Exemplo n.º 1
0
        else:
            return self.j
       
 
if __name__=="__main__":
    # Argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('-m', help='ECOC or VOTE')
    args = parser.parse_args(sys.argv[1:])

    # Load data using specialized script
    train_dataset = load_mnist(path="../data/mnist/", dataset="training")
    test_dataset = load_mnist(path="../data/mnist/", dataset="testing")
    
    # Take a fraction of the data to speed computation
    train_images, train_labels = sample(train_dataset, 5000)
    test_images, test_labels = sample(test_dataset, 100)

    # Get the bounds of the haar rectangles
    bounds = genbounds(28, 28, 100)
    
    # Create data, using same rectangles for training and testing
    train_data = genfeatures(train_images, bounds).astype(float)
    test_data = genfeatures(test_images, bounds).astype(float)

    # Normalize the data
    zmscaler = preprocessing.StandardScaler()
    train_data = zmscaler.fit_transform(train_data)
    test_data = zmscaler.transform(test_data)
    
    if args.m == 'ECOC':
Exemplo n.º 2
0
        else:
            return self.j
       
 
if __name__=="__main__":
    # Argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('-m', help='ECOC or VOTE')
    args = parser.parse_args(sys.argv[1:])

    # Load data using specialized script
    train_dataset = load_mnist(path="../data/mnist/", dataset="training")
    test_dataset = load_mnist(path="../data/mnist/", dataset="testing")
    
    # Take a fraction of the data to speed computation
    train_images, train_labels = sample(train_dataset, 1000)
    test_images, test_labels = test_dataset

    # Get the bounds of the haar rectangles
    bounds = genbounds(28, 28, 100)
    
    # Create data, using same rectangles for training and testing
    train_data = genfeatures(train_images, bounds)
    #test_data = genfeatures(test_images, bounds)

    # Normalize the data
    zmscaler = preprocessing.StandardScaler()
    train_data = zmscaler.fit_transform(train_data)
    #test_data = zmscaler.transform(test_data)
    
    if args.m == 'ECOC':