.set(xlabel='Episodes', ylabel='Scores')
    ax2.plot(x, ddqnAverageScores, "C2")
    ax2.set_title('Episodes vs Average Scores')
    ax2.set(xlabel='Episodes', ylabel='Average Scores')
    ax3.plot(x, epsilonHistory, "C3")
    ax3.set_title('Episodes vs Epsilon Decay')
    ax3.set(xlabel='Episodes', ylabel='Epsilon Decay')
    ax4.plot(x, stepsPerEpisode, "C4")
    ax4.set_title('Episodes vs Steps Per Epsisode')
    ax4.set(xlabel='Episodes', ylabel='Steps')
    plt.savefig('Hallway.png')