Exemplo n.º 1
0
 def get_projection_dimensions(self):
     '''
     Return the dimensions of the dataset
     '''
     if not h5pyAvailable:
         raise Exception("Error: h5py is not installed")
     if self.filename is None:
         return
     try:
         with NexusFile(self.filename, 'r') as file:
             try:
                 projections = file[self.data_path]
             except KeyError as ke:
                 raise KeyError('Error: data path {0} not found\n{1}'\
                                .format(self.data_path,
                                        ke.args[0]))
             #image_keys = np.array(file[self.key_path])
             image_keys = self.get_image_keys()
             dims = list(projections.shape)
             dims[0] = np.sum(image_keys == 0)
             return tuple(dims)
     except:
         print(
             "Warning: Error reading image_keys trying accessing data on ",
             self.data_path)
         with NexusFile(self.filename, 'r') as file:
             dims = file[self.data_path].shape
             return tuple(dims)
Exemplo n.º 2
0
 def load(self, dimensions=None, image_key_id=0):
     '''
     This is generic loading function of flat field, dark field and projection data.
     '''
     if not h5pyAvailable:
         raise Exception("Error: h5py is not installed")
     if self.filename is None:
         return
     try:
         with NexusFile(self.filename, 'r') as file:
             image_keys = np.array(file[self.key_path])
             projections = None
             if dimensions == None:
                 projections = np.array(file[self.data_path])
                 result = projections[image_keys == image_key_id]
                 return result
             else:
                 #When dimensions are specified they need to be mapped to image_keys
                 index_array = np.where(image_keys == image_key_id)
                 projection_indexes = index_array[0][dimensions[0]]
                 new_dimensions = list(dimensions)
                 new_dimensions[0] = projection_indexes
                 new_dimensions = tuple(new_dimensions)
                 result = np.array(file[self.data_path][new_dimensions])
                 return result
     except:
         print("Error reading nexus file")
         raise
Exemplo n.º 3
0
 def list_file_content(self):
     try:
         with NexusFile(self.filename, 'r') as file:
             file.visit(print)
     except:
         print("Error reading nexus file")
         raise
Exemplo n.º 4
0
    def get_acquisition_data_whole(self):
        with NexusFile(self.filename, 'r') as file:
            try:
                dims = self.get_projection_dimensions()
            except KeyError:
                print("Warning: ")
                dims = file[self.data_path].shape

            ymin = 0
            ymax = dims[1] - 1

            return self.get_acquisition_data_subset(ymin=ymin, ymax=ymax)
Exemplo n.º 5
0
 def get_projection_angles(self):
     '''
     This function returns the projection angles
     '''
     if not h5pyAvailable:
         raise Exception("Error: h5py is not installed")
     if self.filename is None:
         return
     try:
         with NexusFile(self.filename, 'r') as file:
             angles = np.array(file[self.angle_path], np.float32)
             image_keys = np.array(file[self.key_path])
             return angles[image_keys == 0]
     except:
         print("get_projection_angles Error reading nexus file")
         raise
Exemplo n.º 6
0
 def get_sinogram_dimensions(self):
     '''
     Return the dimensions of the dataset
     '''
     if not h5pyAvailable:
         raise Exception("Error: h5py is not installed")
     if self.filename is None:
         return
     try:
         with NexusFile(self.filename, 'r') as file:
             projections = file[self.data_path]
             image_keys = np.array(file[self.key_path])
             dims = list(projections.shape)
             dims[0] = dims[1]
             dims[1] = np.sum(image_keys == 0)
             return tuple(dims)
     except:
         print("Error reading nexus file")
         raise
Exemplo n.º 7
0
 def get_image_keys(self):
     try:
         with NexusFile(self.filename, 'r') as file:
             return np.array(file[self.key_path])
     except KeyError as ke:
         raise KeyError("get_image_keys: ", ke.args[0], self.key_path)
Exemplo n.º 8
0
    def get_acquisition_data_batch(self, bmin=None, bmax=None):
        if not h5pyAvailable:
            raise Exception("Error: h5py is not installed")
        if self.filename is None:
            return
        try:

            with NexusFile(self.filename, 'r') as file:
                try:
                    dims = self.get_projection_dimensions()
                except KeyError:
                    dims = file[self.data_path].shape
                if bmin is None or bmax is None:
                    raise ValueError(
                        'get_acquisition_data_batch: please specify fastest index batch limits'
                    )

                if bmin >= 0 and bmin < bmax and bmax <= dims[0]:
                    data = np.array(file[self.data_path][bmin:bmax])
                else:
                    raise ValueError(
                        'get_acquisition_data_batch: bmin {0}>0 bmax {1}<{2}'.
                        format(bmin, bmax, dims[0]))

        except:
            print("Error reading nexus file")
            raise

        try:
            angles = self.get_projection_angles()[bmin:bmax]
        except KeyError as ke:
            n = data.shape[0]
            angles = np.linspace(0, n, n + 1, dtype=np.float32)[bmin:bmax]

        if bmax - bmin > 1:

            geometry = AcquisitionGeometry(
                'parallel',
                '3D',
                angles,
                pixel_num_h=dims[2],
                pixel_size_h=1,
                pixel_num_v=bmax - bmin,
                pixel_size_v=1,
                dist_source_center=None,
                dist_center_detector=None,
                channels=1,
                dimension_labels=['angle', 'vertical', 'horizontal'])
            out = geometry.allocate()
            out.fill(data)
            return out

        elif bmax - bmin == 1:
            geometry = AcquisitionGeometry(
                'parallel',
                '2D',
                angles,
                pixel_num_h=dims[2],
                pixel_size_h=1,
                dist_source_center=None,
                dist_center_detector=None,
                channels=1,
                dimension_labels=['angle', 'horizontal'])
            out = geometry.allocate()
            out.fill(data.squeeze())
            return out
Exemplo n.º 9
0
    def get_acquisition_data_subset(self, ymin=None, ymax=None):
        '''
        This method load the acquisition data and given dimension and returns an AcquisitionData Object
        '''
        if not h5pyAvailable:
            raise Exception("Error: h5py is not installed")
        if self.filename is None:
            return
        try:

            with NexusFile(self.filename, 'r') as file:
                try:
                    dims = self.get_projection_dimensions()
                except KeyError:
                    pass
                dims = file[self.data_path].shape
                if ymin is None and ymax is None:

                    try:
                        image_keys = self.get_image_keys()
                        print("image_keys", image_keys)
                        projections = np.array(file[self.data_path])
                        data = projections[image_keys == 0]
                    except KeyError as ke:
                        print(ke)
                        data = np.array(file[self.data_path])

                else:
                    image_keys = self.get_image_keys()
                    print("image_keys", image_keys)
                    projections = np.array(
                        file[self.data_path])[image_keys == 0]
                    if ymin is None:
                        ymin = 0
                        if ymax > dims[1]:
                            raise ValueError('ymax out of range')
                        data = projections[:, :ymax, :]
                    elif ymax is None:
                        ymax = dims[1]
                        if ymin < 0:
                            raise ValueError('ymin out of range')
                        data = projections[:, ymin:, :]
                    else:
                        if ymax > dims[1]:
                            raise ValueError('ymax out of range')
                        if ymin < 0:
                            raise ValueError('ymin out of range')

                        data = projections[:, ymin:ymax, :]

        except:
            print("Error reading nexus file")
            raise

        try:
            angles = self.get_projection_angles()
        except KeyError as ke:
            n = data.shape[0]
            angles = np.linspace(0, n, n + 1, dtype=np.float32)

        if ymax - ymin > 1:

            geometry = AcquisitionGeometry(
                'parallel',
                '3D',
                angles,
                pixel_num_h=dims[2],
                pixel_size_h=1,
                pixel_num_v=ymax - ymin,
                pixel_size_v=1,
                dist_source_center=None,
                dist_center_detector=None,
                channels=1,
                dimension_labels=['angle', 'vertical', 'horizontal'])
            out = geometry.allocate()
            out.fill(data)
            return out
        elif ymax - ymin == 1:
            geometry = AcquisitionGeometry(
                'parallel',
                '2D',
                angles,
                pixel_num_h=dims[2],
                pixel_size_h=1,
                dist_source_center=None,
                dist_center_detector=None,
                channels=1,
                dimension_labels=['angle', 'horizontal'])
            out = geometry.allocate()
            out.fill(data.squeeze())
            return out