Exemplo n.º 1
0
    def _create_tmp_folder(self, logger):
        # Create a temp folder to store files used during multi processing experiment
        # This temp folder will be removed at the end of the process
        # Set the default value without context available (required to pass acceptance test
        tmp_folder = str(uuid.uuid4()) + "_prophet_folder/"
        # Make a real tmp folder when experiment is available
        if self.context and self.context.experiment_id:
            tmp_folder = self.context.experiment_tmp_dir + "/" + str(uuid.uuid4()) + "_prophet_folder/"

        # Now let's try to create that folder
        try:
            os.mkdir(tmp_folder)
        except PermissionError:
            # This not occur so log a warning
            loggerwarning(logger, "Prophet was denied temp folder creation rights")
            tmp_folder = temporary_files_path + "/" + str(uuid.uuid4()) + "_prophet_folder/"
            os.mkdir(tmp_folder)
        except FileExistsError:
            # We should never be here since temp dir name is expected to be unique
            loggerwarning(logger, "Prophet temp folder already exists")
            tmp_folder = self.context.experiment_tmp_dir + "/" + str(uuid.uuid4()) + "_prophet_folder/"
            os.mkdir(tmp_folder)
        except:
            # Revert to temporary file path
            tmp_folder = temporary_files_path + "/" + str(uuid.uuid4()) + "_prophet_folder/"
            os.mkdir(tmp_folder)

        loggerinfo(logger, "Prophet temp folder {}".format(tmp_folder))
        return tmp_folder
Exemplo n.º 2
0
    def _create_tmp_folder(self, logger):
        # Create a temp folder to store files
        # Set the default value without context available (required to pass acceptance test)
        tmp_folder = os.path.join(user_dir(),
                                  "%s_GAM_model_folder" % uuid.uuid4())
        # Make a real tmp folder when experiment is available
        if self.context and self.context.experiment_id:
            tmp_folder = os.path.join(self.context.experiment_tmp_dir,
                                      "%s_GAM_model_folder" % uuid.uuid4())

        # Now let's try to create that folder
        try:
            os.mkdir(tmp_folder)
        except PermissionError:
            # This not occur so log a warning
            loggerwarning(logger, "GAM was denied temp folder creation rights")
            tmp_folder = os.path.join(user_dir(),
                                      "%s_GAM_model_folder" % uuid.uuid4())
            os.mkdir(tmp_folder)
        except FileExistsError:
            # We should never be here since temp dir name is expected to be unique
            loggerwarning(logger, "GAM temp folder already exists")
            tmp_folder = os.path.join(self.context.experiment_tmp_dir,
                                      "%s_GAM_model_folder" % uuid.uuid4())
            os.mkdir(tmp_folder)
        except:
            # Revert to temporary file path
            tmp_folder = os.path.join(user_dir(),
                                      "%s_GAM_model_folder" % uuid.uuid4())
            os.mkdir(tmp_folder)

        loggerinfo(logger, "GAM temp folder {}".format(tmp_folder))
        return tmp_folder
 def _clean_tmp_folder(self, logger, tmp_folder):
     try:
         shutil.rmtree(tmp_folder)
         loggerinfo(logger, "Prophet cleaned up temporary file folder.")
     except:
         loggerwarning(
             logger, "Prophet could not delete the temporary file folder.")
Exemplo n.º 4
0
    def fit(self, X, y, sample_weight=None, eval_set=None, sample_weight_eval_set=None, **kwargs):
        # system thing, doesn't need to be set in default or mutate, just at runtime in fit, into self.params so can see
        self.params["n_jobs"] = self.params_base.get('n_jobs', max(1, physical_cores_count))
        params = self.params.copy()
        params = self.transcribe_params(params, train_shape=X.shape)
        loggerinfo(self.get_logger(**kwargs), "%s fit params: %s" % (self.display_name, dict(params)))
        loggerinfo(self.get_logger(**kwargs), "%s data: %s %s" % (self.display_name, X.shape, y.shape))

        X = dt.Frame(X)
        orig_cols = list(X.names)

        if self.num_classes >= 2:
            model = KNeighborsClassifier(**params)
            lb = LabelEncoder()
            lb.fit(self.labels)
            y = lb.transform(y)
        else:
            model = KNeighborsRegressor(**params)

        X = self.basic_impute(X)
        X = X.to_numpy()
        if self.params.get('standardize', False):  # self.params since params has it popped out
            standard_scaler = StandardScaler()
            X = standard_scaler.fit_transform(X)
        else:
            standard_scaler = None

        model.fit(X, y)

        importances = self.get_basic_importances(X, y)

        self.set_model_properties(model=(model, standard_scaler, self.min),
                                  features=orig_cols,
                                  importances=importances.tolist(),  # abs(model.coef_[0])
                                  iterations=0)
Exemplo n.º 5
0
    def fit(self, X: dt.Frame, y: np.array = None):
        """
        Fits ARIMA models (1 per time group) using historical target values contained in y
        :param X: Datatable frame containing the features
        :param y: numpy array containing the historical values of the target
        :return: self
        """
        # Import the ARIMA python module
        pm = importlib.import_module('pmdarima')

        # Create dictionary that will link models to groups
        self.models = {}

        # Convert to pandas
        X = X.to_pandas()
        # Keep the Time Group Columns
        XX = X[self.tgc].copy()
        # Add the target
        XX['y'] = np.array(y)

        self.mean_value = np.mean(y)
        self.ntrain = X.shape[0]

        # Get the logger if it exists
        logger = self._get_logger()

        # Group the input by TGC (Time group column) excluding the time column itself
        # What we want is being able to access the time series related to each group
        # So that we can predict future sales for each store/department independently
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        if len(tgc_wo_time) > 0:
            XX_grp = XX.groupby(tgc_wo_time)
        else:
            XX_grp = [([None], XX)]

        # Build 1 ARIMA model per time group columns
        nb_groups = len(XX_grp)
        for _i_g, (key, X) in enumerate(XX_grp):
            # Just say where we are in the fitting process
            if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                loggerinfo(
                    logger, "Auto ARIMA : %d%% of groups fitted" %
                    (100 * (_i_g + 1) // nb_groups))

            key = key if isinstance(key, list) else [key]
            grp_hash = '_'.join(map(str, key))
            # print("auto arima - fitting on data of shape: %s for group: %s" % (str(X.shape), grp_hash))
            order = np.argsort(X[self.time_column])
            try:
                model = pm.auto_arima(X['y'].values[order],
                                      error_action='ignore')
            except Exception as e:
                loggerinfo(logger, "Auto ARIMA warning: {}".format(e))
                model = None

            self.models[grp_hash] = model

        return self
    def transform(self, X: dt.Frame):
        """
        Uses fitted models (1 per time group) to predict the target
        If self.is_train exists, it means we are doing in-sample predictions
        if it does not then we Arima is used to predict the future
        :param X: Datatable Frame containing the features
        :return: ARIMA predictions
        """
        X = X.to_pandas()
        XX = X[self.tgc].copy()
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        if len(tgc_wo_time) > 0:
            XX_grp = XX.groupby(tgc_wo_time)
        else:
            XX_grp = [([None], XX)]

        # Get the logger if it exists
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir)

        nb_groups = len(XX_grp)
        preds = []
        for _i_g, (key, X) in enumerate(XX_grp):
            # Just say where we are in the fitting process
            if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                loggerinfo(
                    logger, "Auto ARIMA : %d%% of groups transformed" %
                    (100 * (_i_g + 1) // nb_groups))

            key = key if isinstance(key, list) else [key]
            grp_hash = '_'.join(map(str, key))
            # print("auto arima - transforming data of shape: %s for group: %s" % (str(X.shape), grp_hash))
            order = np.argsort(X[self.time_column])
            if grp_hash in self.models:
                model = self.models[grp_hash]
                if model is not None:
                    yhat = model.predict_in_sample() \
                        if hasattr(self, 'is_train') else model.predict(n_periods=X.shape[0])
                    yhat = yhat[order]
                    XX = pd.DataFrame(yhat, columns=['yhat'])
                else:
                    XX = pd.DataFrame(np.full((X.shape[0], 1), self.nan_value),
                                      columns=['yhat'])  # invalid model
            else:
                XX = pd.DataFrame(np.full((X.shape[0], 1), self.nan_value),
                                  columns=['yhat'])  # unseen groups
            XX.index = X.index
            preds.append(XX)
        XX = pd.concat(tuple(preds), axis=0).sort_index()

        return XX
Exemplo n.º 7
0
    def _get_n_jobs(self, logger, **kwargs):
        try:
            if config.fixed_num_folds == 0:
                n_jobs = max(1, int(int(max_threads() / min(config.num_folds, kwargs['max_workers']))))
            else:
                n_jobs = max(1, int(int(max_threads() / min(config.fixed_num_folds, config.num_folds, kwargs['max_workers']))))
        except KeyError:
            loggerinfo(logger, "Prophet No Max Worker in kwargs. Set n_jobs to 1")
            n_jobs = 1

        return n_jobs
    def fit(self, X: dt.Frame, y: np.array = None):
        """
        Fits ARIMA models (1 per time group) using historical target values contained in y
        :param X: Datatable frame containing the features
        :param y: numpy array containing the historical values of the target
        :return: self
        """
        # Import the ARIMA python module
        pm = importlib.import_module('pmdarima')
        # Init models
        self.models = {}
        # Convert to pandas
        X = X.to_pandas()
        XX = X[self.tgc].copy()
        XX['y'] = np.array(y)
        self.nan_value = np.mean(y)
        self.ntrain = X.shape[0]

        # Group the input by TGC (Time group column) excluding the time column itself
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        if len(tgc_wo_time) > 0:
            XX_grp = XX.groupby(tgc_wo_time)
        else:
            XX_grp = [([None], XX)]

        # Get the logger if it exists
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir)

        # Build 1 ARIMA model per time group columns
        nb_groups = len(XX_grp)
        for _i_g, (key, X) in enumerate(XX_grp):
            # Just say where we are in the fitting process
            if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                loggerinfo(
                    logger, "Auto ARIMA : %d%% of groups fitted" %
                    (100 * (_i_g + 1) // nb_groups))

            key = key if isinstance(key, list) else [key]
            grp_hash = '_'.join(map(str, key))
            # print("auto arima - fitting on data of shape: %s for group: %s" % (str(X.shape), grp_hash))
            order = np.argsort(X[self.time_column])
            try:
                model = pm.auto_arima(X['y'].values[order],
                                      error_action='ignore')
            except:
                model = None
            self.models[grp_hash] = model
        return self
    def _get_n_jobs(logger, **kwargs):
        if 'n_jobs_prophet' in config.recipe_dict:
            return min(config.recipe_dict['n_jobs_prophet'], max_threads())
        try:
            if config.fixed_num_folds <= 0:
                n_jobs = max(1, int(int(max_threads() / min(config.num_folds, kwargs['max_workers']))))
            else:
                n_jobs = max(1, int(
                    int(max_threads() / min(config.fixed_num_folds, config.num_folds, kwargs['max_workers']))))
        except KeyError:
            loggerinfo(logger, "Prophet No Max Worker in kwargs. Set n_jobs to 1")
            n_jobs = 1

        return n_jobs if n_jobs > 1 else 1
Exemplo n.º 10
0
def maybe_download(url, dest, logger=None):
    if not is_url(url):
        loggerinfo(logger, f"{url} is not a valid URL.")
        return

    dest_tmp = dest + ".tmp"
    if os.path.exists(dest):
        loggerinfo(logger, f"already downloaded {url} -> {dest}")
        return

    if os.path.exists(dest_tmp):
        loggerinfo(
            logger, f"Download has already started {url} -> {dest_tmp}. "
            f"Delete {dest_tmp} to download the file once more.")
        return

    loggerinfo(logger, f"Downloading {url} -> {dest}")
    url_data = requests.get(url, stream=True)
    if url_data.status_code != requests.codes.ok:
        msg = "Cannot get url %s, code: %s, reason: %s" % (
            str(url), str(url_data.status_code), str(url_data.reason))
        raise requests.exceptions.RequestException(msg)
    url_data.raw.decode_content = True
    if not os.path.isdir(os.path.dirname(dest)):
        os.makedirs(os.path.dirname(dest), exist_ok=True)
    with open(dest_tmp, 'wb') as f:
        shutil.copyfileobj(url_data.raw, f)

    atomic_move(dest_tmp, dest)
Exemplo n.º 11
0
    def fit(self,
            X,
            y,
            sample_weight=None,
            eval_set=None,
            sample_weight_eval_set=None,
            **kwargs):
        # if config.hard_asserts:
        #    from h2oaicore.utils import kwargs_has_stage, kwargs_missing_stage
        #    assert kwargs_has_stage(kwargs), kwargs_missing_stage(kwargs)

        # system thing, doesn't need to be set in default or mutate, just at runtime in fit, into self.params so can see
        self.params["n_jobs"] = self.params_base.get(
            'n_jobs', max(1, physical_cores_count))
        params = self.params.copy()
        params = self.transcribe_params(params)

        if self._force_final_n_estimators > 0 and kwargs.get(
                'IS_FINAL', False):
            self.params['n_estimators'] = params[
                'n_estimators'] = self._force_final_n_estimators

        loggerinfo(self.get_logger(**kwargs),
                   "%s fit params: %s" % (self.display_name, dict(params)))
        loggerinfo(self.get_logger(**kwargs),
                   "%s data: %s %s" % (self.display_name, X.shape, y.shape))

        orig_cols = list(X.names)
        if self.num_classes >= 2:
            lb = LabelEncoder()
            lb.fit(self.labels)
            y = lb.transform(y)
            model = ExtraTreesClassifier(**params)
        else:
            params.pop('class_weight', None)
            model = ExtraTreesRegressor(**params)

        X = self.basic_impute(X)
        X = X.to_numpy()

        model.fit(X, y, sample_weight=sample_weight)
        importances = np.array(model.feature_importances_)
        self.set_model_properties(model=(model, self.min),
                                  features=orig_cols,
                                  importances=importances.tolist(),
                                  iterations=params['n_estimators'])
Exemplo n.º 12
0
 def xnn_initialize(features, ridge_functions=3, arch=[20,12], learning_rate=0.01, bg_samples=100, beta1=0.9, beta2=0.999, dec=0.0, ams=True, bseed=None, is_categorical=False):
     
     #
     # Prepare model architecture
     #
     # Input to the network, our observation containing all the features
     input = keras.layers.Input(shape=(features,), name='main_input')
               
     # Record current column names
     loggerinfo(logger, "XNN LOG")
     loggerdata(logger, "Feature list:")
     loggerdata(logger, str(orig_cols))
     
     # Input to ridge function number i is the dot product of our original input vector times coefficients
     ridge_input = keras.layers.Dense(ridge_functions, name="projection_layer",
                                      activation='linear')(input)
     
     ridge_networks = []
     # Each subnetwork uses only 1 neuron from the projection layer as input so we need to split it
     ridge_inputs = SplitLayer(ridge_functions)(ridge_input)
     for i, ridge_input in enumerate(ridge_inputs):
         # Generate subnetwork i
         mlp = _mlp(ridge_input, i, arch)
         ridge_networks.append(mlp)
                 
     added = keras.layers.Concatenate(name='concatenate_1')(ridge_networks)
     
     # Add the correct output layer for the problem
     if is_categorical:
         out = keras.layers.Dense(1, activation='sigmoid', input_shape= (ridge_functions, ), name='main_output')(added)
     else:
         out = keras.layers.Dense(1, activation='linear', input_shape= (ridge_functions, ), name='main_output')(added)
         
     model = keras.models.Model(inputs=input, outputs=out)
               
     optimizer = keras.optimizers.Adam(lr=learning_rate, beta_1=beta1, beta_2=beta2, decay=dec, amsgrad=ams)
     
     # Use the correct loss for the problem
     if is_categorical:
         model.compile(loss={'main_output': 'binary_crossentropy'}, optimizer=optimizer)
     else:
         model.compile(loss={'main_output': 'mean_squared_error'}, optimizer=optimizer)
         
     return model
Exemplo n.º 13
0
    def transform(self, X: dt.Frame):
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir)

        X = dt.Frame(X)
        original_zip_column_name = X.names[0]
        X = X[:, dt.str64(dt.f[0])]
        X.names = ['zip_key']
        try:
            zip_list = dt.unique(X[~dt.isna(dt.f.zip_key),
                                   0]).to_list()[0] + ['79936']
            zip_features = [self.get_zipcode_features(x) for x in zip_list]
            X_g = dt.Frame({"zip_key": zip_list})
            X_g.cbind(dt.Frame(zip_features))
            X_g.key = 'zip_key'
            X_result = X[:, :, dt.join(X_g)]
            self._output_feature_names = [
                "{}:{}.{}".format(self.transformer_name,
                                  original_zip_column_name,
                                  self.replaceBannedCharacters(f))
                for f in list(X_result[:, 1:].names)
            ]
            self._feature_desc = [
                "Property '{}' of zipcode column ['{}'] from US zipcode database (recipe '{}')"
                .format(f, original_zip_column_name, self.transformer_name)
                for f in list(X_result[:, 1:].names)
            ]
            return X_result[:, 1:]
        except ValueError as ve:
            loggerinfo(
                logger, "Column '{}' is not a zipcode: {}".format(
                    original_zip_column_name, str(ve)))
            return self.get_zipcode_null_result(X, original_zip_column_name)
        except TypeError as te:
            loggerwarning(
                logger, "Column '{}' triggered TypeError: {}".format(
                    original_zip_column_name, str(te)))
            raise te
Exemplo n.º 14
0
    def scale_target_per_time_group(self, X, tgc_wo_time, logger):
        loggerinfo(logger, 'Start of group scaling')
        if len(tgc_wo_time) > 0:
            X_groups = X.groupby(tgc_wo_time)
        else:
            X_groups = [([None], X)]

        if self.scalers is None:
            self.scalers = {}

            scaled_ys = []
            for key, X_grp in X_groups:
                # Create dict key to store the min max scaler
                grp_hash = self.get_hash(key)
                # Scale target for current group
                self.scalers[grp_hash] = MinMaxScaler(feature_range=(1, 2))
                y_skl = self.scalers[grp_hash].fit_transform(X_grp[['y'
                                                                    ]].values)
                # Put back in a DataFrame to keep track of original index
                y_skl_df = pd.DataFrame(y_skl, columns=['y'])
                # (0, 'A') (1, 4) (100, 1) (100, 1)
                # print(grp_hash, X_grp.shape, y_skl.shape, y_skl_df.shape)

                y_skl_df.index = X_grp.index
                scaled_ys.append(y_skl_df)
        else:
            scaled_ys = []
            for key, X_grp in X_groups:
                # Create dict key to store the min max scaler
                grp_hash = self.get_hash(key)
                # Scale target for current group
                y_skl = self.scalers[grp_hash].transform(X_grp[['y']].values)
                # Put back in a DataFrame to keep track of original index
                y_skl_df = pd.DataFrame(y_skl, columns=['y'])
                # (0, 'A') (1, 4) (100, 1) (100, 1)
                # print(grp_hash, X_grp.shape, y_skl.shape, y_skl_df.shape)

                y_skl_df.index = X_grp.index
                scaled_ys.append(y_skl_df)
        loggerinfo(logger, 'End of group scaling')

        return pd.concat(tuple(scaled_ys), axis=0)
Exemplo n.º 15
0
    def mutate_params(self, accuracy=10, **kwargs):

        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir)
        loggerinfo(logger, "Mutate is called")

        # Default version is do no mutation
        # Otherwise, change self.params for this model
        holiday_choice = [None, "US", "UK", "DE", "FRA"]
        if accuracy >= 8:
            weekly_choice = [False, 'auto', 5, 7, 10, 15]
            yearly_choice = [False, 'auto', 5, 10, 15, 20, 30]
            monthly_choice = [False, 3, 5, 7, 10]
            quarterly_choice = [False, 3, 5, 7, 10]
        elif accuracy >= 5:
            weekly_choice = [False, 'auto', 10, 20]
            yearly_choice = [False, 'auto', 10, 20]
            monthly_choice = [False, 5]
            quarterly_choice = [False, 5]
        else:
            # No alternative seasonality, and no seasonality override for weekly and yearly
            weekly_choice = [False, 'auto']
            yearly_choice = [False, 'auto']
            monthly_choice = [False]
            quarterly_choice = [False]

        self.params["country_holidays"] = np.random.choice(holiday_choice)
        self.params["seasonality_mode"] = np.random.choice(
            ["additive", "multiplicative"])
        self.params["weekly_seasonality"] = np.random.choice(weekly_choice)
        self.params["monthly_seasonality"] = np.random.choice(monthly_choice)
        self.params["quarterly_seasonality"] = np.random.choice(
            quarterly_choice)
        self.params["yearly_seasonality"] = np.random.choice(yearly_choice)
        self.params["growth"] = np.random.choice(["linear", "logistic"])
Exemplo n.º 16
0
    def predict_in_batch(self, func, X, **kwargs):
        # sklearn not very good at handling frames, no internal batching for row-by-row operations,
        # yet predict can use much more memory than fit for same frame size
        assert X is not None
        assert isinstance(X, np.ndarray)
        nrows = X.shape[0]

        # see what shape would be
        idx = X.shape[0] - 1
        Xslice = X[idx:, :]
        preds_1 = func(Xslice)
        pred_cols = int(np.prod(preds_1.shape[1:]))

        # make empty numpy frame
        preds = np.ones((nrows, pred_cols)) * np.nan

        mem_used_per_row = 100E9 * (self.params['n_estimators'] *
                                    X.shape[1]) / (2000 * 100000 * 289)
        mem_max = 1E9

        batch_size = max(1, int(mem_max / mem_used_per_row))
        loggerinfo(
            self.get_logger(**kwargs),
            "%s predict using batch_size %d with %d batches" %
            (self.display_name, min(
                nrows, batch_size), max(1, ceil(nrows / batch_size))))
        start = 0
        while start < preds.shape[0]:
            end = min(start + batch_size, preds.shape[0])
            Xslice = X[start:end, :]

            p = func(Xslice)
            preds[start:end, :] = p.reshape(end - start, pred_cols)

            start = end
        return preds
Exemplo n.º 17
0
    def transform(self, X: dt.Frame, **kwargs):
        """
        Uses fitted models (1 per time group) to predict the target
        If self.is_train exists, it means we are doing in-sample predictions
        if it does not then we Arima is used to predict the future
        :param X: Datatable Frame containing the features
        :return: ARIMA predictions
        """
        # Get the logger if it exists
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir)

        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        X = X.to_pandas()
        XX = X[self.tgc].copy()
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        if len(tgc_wo_time) > 0:
            XX_grp = XX.groupby(tgc_wo_time)
        else:
            XX_grp = [([None], XX)]

        assert len(XX_grp) > 0
        num_tasks = len(XX_grp)

        def processor(out, res):
            out.append(res)

        pool_to_use = small_job_pool
        loggerinfo(logger,
                   "Arima will use {} workers for transform".format(n_jobs))
        pool = pool_to_use(logger=None,
                           processor=processor,
                           num_tasks=num_tasks,
                           max_workers=n_jobs)

        XX_paths = []
        model_paths = []
        nb_groups = len(XX_grp)
        for _i_g, (key, X) in enumerate(XX_grp):
            # Just print where we are in the process of fitting models
            if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                loggerinfo(
                    logger, "Auto ARIMA : %d%% of groups transformed" %
                    (100 * (_i_g + 1) // nb_groups))

            # Create time group key to store and retrieve fitted models
            key = key if isinstance(key, list) else [key]
            grp_hash = '_'.join(map(str, key))
            # Create file path to store data and pass it to the fitting pool
            X_path = os.path.join(tmp_folder,
                                  "autoarima_Xt" + str(uuid.uuid4()))

            # Commented for performance, uncomment for debug
            # print("ARIMA - transforming data of shape: %s for group: %s" % (str(X.shape), grp_hash))
            if grp_hash in self.models:
                model = self.models[grp_hash]
                model_path = os.path.join(
                    tmp_folder, "autoarima_modelt" + str(uuid.uuid4()))
                save_obj(model, model_path)
                save_obj(X, X_path)
                model_paths.append(model_path)

                args = (model_path, X_path, self.nan_value,
                        hasattr(self, 'is_train'), self.time_column,
                        self.pred_gap, tmp_folder)
                kwargs = {}
                pool.submit_tryget(
                    None,
                    MyParallelAutoArimaTransformer_transform_async,
                    args=args,
                    kwargs=kwargs,
                    out=XX_paths)
            else:
                # Don't go through pools
                XX = pd.DataFrame(np.full((X.shape[0], 1), self.nan_value),
                                  columns=['yhat'])  # unseen groups
                # Sync indices
                XX.index = X.index
                save_obj(XX, X_path)
                XX_paths.append(X_path)
        pool.finish()
        XX = pd.concat((load_obj(XX_path) for XX_path in XX_paths),
                       axis=0).sort_index()
        for p in XX_paths + model_paths:
            remove(p)

        self._clean_tmp_folder(logger, tmp_folder)

        return XX
Exemplo n.º 18
0
    def fit(self, X: dt.Frame, y: np.array = None, **kwargs):
        """
        Fits ARIMA models (1 per time group) using historical target values contained in y
        Model fitting is distributed over a pool of processes and uses file storage to share the data with workers
        :param X: Datatable frame containing the features
        :param y: numpy array containing the historical values of the target
        :return: self
        """
        # Get the logger if it exists
        logger = None
        tmp_folder = str(uuid.uuid4()) + "_arima_folder/"
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir)

        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        # Import the ARIMA python module
        pm = importlib.import_module('pmdarima')
        # Init models
        self.models = {}
        # Convert to pandas
        X = X.to_pandas()
        XX = X[self.tgc].copy()
        XX['y'] = np.array(y)
        self.nan_value = np.mean(y)
        self.ntrain = X.shape[0]

        # Group the input by TGC (Time group column) excluding the time column itself
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        if len(tgc_wo_time) > 0:
            XX_grp = XX.groupby(tgc_wo_time)
        else:
            XX_grp = [([None], XX)]

        # Prepare for multi processing
        num_tasks = len(XX_grp)

        def processor(out, res):
            out[res[0]] = res[1]

        pool_to_use = small_job_pool
        loggerinfo(
            logger,
            "Arima will use {} workers for parallel processing".format(n_jobs))
        pool = pool_to_use(logger=None,
                           processor=processor,
                           num_tasks=num_tasks,
                           max_workers=n_jobs)

        # Build 1 ARIMA model per time group columns
        nb_groups = len(XX_grp)
        for _i_g, (key, X) in enumerate(XX_grp):
            # Just say where we are in the fitting process
            if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                loggerinfo(
                    logger, "Auto ARIMA : %d%% of groups fitted" %
                    (100 * (_i_g + 1) // nb_groups))

            X_path = os.path.join(tmp_folder,
                                  "autoarima_X" + str(uuid.uuid4()))
            X = X.reset_index(drop=True)
            save_obj(X, X_path)
            key = key if isinstance(key, list) else [key]
            grp_hash = '_'.join(map(str, key))
            args = (X_path, grp_hash, self.time_column, tmp_folder)
            kwargs = {}
            pool.submit_tryget(None,
                               MyParallelAutoArimaTransformer_fit_async,
                               args=args,
                               kwargs=kwargs,
                               out=self.models)
        pool.finish()

        for k, v in self.models.items():
            self.models[k] = load_obj(v) if v is not None else None
            remove(v)

        self._clean_tmp_folder(logger, tmp_folder)

        return self
    def post_fit(self,
                 X,
                 y,
                 sample_weight=None,
                 eval_set=None,
                 sample_weight_eval_set=None,
                 **kwargs):
        # determine the largest number of trees (from 1 to N, where N is what DAI would normally do) that

        # abs(training_score - valid_score) <= abs-threshold IF abs-threshold > 0 ELSE true
        # AND
        # abs(training_score - valid_score) <= rel-threshold * abs(training_score) IF rel-threshold > 0 ELSE true

        # To enable, set at least one of the two configurations by pasting the following (with modifications) into
        # "Add to config.toml via toml string" under Expert Settings -> Experiment:
        # #####
        # recipe_dict="{'max_rel_score_delta_train_valid': 0.1, 'max_abs_score_delta_train_valid': 0.01}"
        # #####
        max_abs_deviation = config.recipe_dict.get(
            'max_abs_score_delta_train_valid', 0.0)  # set to > 0.0 to enable
        max_rel_deviation = config.recipe_dict.get(
            'max_rel_score_delta_train_valid', 0.0)  # set to > 0.0 to enable
        logger = self.get_logger(**kwargs)
        if max_abs_deviation > 0 or max_rel_deviation > 0:
            if not (self._predict_by_iteration and eval_set
                    and self.best_iterations):
                # LightGBM/XGB/CatBoost only
                return
            if "IS_SHIFT" in kwargs or "IS_LEAKAGE" in kwargs:
                # don't change leakage/shift detection logic
                return

            # goal is to find the new best_iterations, from 1...self.best_iterations
            max_n = max(self.best_iterations, 1)
            min_n = 1
            step_n = max(1, (max_n - min_n) //
                         20)  # try up to 20 steps from 1 to N trees
            iter_range = range(min_n, max_n, step_n)
            if len(iter_range) == 0:
                loggerinfo(
                    logger,
                    "No steps to take, so no score to optimize between train and valid data"
                )
                return

            mykwargs = {'output_margin': False, 'pred_contribs': False}
            self._predict_by_iteration = False  # allow override below
            self.model = self.get_model()
            valid_X = eval_set[0][0]
            valid_y = eval_set[0][1]
            valid_w = sample_weight_eval_set[
                0] if sample_weight_eval_set else None
            best_n = None
            best_train_score = None
            best_valid_score = None
            scorer = self.get_score_f(
            )  # use the same scorer as the experiment
            for n in iter_range:
                mykwargs[
                    self.
                    _predict_iteration_name] = n  # fix number of trees for predict
                train_pred = self.predict_model_wrapper(X, **mykwargs)
                score_train = scorer(actual=y,
                                     predicted=train_pred,
                                     sample_weight=sample_weight,
                                     labels=self.labels)
                valid_pred = self.predict_model_wrapper(valid_X, **mykwargs)
                score_valid = scorer(actual=valid_y,
                                     predicted=valid_pred,
                                     sample_weight=valid_w,
                                     labels=self.labels)
                first_time = n == min_n
                abs_ok = max_abs_deviation <= 0 or \
                         np.abs(score_train - score_valid) <= max_abs_deviation
                rel_ok = max_rel_deviation <= 0 or \
                         np.abs(score_train - score_valid) <= max_rel_deviation * np.abs(score_train)
                if first_time or abs_ok and rel_ok:
                    # use the largest number n that satisfies this condition
                    best_n = n
                    best_train_score = score_train
                    best_valid_score = score_valid
                else:
                    # optimization: assume monotonic cross-over
                    break

            loggerinfo(
                logger, "Changing optimal iterations from %d to %d to "
                "keep train/valid %s gap below abs=%f, rel=%f: train: %f, valid: %f"
                % (max_n, best_n, scorer.__self__.display_name,
                   max_abs_deviation, max_rel_deviation, best_train_score,
                   best_valid_score))
            self._predict_by_iteration = True  # restore default behavior
            self.best_iterations = best_n  # update best iters <- this is the only effect of this method
        else:
            loggerinfo(
                logger,
                "Train/valid gap control disabled - Must set at least one of the two settings to a value > 0.0, e.g.: "
                "recipe_dict=\"{'max_rel_score_delta_train_valid': 0.1, 'max_abs_score_delta_train_valid': 0.01}\""
            )
Exemplo n.º 20
0
    def transform(self, X: dt.Frame, **kwargs):
        """
        Uses fitted models (1 per time group) to predict the target
        :param X: Datatable Frame containing the features
        :return: FB Prophet predictions
        """
        # Get the logger if it exists
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir
            )

        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        # Reduce X to TGC
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        X = X[:, self.tgc].to_pandas()

        # Fill NaNs or None
        X = X.replace([None, np.nan], 0)

        # Change date feature name to match Prophet requirements
        X.rename(columns={self.time_column: "ds"}, inplace=True)

        # Predict y using unique dates
        X_time = X[['ds']].groupby('ds').first().reset_index()
        with suppress_stdout_stderr():
            y_avg = self.model.predict(X_time)[['ds', 'yhat']]

        # Prophet transforms the date column to datetime so we need to transfrom that to merge back
        X_time.sort_values('ds', inplace=True)
        X_time['yhat'] = y_avg['yhat']
        X_time.sort_index(inplace=True)

        # Merge back into original frame on 'ds'
        # pd.merge wipes the index ... so keep it to provide it again
        indices = X.index
        X = pd.merge(
            left=X,
            right=X_time[['ds', 'yhat']],
            on='ds',
            how='left'
        )
        X.index = indices

        # Go through groups and recover the scaled target for knowed groups
        if len(tgc_wo_time) > 0:
            X_groups = X.groupby(tgc_wo_time)
        else:
            X_groups = [([None], X)]

        inverted_ys = []
        for key, X_grp in X_groups:
            grp_hash = self.get_hash(key)

            # Scale target for current group
            if grp_hash in self.scalers.keys():
                inverted_y = self.scalers[grp_hash].inverse_transform(X_grp[['yhat']])
            else:
                inverted_y = self.general_scaler.inverse_transform(X_grp[['yhat']])

            # Put back in a DataFrame to keep track of original index
            inverted_df = pd.DataFrame(inverted_y, columns=['yhat'])
            inverted_df.index = X_grp.index
            inverted_ys.append(inverted_df)

        XX_general = pd.concat(tuple(inverted_ys), axis=0).sort_index()

        if self.top_groups:
            # Go though the groups and predict only top
            XX_paths = []
            model_paths = []

            def processor(out, res):
                out.append(res)
            num_tasks = len(self.top_groups)
            pool_to_use = small_job_pool
            pool = pool_to_use(logger=None, processor=processor, num_tasks=num_tasks, max_workers=n_jobs)

            nb_groups = len(X_groups)
            for _i_g, (key, X_grp) in enumerate(X_groups):

                # Just log where we are in the fitting process
                if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                    loggerinfo(logger, "FB Prophet : %d%% of groups predicted" % (100 * (_i_g + 1) // nb_groups))

                # Create dict key to store the min max scaler
                grp_hash = self.get_hash(key)
                X_path = os.path.join(tmp_folder, "fbprophet_Xt" + str(uuid.uuid4()))

                if grp_hash not in self.top_groups:
                    XX = pd.DataFrame(np.full((X_grp.shape[0], 1), np.nan), columns=['yhat'])  # unseen groups
                    XX.index = X_grp.index
                    save_obj(XX, X_path)
                    XX_paths.append(X_path)
                    continue

                if self.grp_models[grp_hash] is None:
                    XX = pd.DataFrame(np.full((X_grp.shape[0], 1), np.nan), columns=['yhat'])  # unseen groups
                    XX.index = X_grp.index
                    save_obj(XX, X_path)
                    XX_paths.append(X_path)
                    continue

                model = self.grp_models[grp_hash]
                model_path = os.path.join(tmp_folder, "fbprophet_modelt" + str(uuid.uuid4()))
                save_obj(model, model_path)
                save_obj(X_grp, X_path)
                model_paths.append(model_path)

                args = (model_path, X_path, self.priors[grp_hash], tmp_folder)
                kwargs = {}
                pool.submit_tryget(None, MyParallelProphetTransformer_transform_async, args=args, kwargs=kwargs,
                                   out=XX_paths)

            pool.finish()
            XX_top_groups = pd.concat((load_obj(XX_path) for XX_path in XX_paths), axis=0).sort_index()
            for p in XX_paths + model_paths:
                remove(p)

        self._clean_tmp_folder(logger, tmp_folder)

        features_df = pd.DataFrame()
        features_df[self.display_name + '_GrpAvg'] = XX_general['yhat']

        if self.top_groups:
            features_df[self.display_name + f'_Top{self.top_n}Grp'] = XX_top_groups['yhat']

        self._output_feature_names = list(features_df.columns)
        self._feature_desc = list(features_df.columns)

        return features_df
Exemplo n.º 21
0
    def fit(self, X: dt.Frame, y: np.array = None, **kwargs):
        """
        Fits FB Prophet models (1 per time group) using historical target values contained in y
        Model fitting is distributed over a pool of processes and uses file storage to share the data with workers
        :param X: Datatable frame containing the features
        :param y: numpy array containing the historical values of the target
        :return: self
        """

        # Get the logger if it exists
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir
            )

        try:
            # Add value of prophet_top_n in recipe_dict variable inside of config.toml file
            # eg1: recipe_dict="{'prophet_top_n': 200}"
            # eg2: recipe_dict="{'prophet_top_n':10}"
            self.top_n = config.recipe_dict['prophet_top_n']
        except KeyError:
            self.top_n = 50

        loggerinfo(logger, f"Prophet will use {self.top_n} groups as well as average target data.")

        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        # Reduce X to TGC
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        X = X[:, self.tgc].to_pandas()

        # Fill NaNs or None
        X = X.replace([None, np.nan], 0)

        # Add target, Label encoder is only used for Classif. which we don't support...
        if self.labels is not None:
            y = LabelEncoder().fit(self.labels).transform(y)
        X['y'] = np.array(y)

        self.nan_value = X['y'].mean()

        # Change date feature name to match Prophet requirements
        X.rename(columns={self.time_column: "ds"}, inplace=True)

        # Create a general scale now that will be used for unknown groups at prediction time
        # Can we do smarter than that ?
        self.general_scaler = MinMaxScaler().fit(X[['y', 'ds']].groupby('ds').median().values)

        # Go through groups and standard scale them
        if len(tgc_wo_time) > 0:
            X_groups = X.groupby(tgc_wo_time)
        else:
            X_groups = [([None], X)]

        self.scalers = {}
        scaled_ys = []
        print(f'{datetime.now()} Start of group scaling')

        for key, X_grp in X_groups:
            # Create dict key to store the min max scaler
            grp_hash = self.get_hash(key)
            # Scale target for current group
            self.scalers[grp_hash] = MinMaxScaler()
            y_skl = self.scalers[grp_hash].fit_transform(X_grp[['y']].values)
            # Put back in a DataFrame to keep track of original index
            y_skl_df = pd.DataFrame(y_skl, columns=['y'])
            # (0, 'A') (1, 4) (100, 1) (100, 1)
            # print(grp_hash, X_grp.shape, y_skl.shape, y_skl_df.shape)

            y_skl_df.index = X_grp.index
            scaled_ys.append(y_skl_df)

        print(f'{datetime.now()} End of group scaling')
        # Set target back in original frame but keep original
        X['y_orig'] = X['y']
        X['y'] = pd.concat(tuple(scaled_ys), axis=0)

        # Now Average groups
        X_avg = X[['ds', 'y']].groupby('ds').mean().reset_index()

        # Send that to Prophet
        params = {
            "country_holidays": self.country_holidays,
            "monthly_seasonality": self.monthly_seasonality
        }
        mod = importlib.import_module('fbprophet')
        Prophet = getattr(mod, "Prophet")
        self.model = Prophet(yearly_seasonality=True, weekly_seasonality=True, daily_seasonality=True)

        if params["country_holidays"] is not None:
            self.model.add_country_holidays(country_name=params["country_holidays"])
        if params["monthly_seasonality"]:
            self.model.add_seasonality(name='monthly', period=30.5, fourier_order=5)

        with suppress_stdout_stderr():
            self.model.fit(X[['ds', 'y']])

        print(f'{datetime.now()} General Model Fitted')

        self.top_groups = None
        if len(tgc_wo_time) > 0:
            if self.top_n > 0:
                top_n_grp = X.groupby(tgc_wo_time).size().sort_values().reset_index()[tgc_wo_time].iloc[-self.top_n:].values
                self.top_groups = [
                    '_'.join(map(str, key))
                    for key in top_n_grp
                ]

        if self.top_groups:
            self.grp_models = {}
            self.priors = {}

            # Prepare for multi processing
            num_tasks = len(self.top_groups)

            def processor(out, res):
                out[res[0]] = res[1]

            pool_to_use = small_job_pool
            loggerinfo(logger, f"Prophet will use {n_jobs} workers for fitting.")
            loggerinfo(logger, "Prophet parameters holidays {} / monthly {}".format(self.country_holidays, self.monthly_seasonality))
            pool = pool_to_use(
                logger=None, processor=processor,
                num_tasks=num_tasks, max_workers=n_jobs
            )
            #
            # Fit 1 FB Prophet model per time group columns
            nb_groups = len(X_groups)

            # Put y back to its unscaled value for top groups
            X['y'] = X['y_orig']

            for _i_g, (key, X) in enumerate(X_groups):
                # Just log where we are in the fitting process
                if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                    loggerinfo(logger, "FB Prophet : %d%% of groups fitted" % (100 * (_i_g + 1) // nb_groups))

                X_path = os.path.join(tmp_folder, "fbprophet_X" + str(uuid.uuid4()))
                X = X.reset_index(drop=True)
                save_obj(X, X_path)

                grp_hash = self.get_hash(key)

                if grp_hash not in self.top_groups:
                    continue

                self.priors[grp_hash] = X['y'].mean()

                params = {
                    "country_holidays": self.country_holidays,
                    "monthly_seasonality": self.monthly_seasonality
                }

                args = (X_path, grp_hash, tmp_folder, params)
                kwargs = {}
                pool.submit_tryget(None, MyParallelProphetTransformer_fit_async,
                                   args=args, kwargs=kwargs, out=self.grp_models)
            pool.finish()

            for k, v in self.grp_models.items():
                self.grp_models[k] = load_obj(v) if v is not None else None
                remove(v)

        self._clean_tmp_folder(logger, tmp_folder)

        return self
Exemplo n.º 22
0
    def fit(self, X, y, sample_weight=None, eval_set=None, sample_weight_eval_set=None, **kwargs):

        # Example use of logger, with required import of:
        #  from h2oaicore.systemutils import make_experiment_logger, loggerinfo
        # Can use loggerwarning, loggererror, etc. for different levels
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(experiment_id=self.context.experiment_id, tmp_dir=self.context.tmp_dir,
                                            experiment_tmp_dir=self.context.experiment_tmp_dir)
        loggerinfo(logger, "TestLOGGER: Fit CatBoost")

        # Example task sync operations
        if hasattr(self, 'testcount'):
            self.test_count += 1
        else:
            self.test_count = 0

        # The below generates a message in the GUI notifications panel
        if self.test_count == 0 and self.context and self.context.experiment_id:
            warning = "TestWarning: First CatBoost fit for this model instance"
            loggerwarning(logger, warning)
            task = kwargs.get('task')
            if task:
                task.sync(key=self.context.experiment_id, progress=dict(type='warning', data=warning))
                task.flush()

        # The below generates a message in the GUI top-middle panel above the progress wheel
        if self.test_count == 0 and self.context and self.context.experiment_id:
            message = "TestMessage: CatBoost"
            loggerinfo(logger, message)
            task = kwargs.get('task')
            if task:
                task.sync(key=self.context.experiment_id, progress=dict(type='update', message=message))
                task.flush()

        from catboost import CatBoostClassifier, CatBoostRegressor, EFstrType
        lb = LabelEncoder()
        if self.num_classes >= 2:
            lb.fit(self.labels)
            y = lb.transform(y)

        if isinstance(X, dt.Frame):
            orig_cols = list(X.names)
            # dt -> lightgbm internally using buffer leaks, so convert here
            # assume predict is after pipeline collection or in subprocess so needs no protection
            X = X.to_numpy()  # don't assign back to X so don't damage during predict
            X = np.ascontiguousarray(X, dtype=np.float32 if config.data_precision == "float32" else np.float64)
            if eval_set is not None:
                valid_X = eval_set[0][0].to_numpy()  # don't assign back to X so don't damage during predict
                valid_X = np.ascontiguousarray(valid_X,
                                               dtype=np.float32 if config.data_precision == "float32" else np.float64)
                valid_y = eval_set[0][1]
                if self.num_classes >= 2:
                    valid_y = lb.transform(valid_y)
                eval_set[0] = (valid_X, valid_y)
        else:
            orig_cols = list(X.columns)

        if self.num_classes == 1:
            model = CatBoostRegressor(**self.params)
        else:
            model = CatBoostClassifier(**self.params)
        # Hit sometimes: Exception: catboost/libs/data_new/quantization.cpp:779: All features are either constant or ignored.
        if self.num_classes == 1:
            # assume not mae, which would use median
            # baseline = [np.mean(y)] * len(y)
            baseline = None
        else:
            baseline = None

        model.fit(X, y=y,
                  sample_weight=sample_weight,
                  baseline=baseline,
                  eval_set=eval_set,
                  early_stopping_rounds=kwargs.get('early_stopping_rounds', None),
                  verbose=self.params.get('verbose', False)
                  )

        # need to move to wrapper
        if model.get_best_iteration() is not None:
            iterations = model.get_best_iteration() + 1
        else:
            iterations = self.params['iterations'] + 1
        # must always set best_iterations
        self.set_model_properties(model=model,
                                  features=orig_cols,
                                  importances=model.feature_importances_,
                                  iterations=iterations)
Exemplo n.º 23
0
    def fit(self,
            X,
            y,
            sample_weight=None,
            eval_set=None,
            sample_weight_eval_set=None,
            **kwargs):

        # Get column names
        orig_cols = list(X.names)

        from h2oaicore.tensorflow_dynamic import got_cpu_tf, got_gpu_tf
        import tensorflow as tf
        import shap
        import scipy
        import pandas as pd

        self.setup_keras_session()

        import h2oaicore.keras as keras
        import matplotlib.pyplot as plt

        if not hasattr(self, 'save_model_path'):
            model_id = str(uuid.uuid4())[:8]
            self.save_model_path = os.path.join(user_dir(),
                                                "custom_xnn_model.hdf5")

        np.random.seed(self.random_state)

        my_init = keras.initializers.RandomUniform(seed=self.random_state)

        # Get the logger if it exists
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir)

        # Set up temp folter
        tmp_folder = self._create_tmp_folder(logger)

        # define base model
        def xnn_initialize(features,
                           ridge_functions=3,
                           arch=[20, 12],
                           learning_rate=0.01,
                           bg_samples=100,
                           beta1=0.9,
                           beta2=0.999,
                           dec=0.0,
                           ams=True,
                           bseed=None,
                           is_categorical=False):

            #
            # Prepare model architecture
            #
            # Input to the network, our observation containing all the features
            input = keras.layers.Input(shape=(features, ), name='main_input')

            # Record current column names
            loggerinfo(logger, "XNN LOG")
            loggerdata(logger, "Feature list:")
            loggerdata(logger, str(orig_cols))

            # Input to ridge function number i is the dot product of our original input vector times coefficients
            ridge_input = keras.layers.Dense(ridge_functions,
                                             name="projection_layer",
                                             activation='linear')(input)

            ridge_networks = []
            # Each subnetwork uses only 1 neuron from the projection layer as input so we need to split it
            ridge_inputs = SplitLayer(ridge_functions)(ridge_input)
            for i, ridge_input in enumerate(ridge_inputs):
                # Generate subnetwork i
                mlp = _mlp(ridge_input, i, arch)
                ridge_networks.append(mlp)

            added = keras.layers.Concatenate(
                name='concatenate_1')(ridge_networks)

            # Add the correct output layer for the problem
            if is_categorical:
                out = keras.layers.Dense(1,
                                         activation='sigmoid',
                                         input_shape=(ridge_functions, ),
                                         name='main_output')(added)
            else:
                out = keras.layers.Dense(1,
                                         activation='linear',
                                         input_shape=(ridge_functions, ),
                                         name='main_output')(added)

            model = keras.models.Model(inputs=input, outputs=out)

            optimizer = keras.optimizers.Adam(lr=learning_rate,
                                              beta_1=beta1,
                                              beta_2=beta2,
                                              decay=dec,
                                              amsgrad=ams)

            # Use the correct loss for the problem
            if is_categorical:
                model.compile(loss={'main_output': 'binary_crossentropy'},
                              optimizer=optimizer)
            else:
                model.compile(loss={'main_output': 'mean_squared_error'},
                              optimizer=optimizer)

            return model

        def _mlp(input, idx, arch=[20, 12], activation='relu'):
            # Set up a submetwork

            # Hidden layers
            mlp = keras.layers.Dense(arch[0],
                                     activation=activation,
                                     name='mlp_{}_dense_0'.format(idx),
                                     kernel_initializer=my_init)(input)
            for i, layer in enumerate(arch[1:]):
                mlp = keras.layers.Dense(layer,
                                         activation=activation,
                                         name='mlp_{}_dense_{}'.format(
                                             idx, i + 1),
                                         kernel_initializer=my_init)(mlp)

            # Output of the MLP
            mlp = keras.layers.Dense(
                1,
                activation='linear',
                name='mlp_{}_dense_last'.format(idx),
                kernel_regularizer=keras.regularizers.l1(1e-3),
                kernel_initializer=my_init)(mlp)
            return mlp

        def get_shap(X, model):
            # Calculate the Shap values
            np.random.seed(24)
            bg_samples = min(X.shape[0], 1000)

            if isinstance(X, pd.DataFrame):
                background = X.iloc[np.random.choice(X.shape[0],
                                                     bg_samples,
                                                     replace=False)]
            else:
                background = X[np.random.choice(X.shape[0],
                                                bg_samples,
                                                replace=False)]

            # Explain predictions of the model on the subset
            explainer = shap.DeepExplainer(model, background)
            shap_values = explainer.shap_values(X)

            # Return the mean absolute value of each shap value for each dataset
            xnn_shap = np.abs(shap_values[0]).mean(axis=0)

            return xnn_shap

        # Initialize the xnn's
        features = X.shape[1]
        orig_cols = list(X.names)
        if self.num_classes >= 2:
            lb = LabelEncoder()
            lb.fit(self.labels)
            y = lb.transform(y)

            self.is_cat = True
            xnn1 = xnn_initialize(features=features,
                                  ridge_functions=features,
                                  arch=self.params["arch"],
                                  learning_rate=self.params["lr"],
                                  beta1=self.params["beta_1"],
                                  beta2=self.params["beta_1"],
                                  dec=self.params["decay"],
                                  ams=self.params["amsgrad"],
                                  is_categorical=self.is_cat)
            xnn = xnn_initialize(features=features,
                                 ridge_functions=features,
                                 arch=self.params["arch"],
                                 learning_rate=self.params["lr"],
                                 beta1=self.params["beta_1"],
                                 beta2=self.params["beta_1"],
                                 dec=self.params["decay"],
                                 ams=self.params["amsgrad"],
                                 is_categorical=self.is_cat)
        else:
            self.is_cat = False
            xnn1 = xnn_initialize(features=features,
                                  ridge_functions=features,
                                  arch=self.params["arch"],
                                  learning_rate=self.params["lr"],
                                  beta1=self.params["beta_1"],
                                  beta2=self.params["beta_1"],
                                  dec=self.params["decay"],
                                  ams=self.params["amsgrad"],
                                  is_categorical=self.is_cat)
            xnn = xnn_initialize(features=features,
                                 ridge_functions=features,
                                 arch=self.params["arch"],
                                 learning_rate=self.params["lr"],
                                 beta1=self.params["beta_1"],
                                 beta2=self.params["beta_1"],
                                 dec=self.params["decay"],
                                 ams=self.params["amsgrad"],
                                 is_categorical=self.is_cat)

        # Replace missing values with a value smaller than all observed values
        self.min = dict()
        for col in X.names:
            XX = X[:, col]
            self.min[col] = XX.min1()
            if self.min[col] is None or np.isnan(self.min[col]):
                self.min[col] = -1e10
            else:
                self.min[col] -= 1
            XX.replace(None, self.min[col])
            X[:, col] = XX
            assert X[dt.isna(dt.f[col]), col].nrows == 0
        X = X.to_numpy()

        inputs = {'main_input': X}
        validation_set = 0
        verbose = 0

        # Train the neural network once with early stopping and a validation set
        history = keras.callbacks.History()
        es = keras.callbacks.EarlyStopping(monitor='val_loss', mode='min')

        history = xnn1.fit(inputs,
                           y,
                           epochs=self.params["n_estimators"],
                           batch_size=self.params["batch_size"],
                           validation_split=0.3,
                           verbose=verbose,
                           callbacks=[history, es])

        # Train again on the full data
        number_of_epochs_it_ran = len(history.history['loss'])

        xnn.fit(inputs,
                y,
                epochs=number_of_epochs_it_ran,
                batch_size=self.params["batch_size"],
                validation_split=0.0,
                verbose=verbose)

        # Get the mean absolute Shapley values
        importances = np.array(get_shap(X, xnn))

        int_output = {}
        int_weights = {}
        int_bias = {}
        int_input = {}

        original_activations = {}

        x_labels = list(map(lambda x: 'x' + str(x), range(features)))

        intermediate_output = []

        # Record and plot the projection weights
        #
        weight_list = []
        for layer in xnn.layers:

            layer_name = layer.get_config()['name']
            if layer_name != "main_input":
                print(layer_name)
                weights = layer.get_weights()

                # Record the biases
                try:
                    bias = layer.get_weights()[1]
                    int_bias[layer_name] = bias
                except:
                    print("No Bias")

                # Record outputs for the test set
                intermediate_layer_model = keras.models.Model(
                    inputs=xnn.input, outputs=xnn.get_layer(layer_name).output)

                # Record the outputs from the training set
                if self.is_cat and (layer_name == 'main_output'):
                    original_activations[layer_name] = scipy.special.logit(
                        intermediate_layer_model.predict(X))
                    original_activations[
                        layer_name +
                        "_p"] = intermediate_layer_model.predict(X)
                else:
                    original_activations[
                        layer_name] = intermediate_layer_model.predict(X)

                    # Record other weights, inputs, and outputs
                int_weights[layer_name] = weights
                int_input[layer_name] = layer.input
                int_output[layer_name] = layer.output

            # Plot the projection layers
            if "projection_layer" in layer.get_config()['name']:

                # print(layer.get_config()['name'])

                # Record the weights for each projection layer
                weights = [np.transpose(layer.get_weights()[0])]

                weight_list2 = []
                for i, weight in enumerate(weights[0]):
                    weight_list.append(weight)
                    weight_list2.append(
                        list(np.reshape(weight, (1, features))[0]))

                    # Plot weights
                    plt.bar(orig_cols,
                            abs(np.reshape(weight, (1, features))[0]),
                            1,
                            color="blue")
                    plt.ylabel("Coefficient value")
                    plt.title("Projection Layer Weights {}".format(i),
                              fontdict={'fontsize': 10})
                    plt.xticks(rotation=90)
                    plt.show()
                    plt.savefig(os.path.join(
                        tmp_folder, 'projection_layer_' + str(i) + '.png'),
                                bbox_inches="tight")
                    plt.clf()

            if "main_output" in layer.get_config()['name']:
                weights_main = layer.get_weights()
                print(weights_main)

        pd.DataFrame(weight_list2).to_csv(os.path.join(tmp_folder,
                                                       "projection_data.csv"),
                                          index=False)

        intermediate_output = []

        for feature_num in range(features):
            intermediate_layer_model = keras.models.Model(
                inputs=xnn.input,
                outputs=xnn.get_layer('mlp_' + str(feature_num) +
                                      '_dense_last').output)
            intermediate_output.append(intermediate_layer_model.predict(X))

        # Record and plot the ridge functions
        ridge_x = []
        ridge_y = []
        for weight_number in range(len(weight_list)):
            ridge_x.append(
                list(
                    sum(X[:, ii] * weight_list[weight_number][ii]
                        for ii in range(features))))
            ridge_y.append(list(intermediate_output[weight_number]))

            plt.plot(
                sum(X[:, ii] * weight_list[weight_number][ii]
                    for ii in range(features)),
                intermediate_output[weight_number], 'o')
            plt.xlabel("Input")
            plt.ylabel("Subnetwork " + str(weight_number))
            plt.title("Ridge Function {}".format(i), fontdict={'fontsize': 10})
            plt.show()
            plt.savefig(
                os.path.join(tmp_folder,
                             'ridge_' + str(weight_number) + '.png'))
            plt.clf()

        # Output the ridge function importance
        weights2 = np.array([item[0] for item in list(weights)[0]])

        output_activations = np.abs(
            np.array([
                item * weights2
                for item in list(original_activations["concatenate_1"])
            ])).mean(axis=0)
        loggerinfo(logger, str(output_activations))
        pd.DataFrame(output_activations).to_csv(os.path.join(
            tmp_folder, "ridge_weights.csv"),
                                                index=False)

        plt.bar(x_labels, output_activations, 1, color="blue")
        plt.xlabel("Ridge function number")
        plt.ylabel("Feature importance")
        plt.title("Ridge function importance", fontdict={'fontsize': 10})
        plt.show()
        plt.savefig(os.path.join(tmp_folder, 'Ridge_function_importance.png'))

        pd.DataFrame(ridge_y).applymap(lambda x: x[0]).to_csv(os.path.join(
            tmp_folder, "ridge_y.csv"),
                                                              index=False)
        pd.DataFrame(ridge_x).to_csv(os.path.join(tmp_folder, "ridge_x.csv"),
                                     index=False)

        pd.DataFrame(orig_cols).to_csv(os.path.join(tmp_folder,
                                                    "input_columns.csv"),
                                       index=False)

        self.set_model_properties(model=xnn,
                                  features=orig_cols,
                                  importances=importances.tolist(),
                                  iterations=self.params['n_estimators'])
Exemplo n.º 24
0
    def transform(self, X: dt.Frame, **kwargs):
        """
        Uses fitted models (1 per time group) to predict the target
        :param X: Datatable Frame containing the features
        :return: FB Prophet predictions
        """
        # Get the logger if it exists
        logger = self.get_experiment_logger()

        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        # Reduce X to TGC
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))

        # Change date feature name to match Prophet requirements
        X = self.convert_to_prophet(X)

        y_predictions = self.predict_with_average_model(X, tgc_wo_time)
        y_predictions.columns = ['average_pred']

        # Go through groups
        for grp_col in tgc_wo_time:
            # Get the unique dates to be predicted
            X_groups = X[['ds', grp_col]].groupby(grp_col)

            # Go though the groups and predict only top
            XX_paths = []
            model_paths = []

            def processor(out, res):
                out.append(res)

            num_tasks = len(X_groups)
            pool_to_use = small_job_pool
            pool = pool_to_use(logger=None,
                               processor=processor,
                               num_tasks=num_tasks,
                               max_workers=n_jobs)

            for _i_g, (key, X_grp) in enumerate(X_groups):

                # Just log where we are in the fitting process
                if (_i_g + 1) % max(1, num_tasks // 20) == 0:
                    loggerinfo(
                        logger, "FB Prophet : %d%% of groups predicted" %
                        (100 * (_i_g + 1) // num_tasks))

                # Create dict key to store the min max scaler
                grp_hash = self.get_hash(key)
                X_path = os.path.join(tmp_folder,
                                      "fbprophet_Xt" + str(uuid.uuid4()))

                if grp_hash not in self.grp_models[grp_col]:
                    # unseen groups
                    XX = pd.DataFrame(np.full((X_grp.shape[0], 1), np.nan),
                                      columns=['yhat'])
                    XX.index = X_grp.index
                    save_obj(XX, X_path)
                    XX_paths.append(X_path)
                    continue

                if self.grp_models[grp_col][grp_hash] is None:
                    # known groups but not enough train data
                    XX = pd.DataFrame(np.full((X_grp.shape[0], 1), np.nan),
                                      columns=['yhat'])
                    XX.index = X_grp.index
                    save_obj(XX, X_path)
                    XX_paths.append(X_path)
                    continue

                model = self.grp_models[grp_col][grp_hash]
                model_path = os.path.join(
                    tmp_folder, "fbprophet_modelt" + str(uuid.uuid4()))
                save_obj(model, model_path)
                save_obj(X_grp, X_path)
                model_paths.append(model_path)

                args = (model_path, X_path, self.priors[grp_col][grp_hash],
                        tmp_folder)
                kwargs = {}
                pool.submit_tryget(
                    None,
                    MyProphetOnSingleGroupsTransformer_transform_async,
                    args=args,
                    kwargs=kwargs,
                    out=XX_paths)

            pool.finish()
            y_predictions[f'{grp_col}_pred'] = pd.concat(
                (load_obj(XX_path) for XX_path in XX_paths),
                axis=0).sort_index()
            for p in XX_paths + model_paths:
                remove(p)

        # Now we can invert scale
        # But first get rid of NaNs
        for grp_col in tgc_wo_time:
            # Add time group to the predictions, will be used to invert scaling
            y_predictions[grp_col] = X[grp_col]
            # Fill NaN
            y_predictions[f'{grp_col}_pred'] = y_predictions[
                f'{grp_col}_pred'].fillna(y_predictions['average_pred'])

        # Go through groups and recover the scaled target for knowed groups
        if len(tgc_wo_time) > 0:
            X_groups = y_predictions.groupby(tgc_wo_time)
        else:
            X_groups = [([None], y_predictions)]

        for _f in [f'{grp_col}_pred'
                   for grp_col in tgc_wo_time] + ['average_pred']:
            inverted_ys = []
            for key, X_grp in X_groups:
                grp_hash = self.get_hash(key)
                # Scale target for current group
                if grp_hash in self.scalers.keys():
                    inverted_y = self.scalers[grp_hash].inverse_transform(
                        X_grp[[_f]])
                else:
                    inverted_y = self.general_scaler.inverse_transform(
                        X_grp[[_f]])

                # Put back in a DataFrame to keep track of original index
                inverted_df = pd.DataFrame(inverted_y, columns=[_f])
                inverted_df.index = X_grp.index
                inverted_ys.append(inverted_df)
            y_predictions[_f] = pd.concat(tuple(inverted_ys),
                                          axis=0).sort_index()[_f]

        self._clean_tmp_folder(logger, tmp_folder)

        y_predictions.drop(tgc_wo_time, axis=1, inplace=True)

        self._output_feature_names = [
            f'{self.display_name}_{_f}' for _f in y_predictions
        ]
        self._feature_desc = [
            f'{self.display_name}_{_f}' for _f in y_predictions
        ]

        return y_predictions
Exemplo n.º 25
0
    def fit(self, X: dt.Frame, y: np.array = None, **kwargs):
        """
        Fits FB Prophet models (1 per time group) using historical target values contained in y
        Model fitting is distributed over a pool of processes and uses file storage to share the data with workers
        :param X: Datatable frame containing the features
        :param y: numpy array containing the historical values of the target
        :return: self
        """

        # Get the logger if it exists
        logger = self.get_experiment_logger()

        loggerinfo(
            logger,
            f"Prophet will use individual groups as well as average target data."
        )

        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        # Reduce X to TGC
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))

        X = self.convert_to_prophet(X)

        # Add target, Label encoder is only used for Classif. which we don't support...
        if self.labels is not None:
            y = LabelEncoder().fit(self.labels).transform(y)
        X['y'] = np.array(y)

        self.prior_value = X['y'].mean()

        self.general_scaler = self.fit_scaler_to_median_target(X)

        X = self.scale_target_for_each_time_group(X, tgc_wo_time)

        self.avg_model = self.fit_prophet_model_on_average_target(X)

        # Go through individual time group columns and create avg models
        self.grp_models = {}
        self.priors = {}
        for grp_col in tgc_wo_time:
            self.grp_models[grp_col] = {}
            self.priors[grp_col] = {}

            X_groups = X[['ds', 'y', grp_col]].groupby(grp_col)

            nb_groups = len(X_groups)

            def processor(out, res):
                out[res[0]] = res[1]

            pool_to_use = small_job_pool
            loggerinfo(logger,
                       f"Prophet will use {n_jobs} workers for fitting.")
            loggerinfo(
                logger, "Prophet parameters holidays {} / monthly {}".format(
                    self.country_holidays, self.monthly_seasonality))
            pool = pool_to_use(logger=None,
                               processor=processor,
                               num_tasks=nb_groups,
                               max_workers=n_jobs)

            for _i_g, (key, X_grp) in enumerate(X_groups):
                # Just log where we are in the fitting process
                if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                    loggerinfo(
                        logger, "FB Prophet : %d%% of groups fitted" %
                        (100 * (_i_g + 1) // nb_groups))

                X_path = os.path.join(tmp_folder,
                                      "fbprophet_X" + str(uuid.uuid4()))

                # Save target average for current group
                grp_hash = self.get_hash(key)
                self.priors[grp_col][grp_hash] = X_grp['y'].mean()

                # Average by date
                X_grp_avg = X_grp.groupby('ds')['y'].mean().reset_index()

                save_obj(X_grp_avg, X_path)

                params = {
                    "country_holidays": self.country_holidays,
                    "monthly_seasonality": self.monthly_seasonality
                }

                args = (X_path, grp_hash, tmp_folder, params)
                kwargs = {}
                pool.submit_tryget(
                    None,
                    MyProphetOnSingleGroupsTransformer_fit_async,
                    args=args,
                    kwargs=kwargs,
                    out=self.grp_models[grp_col])
            pool.finish()

            for k, v in self.grp_models[grp_col].items():
                self.grp_models[grp_col][k] = load_obj(
                    v) if v is not None else None
                remove(v)

        self._clean_tmp_folder(logger, tmp_folder)

        return self
Exemplo n.º 26
0
    def transform(self, X: dt.Frame, **kwargs):
        """
        Uses fitted models (1 per time group) to predict the target
        :param X: Datatable Frame containing the features
        :return: FB Prophet predictions
        """
        # Get the logger if it exists
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir)

        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        XX = X[:, self.tgc].to_pandas()
        XX = XX.replace([None, np.nan], 0)
        XX.rename(columns={self.time_column: "ds"}, inplace=True)
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        if len(tgc_wo_time) > 0:
            XX_grp = XX.groupby(tgc_wo_time)
        else:
            XX_grp = [([None], XX)]
        assert len(XX_grp) > 0
        num_tasks = len(XX_grp)

        def processor(out, res):
            out.append(res)

        pool_to_use = small_job_pool
        loggerinfo(logger,
                   "Prophet will use {} workers for transform".format(n_jobs))
        pool = pool_to_use(logger=None,
                           processor=processor,
                           num_tasks=num_tasks,
                           max_workers=n_jobs)
        XX_paths = []
        model_paths = []
        nb_groups = len(XX_grp)
        print("Nb Groups = ", nb_groups)
        for _i_g, (key, X) in enumerate(XX_grp):
            # Log where we are in the transformation of the dataset
            if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                loggerinfo(
                    logger, "FB Prophet : %d%% of groups transformed" %
                    (100 * (_i_g + 1) // nb_groups))

            key = key if isinstance(key, list) else [key]
            grp_hash = '_'.join(map(str, key))
            X_path = os.path.join(tmp_folder,
                                  "fbprophet_Xt" + str(uuid.uuid4()))
            # Commented for performance, uncomment for debug
            # print("prophet - transforming data of shape: %s for group: %s" % (str(X.shape), grp_hash))
            if grp_hash in self.models:
                model = self.models[grp_hash]
                model_path = os.path.join(
                    tmp_folder, "fbprophet_modelt" + str(uuid.uuid4()))
                save_obj(model, model_path)
                save_obj(X, X_path)
                model_paths.append(model_path)

                args = (model_path, X_path, self.priors[grp_hash], tmp_folder)
                kwargs = {}
                pool.submit_tryget(
                    None,
                    MyParallelProphetTransformer_transform_async,
                    args=args,
                    kwargs=kwargs,
                    out=XX_paths)
            else:
                XX = pd.DataFrame(np.full((X.shape[0], 1), self.nan_value),
                                  columns=['yhat'])  # unseen groups
                XX.index = X.index
                save_obj(XX, X_path)
                XX_paths.append(X_path)
        pool.finish()
        XX = pd.concat((load_obj(XX_path) for XX_path in XX_paths),
                       axis=0).sort_index()
        for p in XX_paths + model_paths:
            remove(p)

        self._clean_tmp_folder(logger, tmp_folder)

        return XX
Exemplo n.º 27
0
    def fit(self, X: dt.Frame, y: np.array = None, **kwargs):
        """
        Fits FB Prophet models (1 per time group) using historical target values contained in y
        Model fitting is distributed over a pool of processes and uses file storage to share the data with workers
        :param X: Datatable frame containing the features
        :param y: numpy array containing the historical values of the target
        :return: self
        """

        # Get the logger if it exists
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(
                experiment_id=self.context.experiment_id,
                tmp_dir=self.context.tmp_dir,
                experiment_tmp_dir=self.context.experiment_tmp_dir)

        tmp_folder = self._create_tmp_folder(logger)

        n_jobs = self._get_n_jobs(logger, **kwargs)

        # Convert to pandas
        XX = X[:, self.tgc].to_pandas()
        XX = XX.replace([None, np.nan], 0)
        XX.rename(columns={self.time_column: "ds"}, inplace=True)
        # Make sure labales are numeric
        if self.labels is not None:
            y = LabelEncoder().fit(self.labels).transform(y)
        XX['y'] = np.array(y)
        # Set target prior
        self.nan_value = np.mean(y)

        # Group the input by TGC (Time group column) excluding the time column itself
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        if len(tgc_wo_time) > 0:
            XX_grp = XX.groupby(tgc_wo_time)
        else:
            XX_grp = [([None], XX)]
        self.models = {}
        self.priors = {}

        # Prepare for multi processing
        num_tasks = len(XX_grp)

        def processor(out, res):
            out[res[0]] = res[1]

        pool_to_use = small_job_pool
        loggerinfo(logger,
                   "Prophet will use {} workers for fitting".format(n_jobs))
        loggerinfo(
            logger, "Prophet parameters holidays {} / monthly {}".format(
                self.country_holidays, self.monthly_seasonality))
        pool = pool_to_use(logger=None,
                           processor=processor,
                           num_tasks=num_tasks,
                           max_workers=n_jobs)

        # Fit 1 FB Prophet model per time group columns
        nb_groups = len(XX_grp)
        for _i_g, (key, X) in enumerate(XX_grp):
            # Just log where we are in the fitting process
            if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                loggerinfo(
                    logger, "FB Prophet : %d%% of groups fitted" %
                    (100 * (_i_g + 1) // nb_groups))

            X_path = os.path.join(tmp_folder,
                                  "fbprophet_X" + str(uuid.uuid4()))
            X = X.reset_index(drop=True)
            save_obj(X, X_path)
            key = key if isinstance(key, list) else [key]
            grp_hash = '_'.join(map(str, key))

            self.priors[grp_hash] = X['y'].mean()

            params = {
                "country_holidays": self.country_holidays,
                "monthly_seasonality": self.monthly_seasonality
            }

            args = (X_path, grp_hash, tmp_folder, params)
            kwargs = {}
            pool.submit_tryget(None,
                               MyParallelProphetTransformer_fit_async,
                               args=args,
                               kwargs=kwargs,
                               out=self.models)
        pool.finish()
        for k, v in self.models.items():
            self.models[k] = load_obj(v) if v is not None else None
            remove(v)

        self._clean_tmp_folder(logger, tmp_folder)

        return self
Exemplo n.º 28
0
    def transform(self, X: dt.Frame):
        """
        Uses fitted models (1 per time group) to predict the target
        If self.is_train exists, it means we are doing in-sample predictions
        if it does not then we Arima is used to predict the future
        :param X: Datatable Frame containing the features
        :return: ARIMA predictions
        """
        logger = self._get_experiment_logger()

        # 0. Preliminary steps
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        X = X[:, self.tgc].to_pandas()

        # Fill NaNs or None
        X = X.replace([None, np.nan], 0)

        X.rename(columns={self.time_column: "ds"}, inplace=True)
        X['ds'] = pd.to_datetime(
            X['ds'], format=self.datetime_formats[self.time_column])

        # 1. Predict with average model
        if self.avg_model is not None:
            X_time = X[['ds']].groupby('ds').first().reset_index()
            if hasattr(self, 'is_train'):
                yhat = self.avg_model.predict_in_sample()
            else:
                yhat = self.avg_model.predict(n_periods=self.pred_gap +
                                              X_time.shape[0])
                # Assign predictions the same order the dates had
                yhat = yhat[self.pred_gap:]

            X_time.sort_values('ds', inplace=True)
            X_time['yhat'] = yhat
            X_time.sort_index(inplace=True)
            # Merge back the average prediction to all similar timestamps
            indices = X.index
            X = pd.merge(left=X,
                         right=X_time[['ds', 'yhat']],
                         on='ds',
                         how='left')
            X.index = indices
        else:
            X['yhat'] = np.nan

        y_avg_model = X['yhat'].values
        y_predictions = pd.DataFrame(y_avg_model, columns=['average_pred'])

        # 2. Predict for individual group
        # Go through groups
        for i_tgc, grp_col in enumerate(tgc_wo_time):
            y_hat_tgc = np.zeros(X.shape[0])

            # Get the unique dates to be predicted
            X_groups = X[['ds', grp_col]].groupby(grp_col)

            nb_groups = len(X_groups)
            dfs = []
            for _i_g, (key, X_grp) in enumerate(X_groups):
                # Just say where we are in the fitting process
                if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                    loggerinfo(
                        logger, "Auto ARIMA : %d%% of groups transformed" %
                        (100 * (_i_g + 1) // nb_groups))

                grp_hash = self.get_hash(grp_col, key)
                try:
                    model = self.models[grp_hash]
                except KeyError:
                    model = None

                # Find unique datetime
                X_time = X_grp[['ds']].groupby('ds').first().reset_index()
                X_time['ds'] = pd.to_datetime(
                    X_time['ds'],
                    format=self.datetime_formats[self.time_column])
                X_time = X_time.sort_values('ds')

                if model is not None:
                    # Get predictions from ARIMA model, make sure we include prediction gaps
                    if hasattr(self, 'is_train'):
                        print(X_grp.shape, model.predict_in_sample().shape)
                        # It can happen that in_sample predictions are smaller than the training set used
                        pred = model.predict_in_sample()
                        tmp = np.zeros(X_time.shape[0])
                        tmp[:len(pred)] = pred
                        X_time['yhat'] = tmp
                    else:
                        # In ARIMA, you provide the number of periods you predict on
                        # So you have to
                        yhat = model.predict(n_periods=self.pred_gap +
                                             X_time.shape[0])
                        X_time['yhat'] = yhat[self.pred_gap:]

                    # Now merge back the predictions into X_grp
                    indices = X_grp.index
                    X_grp = pd.merge(left=X_grp,
                                     right=X_time[['ds', 'yhat']],
                                     on='ds',
                                     how='left')
                    X_grp.index = indices
                else:
                    X_grp = X_grp.copy()
                    X_grp['yhat'] = np.nan

                dfs.append(X_grp['yhat'])

            y_predictions[f'{grp_col}_pred'] = pd.concat(dfs, axis=0)

        # Now we have to invert scale all this
        for grp_col in tgc_wo_time:
            # Add time group to the predictions, will be used to invert scaling
            y_predictions[grp_col] = X[grp_col].copy()
            # Fill NaN
            y_predictions[f'{grp_col}_pred'] = y_predictions[
                f'{grp_col}_pred'].fillna(y_predictions['average_pred'])

        # Go through groups and recover the scaled target for knowed groups
        if len(tgc_wo_time) > 0:
            X_groups = y_predictions.groupby(tgc_wo_time)
        else:
            X_groups = [([None], y_predictions)]

        for _f in [f'{grp_col}_pred'
                   for grp_col in tgc_wo_time] + ['average_pred']:
            inverted_ys = []
            for key, X_grp in X_groups:
                grp_hash = self.get_hash(key)
                # Scale target for current group
                if grp_hash in self.scalers.keys():
                    inverted_y = self.scalers[grp_hash].inverse_transform(
                        X_grp[[_f]])
                else:
                    inverted_y = self.general_scaler.inverse_transform(
                        X_grp[[_f]])

                # Put back in a DataFrame to keep track of original index
                inverted_df = pd.DataFrame(inverted_y, columns=[_f])
                inverted_df.index = X_grp.index
                inverted_ys.append(inverted_df)
            y_predictions[_f] = pd.concat(tuple(inverted_ys),
                                          axis=0).sort_index()[_f]

        y_predictions.drop(tgc_wo_time, axis=1, inplace=True)

        self._output_feature_names = [
            f'{self.display_name}{orig_feat_prefix}{self.time_column}{extra_prefix}{_f}'
            for _f in y_predictions
        ]
        self._feature_desc = self._output_feature_names
        return y_predictions
Exemplo n.º 29
0
    def fit(self, X: dt.Frame, y: np.array = None):
        """
        Fits ARIMA models (1 per time group) using historical target values contained in y
        :param X: Datatable frame containing the features
        :param y: numpy array containing the historical values of the target
        :return: self
        """
        # Import the ARIMA python module
        pm = importlib.import_module('pmdarima')

        self.scalers = None

        logger = self._get_experiment_logger()

        # 0. Preliminary steps
        tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column))
        X = X[:, self.tgc].to_pandas()

        # Fill NaNs or None
        X = X.replace([None, np.nan], 0)

        # Add target, Label encoder is only used for Classif. which we don't support...
        if self.labels is not None:
            y = LabelEncoder().fit(self.labels).transform(y)
        X['y'] = np.array(y)

        # 0. Fit general scaler to make predictions for unknown groups
        X.rename(columns={self.time_column: "ds"}, inplace=True)
        self.general_scaler = MinMaxScaler(feature_range=(1, 2)).fit(
            X[['y', 'ds']].groupby('ds').median().values)

        # 1. Scale target for each individual group
        # Go through groups and standard scale them
        X['y_skl'] = self.scale_target_per_time_group(X, tgc_wo_time, logger)

        # 2. Make time a pandas datetime series so that we can order it
        X['ds'] = pd.to_datetime(
            X['ds'], format=self.datetime_formats[self.time_column])

        # 3. Fit a model on averages
        X_avg = X[['ds', 'y_skl']].groupby('ds').mean().reset_index()
        order = np.argsort(X_avg['ds'])
        try:
            self.avg_model = pm.auto_arima(X_avg['y_skl'].values[order],
                                           error_action='ignore',
                                           seasonal=False)
        except Exception as e:
            loggerinfo(logger, "ARIMA: Average model error : {}".format(e))
            self.avg_model = None

        # 4. Fit model for Average Groups
        self.models = {}
        # Go through groups
        for grp_col in tgc_wo_time:
            print(f'fitting {grp_col}')
            # Get the unique dates to be predicted
            X_groups = X[['ds', 'y_skl', grp_col]].groupby(grp_col)
            print(X.shape)

            nb_groups = len(X_groups)
            for _i_g, (key, X_grp) in enumerate(X_groups):
                # Just say where we are in the fitting process
                if (_i_g + 1) % max(1, nb_groups // 20) == 0:
                    loggerinfo(
                        logger, "Auto ARIMA : %d%% of groups fitted" %
                        (100 * (_i_g + 1) // nb_groups))

                # Average over dates
                X_grp = X_grp.groupby('ds')['y_skl'].mean().reset_index()

                grp_hash = self.get_hash(grp_col, key)
                # print("auto arima - fitting on data of shape: %s for group: %s" % (str(X.shape), grp_hash))

                X_grp['ds'] = pd.to_datetime(
                    X_grp['ds'],
                    format=self.datetime_formats[self.time_column])
                order = np.argsort(X_grp['ds'])

                try:
                    model = pm.auto_arima(X_grp['y_skl'].values[order],
                                          error_action='ignore',
                                          seasonal=False)
                except Exception as e:
                    loggerinfo(logger, "Auto ARIMA warning: {}".format(e))
                    model = None

                self.models[grp_hash] = model

        return self
    def fit(self, X, y, sample_weight=None, eval_set=None, sample_weight_eval_set=None, **kwargs):

        orig_cols = list(X.names)

        import pandas as pd
        import numpy as np
        from skrules import SkopeRules
        from sklearn.preprocessing import OneHotEncoder
        from collections import Counter

        # Get the logger if it exists
        logger = None
        if self.context and self.context.experiment_id:
            logger = make_experiment_logger(experiment_id=self.context.experiment_id,
                                            tmp_dir=self.context.tmp_dir,
                                            experiment_tmp_dir=self.context.experiment_tmp_dir)

        # Set up temp folder
        tmp_folder = self._create_tmp_folder(logger)

        # Set up model
        if self.num_classes >= 2:
            lb = LabelEncoder()
            lb.fit(self.labels)
            y = lb.transform(y)

            model = SkopeRules(max_depth_duplication=self.params["max_depth_duplication"],
                               n_estimators=self.params["n_estimators"],
                               precision_min=self.params["precision_min"],
                               recall_min=self.params["recall_min"],
                               max_samples=self.params["max_samples"],
                               max_samples_features=self.params["max_samples_features"],
                               max_depth=self.params["max_depth"],
                               max_features=self.params["max_features"],
                               min_samples_split=self.params["min_samples_split"],
                               bootstrap=self.params["bootstrap"],
                               bootstrap_features=self.params["bootstrap_features"],
                               random_state=self.params["random_state"],
                               feature_names=orig_cols)
        else:
            # Skopes doesn't work for regression
            loggerinfo(logger, "PASS, no skopes model")
            pass

        # Find the datatypes
        X = X.to_pandas()
        X.columns = orig_cols

        # Change continuous features to categorical
        X_datatypes = [str(item) for item in list(X.dtypes)]

        # Change all float32 values to float64
        for ii in range(len(X_datatypes)):
            if X_datatypes[ii] == 'float32':
                X = X.astype({orig_cols[ii]: np.float64})

        X_datatypes = [str(item) for item in list(X.dtypes)]

        # List the categorical and numerical features
        self.X_categorical = [orig_cols[col_count] for col_count in range(len(orig_cols)) if
                              (X_datatypes[col_count] == 'category') or (X_datatypes[col_count] == 'object')]
        self.X_numeric = [item for item in orig_cols if item not in self.X_categorical]

        # Find the levels and mode for each categorical feature
        # for use in the test set
        self.train_levels = {}
        for item in self.X_categorical:
            self.train_levels[item] = list(set(X[item]))
            self.train_mode[item] = Counter(X[item]).most_common(1)[0][0]

            # One hot encode the categorical features
        # And replace missing values with a Missing category
        if len(self.X_categorical) > 0:
            loggerinfo(logger, "PCategorical encode")

            for colname in self.X_categorical:
                X[colname] = list(X[colname].fillna("Missing"))
            self.enc = OneHotEncoder(handle_unknown='ignore')

            self.enc.fit(X[self.X_categorical])
            self.encoded_categories = list(self.enc.get_feature_names(input_features=self.X_categorical))

            X_enc = self.enc.transform(X[self.X_categorical]).toarray()

            X = pd.concat([X[self.X_numeric], pd.DataFrame(X_enc, columns=self.encoded_categories)], axis=1)

        # Replace missing values with a missing value code
        if len(self.X_numeric) > 0:

            for colname in self.X_numeric:
                X[colname] = list(X[colname].fillna(-999))

        model.fit(np.array(X), np.array(y))

        # Find the rule list
        self.rule_list = model.rules_

        # Calculate feature importances
        var_imp = []
        for var in orig_cols:
            var_imp.append(sum(int(var in item[0]) for item in self.rule_list))

        if max(var_imp) != 0:
            importances = list(np.array(var_imp) / max(var_imp))
        else:
            importances = [1] * len(var_imp)

        pd.DataFrame(model.rules_, columns=['Rule', '(Precision, Recall, nb)']).to_csv(
            os.path.join(tmp_folder, 'Skope_rules.csv'), index=False)

        self.mean_target = np.array(sum(y) / len(y))

        # Set model properties
        self.set_model_properties(model=model,
                                  features=list(X.columns),
                                  importances=importances,
                                  iterations=self.params['n_estimators'])